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Abstract: Transformation of the widely used Pedersen’s Verifiable Secret Sharing (Pedersen-VSS) to 
Pedersen-VSS-General secure against general adversary is first presented. Then a misunderstanding about the use of 
zero-knowledge (ZK) proof in the DL-Key-Gen scheme proposed by R. Canetti etc. is pointed out, and an 
improvement to it is made. An adaptively secure distributed key generation scheme against general adversary 
without the assumption of erasure is developed. A detailed black-box simulator for the security proof of the 
proposed scheme is also given. 
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zero-knowledge proof 

摘  要: 首先将基于门限结构的彼得森可验证秘密共享方案(Pedersen-VSS)转换成可以抵抗一般结构敌手攻击

的方案(Pedersen-VSS-General).指出R. Canetti等人在设计分布式密钥生成方案(DL-Key-Gen)时,关于零知识证明使

用的一个错误,并给出一种改进方案.基于以上设计,提出一个可以抵御一般结构敌手攻击的自适应安全的分布式密

钥生成方案,该方案的安全性不依赖于“擦除”假设.对于这个方案给出详细的基于黑盒模拟的安全性证明. 
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1   Introduction 

Distributed key generation is a main component of fully distributed cryptosystems. It allows a set of  
players to jointly generate a pair of public and private keys without assuming a trusted party. The public key is the 
output in public, while the private key is maintained as a (i.e. not known to any players) secret shared via a sharing 
scheme. Each player obtains a share of the private key as his secret that can be later used to enable other distributed 
cryptosystem such as signature and decryption. This research has attracted a lot of attention in recent years. The first 
distributed key generation scheme was proposed in Ref.[1]. The basic idea of the protocol (as well as in the 
subsequent variations (e.g. [2]) is to have  parallel executions of Feldman’s verifiable secret sharing protocol 
(Feldman-VSS)

n

n
[3] in which each player  acts as a dealer of a random secret  that he picks. The secret key x is 

taken to be the sum of the properly shared ’s. Since Feldman-VSS has the additional property of revealing 
= , the public key  can be obtained naturally by multiplying all the ’s that correspond to those properly 

shared ’s. This solution has been used in many environments. However in Ref.[4] it is pointed out that Pedersen’s 

scheme can’t guarantee the correctness of the output distribution. In the same paper a protocol secure against 
non-adaptive adversary was proposed by using jointly Feldman-VSS and information-theoretic secure Pedersen- 
VSS

iP iz

i

iz

iy izg y y

iz

[5]. At the same year, Ref.[6] presented a new protocol secure against adaptive adversary based on Ref.[4] by 
replacing Feldman-VSS with an honest-verifier ZK proof of knowledge. To ensure that the verifier is honest, Ref.[6] 
adopts a technique of “distributed challenge generation”. By using this technique the assumption of erasure is 
needed to prove the secrecy. This is also considered to achieve high efficiency. We will show in subsection 3.1 that 
this protocol in fact can’t guarantee the claim.  

We stress that all results mentioned so far only apply to threshold adversary structures. The contributions 
include: 1) Transform the widely used Pedersen-VSS to Pedersen-VSS-General secure against general adversary; 2) 
Present an improvement to the protocol of Ref.[6]. Then based on it we give an adaptively secure distributed key 
generation protocol (denoted by GDKG) against general adversary; 3) Give a detailed proof of the security via 
black-box simulation for the protocol. Also we point out that the protocol needs no erasure to prove secrecy when 
used as an independent scheme.  

In Section 2 we present the basic communication and adversarial models, as well as the security requirements 

and notations for the protocols. In subsection 3.1 we show the misunderstanding in Ref.[6] on using an 

honest-verifier ZK proof, and introduce a standard technique to transform the ZK proof to one against any verifier. 

In subsection 3.2 we introduce Monotone Span Programs (MSP) and present the Pedersen-VSS-General. In Section 

4 we present the main protocol GDKG and in Section 5 we give the detailed proof for its correctness and secrecy. 

2   Notation, Model, and Security Requirements 

2.1   Notation 

Let p, q be two large primes satisfying , g be an element of order  in , and  be a random 

element in the subgroup generated by g. 

1| −pq q *
pZ h

2.2   Model 

The participants are a set of  players ,...,  that can be modeled by PPT(probabilistic polynomial time) 

Turing machines. We assume a synchronous communication model. All the participants are connected with a 
complete network of private point-to-point channels. In addition, all players have access to an authenticated 
broadcast channel. These assumptions allow us to focus on high-level descriptions of the protocols; however, they 

n 1P nP
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may be instantiated using standard cryptographic techniques.  
In distributed protocols the adversary is allowed to corrupt any subset of players as specified by the security 

model (This is modeled by the Adversary Structure implemented by an MSP in this paper). A malicious (or 
Byzantine, active) adversary may cause the participants to deviate arbitrarily from the protocol after corrupting 
them. An adaptive (or dynamic) adversary means that it can decide which parties to corrupt at any time during the 
run of the protocol and, in particular, its decisions can be based on the information it gathered during this run. We 
assume an adaptive and malicious adversary A in this paper. The computational power of the adversary is also 
modeled by PPT Turing machine. 

2.3   Security requirements 

In Ref.[4], the requirements of a secure distributed key generation protocol have been introduced for threshold 

case. Next we will rewrite them for general adversary structure case. 

Correctness: 

(C1) The shares provided by any subsets of honest players in the access structure (see subsection 4.1) define the 

same unique secret key x . 

(C2) All honest parties have the same value of the public key = (mod ) where y xg p x  is the unique secret 

guaranteed by (C1). 

(C3) x  is uniformly distributed in . qZ

Secrecy:  

The adversary can learn no additional information on x  except for what is implied by the value 

= (mod ). y xg p

3   Two Main Tools 

We introduce two main tools for designing the GDKG protocol in this section. 

3.1   Zero-Knowledge proof of knowledge 

To prove the knowledge of the discrete-log x  of = (mod ) to the base y xg p g , Schnorr presented a 3-round 

zero-knowledge proof of knowledge[7]:  

1. The prover chooses r ∈ qRZ , computes T =  and sends rg T  to the verifier.  

2. The verifier chooses d ∈ qRZ  and sends it to the prover.  

3. The prover computes R = r +  and sends it to the verifier. xd ⋅

4. The verifier checks if = .  Rg dyT ⋅

The values T , and d R  above are called commitment, challenge and response respectively. It is well known 

that the above protocol is only honest-verifier Zero-knowledge. In Ref.[6] a technique of distributed challenge 

generation is used to ensure that the verifier is honest i.e. to ensure the challenge  is really random in Zd q. This is 

considered to achieve the effect of  zero-knowledge proofs of knowledge (where each of the players proves 

something to each of the other players) in a single 3-move honest verifier zero-knowledge proof. But we stress that 

although all players participate in the generation of the challenge, only one challenge d has been generated and 

answered by each player, as a prover. So in fact the error probability of the zero-knowledge proof in Ref.[6] is still 

. This distributed challenge generation results in the dependence on erasure (we will explain this in Section 5). 

)( 2nο

q/1
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In this paper we will adopt another standard method to force the verifier to be honest by having the verifier 

commit to the challenge as a first round. The protocol GDKG performs n parallel zero-knowledge proofs to achieve 

a more reasonable error probability. Although this may add complexity to the protocol, the elimination of the 

distributed generation of a challenge has also significantly reduced the complexity, compared to the original protocol 

in Ref.[6]. We point out that this replacement removes the dependence on erasure.  

3.2   Pedersen-VSS-General 

3.2.1   LSSS and MSP 
In this paper, we consider linear secret sharing schemes (LSSS). An LSSS is defined over a finite field K, and 

the secret to be distributed is an element in K. Each player receives from the dealer a share consisting of one or more 
field elements; each share is computed as a fixed linear function of the secret and some random field elements 
chosen by the dealer. The size of an LSSS is the total number of field elements distributed. Only certain subsets of 
players, the qualified sets, can reconstruct the secret from their shares. Unqualified sets have no information about 
the secret. The collection of qualified sets is called the access structure of the LSSS (denoted by Γ ), and the 
collection of unqualified sets is called the adversary structure (denoted by ∆).  

Most proposed secret sharing schemes are linear, but the concept of LSSS was first considered in its full 
generality by Ref.[8], which introduced the equivalent notion of Monotone Span Programs. 

Definition 3.1. The quadrupel M=( K ; M ;ϕ ; ε ) is called a monotone span program, MSP for short, where K 

is a finite field, M  is a matrix (with f rows and 1+e columns, 1+e ≤ f ) over K,ϕ :{1,…, }→{1,…, } is a 

surjective function and 

f n

ε =(1,0,…,0) is the target vector (without loss of generality. For a detailed introduction, see 

Ref.[9]). The size of M is f. 
MSP’s and LSSS’s are in natural 1-1 correspondence[10]. Hence one can identify an LSSS with its underlying 

MSP. Here we show how to construct a linear secret sharing scheme from an MSP M.  
To distribute s∈K: 

1. The dealer chooses a random vector :=( b , ,…, ) where =b 0 1b eb 0b s . 

2. The dealer computes and sends 〈Ml,b〉 to for each =1,…,  )(lPϕ l f

About the reconstruction phase, we have the following proposition: 

Proposition 3.2. A set of players G can reconstruct s precisely ⇔ ε ∈ Im . Otherwise they get no 

information on 

T
GM

s (see Ref.[8] for a proof of this).  
Definition 3.3. The MSP M (LSSS) is said to compute the access structure Γ, if G∈Γ⇔ ε ∈ Im  where the 

matrix M

T
GM

G consists of the rows of M which are labeled by a number in G. On the other hand, say M (or 
corresponding LSSS) implements adversary structure ∆, if ∆ is the collection of unqualified sets of M (or 
corresponding LSSS).  
3.2.2   Pedersen-VSS-General 

In Ref.[5] an information-theoretic secure VSS, denoted by Pedersen-VSS, against threshold adversary 
structure was proposed. Assume ∆ is the adversary structure that our scheme need to deal with and M= 
( K ; M ;ϕ ; ε ) is an MSP implementing ∆. Now we show how to build Pedersen-VSS-General (see Fig.1) secure 

against general adversary structure from a given MSP. The resulting protocols will be secure for whatever adversary 
structure the MSP happens to implement. Also we refer that for the practical interests, Ref.[11] has introduced how 
to build an MSP secure against a given adversary structure. 

We stress that Pedersen-VSS-General retains the main properties of Pedersen-VSS which are summarized as the 
following lemma: 
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Lemma 3.3. Pedersen-VSS-General satisfies the following properties in the presence of a PPT adversary that 
can corrupts the subsets in the adversary structure implemented by the original MSP: 

1. If the dealer is not disqualified during the protocol then all honest players hold shares that suffice to 
efficiently reconstruct the secret s.  

2. The protocol produces enough information to prevent cheating at reconstruction time. 
3. The view of the adversary is independent of the value of the secret s. 

   To distribute s ∈ K securely: 

1. The dealer chooses two random vector :=( , ,…, b ) where =b 0b 1b e 0b s  and :=( , ′ ,…, ) b′ 0b′ 1b eb′

2. The dealer computes and sends sl=〈Ml,b〉, s′l=〈Ml,b′〉 s′l= to  for each l =0,1,…,f; The dealer also Computes 

and broadcasts C

)(lPϕ

j= , jj bb hg ′⋅ j =0,1,…, e . 
3. Each player Pi checks if  

'll ss hg ⋅ =∏                                            (1) 
=

e

k

M
k

lkC
0

for each l satisfying ϕ(l)=i. 

If a check fails, Pi broadcasts a complaint (0,dealer, l , i) against the dealer. 

4. For each complaint(0,dealer, l , i), the dealer broadcasts the values , s′ls l that satisfy Eq.(1). 

5. All the players reject the dealer if 

(1) he received complaints from all players of a subset A where A∉∆, or 

(2) he answered some complaints in Step 5 with values not satisfying Eq.(1); 

Otherwise they accept the dealer. 
Fig.1  Pedersen-VSS-General 

4   GDKG Protocol 

The distributed key generation protocol secure against general adversary without the assumption of erasure is 

presented in detail in Fig.2. We denote this protocol as GDKG. The solution uses a similar structure as the DKG in 

Ref.[4] and DL-Key-Gen in Ref.[6]. But we use different VSS scheme and ZK proof of knowledge to achieve 

correctness and secrecy against general adversary. The protocol proceeds as follows:  
Generating x (Steps 1−3): This is achieved by having each player commit to a random value  via a Joint 

Pedersen-VSS-General (Step 1). These commitments are verified by other players and the set of parties passing 

verification is denoted by QUEL(Step 2). Then the shared secret is set (implicitly) to 

iz

x = (mod )(Step 

3). In addition to enabling the generation of a random 、 uniformly distributed value x, the n parallel 
General-Pedersen-VSS for generating x has the side effect of having each player broadcast an 

information-theoretically private commitment to  of the form =  which enables the “extraction” and 

publication of the public key  next.  

∑∈QUALi zi q

iz 0iC 00 ii bb hg ′⋅

y

Extracting (Steps 4−10): Because we in fact set = = =y y xg ∑ ∈QUALi izg ∏∈QUALi
zig (mod ), we could 

compute it if 

p
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Input: Parameters (p,q,g) and h, an element in the subgroup generated by g 

Public Output: y, the public key 

Secret Output of Pi: { |ϕ(l)=i}, the share of the random secretlx x distributed by the LSSS (all other secret outputs are 

erased) 
Generating x: 

1. Each player Pi, as a dealer, performs a Pedersen-VSS-General of a random zi he picks: 

(a) Pi chooses two random vectors b =( , ,…, ) where =  and bi 0ib 1ib ieb 0ib iz i′ =( 0ib′ , 1ib′ ,…, ). Pieb′ i broadcasts 

= , =0,1,…, e . PikC ikik bb hg ′− k i computes the shares =ils 〉〈 iblM , , ils′ = 〉′〈 ib,lM (mod q) and sends them to 

 for each l=0,1,…,f. )(lPϕ
(b) Each player Pj verifies the shares he received from the other players. For each i=1,…,n , and each l satisfying ϕ(l)=j, 

Pj checks if: 

ilil ss hg ′⋅ =                                        (2) ∏
=

e

k

M
ik

lkC
0

)(

If the check fails for an index (i,l), Pj broadcasts a complaint (0,i,l,j) against Pi. 

(c) Each player Pi who, as a dealer, received a complaint (0,i,l,j), broadcasts the values ,ils ils′  that satisfy Eq.(2). 

(d) Each player marks as disqualified any player that either  

� received complains from all players of a subset A where A∉∆, or 

� answered to a complaint in Step 1(c) with values that falsify Eq.(2) 

2. Each player builds the set of non-disqualified players QUAL. 

3. Each player Pj sets his share of the secret as the set of  

xl=∑ (mod q) and 
∈QUALi ils lx′ = (mod q) for each l,satisfyingϕ(l)=j. ∑∈

′
QUALi ils

Extracting y=gx (mod p): 

Each player Pi exposes = (mod p) to enable the computation of = (mod p). iy izg y xg

4. Each player Pj chooses a random value dj, and broadcasts Dj= (mod p). jdg

5. Each player Pi, i∈QUEL, broadcasts = = (mod p) and = (mod p) s.t. C = . PiA 0ibg

ij g

izg
ijr T

iB 0ibh ′
0i ii BA ⋅ i also 

chooses random values ,  and sends T = , ijr ijr′ ij′ = (mod p) to Pijrh ′
j for j=1,…,n. 

6. Each player Pj broadcasts dj. 

7. Each player Pi, i∈QUEL, checks for each Pj if Dj=gdj (mod p). For Pj who passes the verification, Pi computes 

= + , ijR ijr 0ij bd − ijR′ = ijr′ + 0ij bd ′− and sends them to Pj. 

8. Each player Pj checks for each Pi, i∈QUEL, that = T  and = . If the check fails for an 

index i, P

ijRg jd
iij A− ijRh ′ jd

iij BT −′

j broadcasts a complaint (0,i,j) against Pi. 

9. If a player Pi, i∈QUEL, receives complains from all players of a subset A where A∉∆, then each player Pj broadcasts 

his share from Pi (i.e. all  satisfying ϕ(l)=j). ils

Reconstruct zi iz  from (si1,…,sid) and set = = (mod p) iA 0ibg izg

10.  Each player computes =y ∏∈QUAli iA (mod p) 

Fig.2  GDKG 

We could have each player “deliver” (i∈QUEL) in a verifiable way. To that end, we require each Pizg i to 
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“split” his commitment Ci0 into two components = (mod ) and = (mod )(Step 5). To show that he 

gives the correct split, each P

iA izg

iA

p

glog

iB

D

0ibh ′

hBlog

p

i proves that he knows both  and  with the zero-knowledge proof 

presented in subsection 3.1(Steps 4−8). If a player fails to prove a correct split, then his value z
iAD i

i is reconstructed 
(Step 9). Combined with the assumption that the adversary is PPT (this implies that to compute a discrete-log is 
infeasible), we can be confident that the broadcast of  by the players who pass the verification of Step 8 are 

really the values we need. For the players who don’t pass the verification of Step 8, the reconstruction of Step 9 
ensures this. 

y x p

5   Security Proof for GDKG 

In this section we prove the protocol GDKG satisfies the security requirements in subsection 2.3.  
Correctness of GDKG: The main difference between GDKG and DL-Key-Gen[6] is that we replace 

Pedersen-VSS and distributed challenge generation in Ref.[6] with Pedersen-VSS-General and first round 
commitment respectively. As we have pointed out that both of the new tools retain the security of the old. Hence it is 
easy for the readers to obtain the confidence of correctness from the proof of correctness in Ref.[6](or Ref.[4], 
because these three protocols enjoy the similar structure). We stress that at the end of GDKG protocol the shared 

secret key is implicitly x =∑∈QUALi iz (mod ), the public key is = (mod ) and each player Pq g i gets his share 

{ |lx )(lϕ = , =0,1,…, } of x distributed by the MSP M. i l f

Adaptive security of DGKG: The basic idea is to present a black-box simulator SIM for the GDKG protocol 

(see Fig.3). The black-box simulator SIM can access a black-box (or oracle) representing the input-output relations 

of the real-life adversary. The same idea has been widely used in the proof of zero-knowledge (e.g. [12]) and the 

security of multiparty computation protocols (e.g. [13]). This simulation is the crux of the secrecy proof. Because 

the success of simulation implies that anything the adversary gets by participating the protocol can be obtained by 

the SIM itself without interfering in the run of the protocol, we can make sure that no information about the private 

key x beyond the value = (mod ) is revealed in the process of the protocol.  y xg p

To show this we provide the value of y as input to the simulator SIM and require it to simulate a run of GDKG 

that ends with y as its public output. We denote by G(resp. B) the set of currently good (resp. bad) players. The 

simulator acts according to the protocol GDKG for all the players in G except a special one P. The state of P 

(selected at random by SIM) will be used by the simulator to “fix” the output of the simulation to y. Because we 

have transformed the ZK proof in the presence of honest verifier to the one against any verifier, the simulator SIM 

can still prove that it knows P’s contribution (in Steps 4−8 of GDKG) although it doesn’t know some secret 

information relative to this special player (in particular the component zP that this player contributes to the secret 

key). However, if the adversary corrupts P during the simulation (with probability which is relative to the adversary 

structure the MSP implements, but is small enough for the environment) the simulator will not be able to provide 

the internal state of this player. Thus, the simulator SIM will need to rewind the adversary and select another special 

player.  

For the DL-Key-Gen in Ref.[6], to prove its secrecy the assumption of erasure is needed due to its use of 

distributed challenge generation. To ensure the correctness i.e. the randomness of the challenge, many commitments 

have to be used, and this unavoidably makes the difficulty to prove adaptive secrecy. Fortunately, after we replaced 
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distributed challenge generation with the first round commitment, we need no longer the assumption of erasure 

when we use GDKG alone. If we use it as a module in a large system, we can achieve secrecy only by requiring 

each player Pi erases all secret information generated in the protocol aside from his share { |lx )(lϕ = } at the end of 

the Step 10(in fact, even no erasure is executed we meet with difficulty only when the special player P is corrupted). 

i

 
Input: public key y, parameters (p,q,g), and h 
1. Perform Step 1 to Step 3 of GDKG on behalf of the players in G. At the end of this step the set QUAL is defined. 
Perform the following pre-computations: 

� Choose one honest player P∈G randomly 

� Compute = = (mod ) and = (mod p) for i∈QUEL/{P} iA 0ibg izg p iB 0ibh ′

� Set =*
PA ∏∈

−−
}{\

1)(
PQUELi iAy (mod p) and = / (mod p) *

PB 0PC *
PA

 

2. For each player Pj, j∈G, perform Step 4 of GDKG; 

For each player Pj, j∈G, SIM initiates an execution of the black-box which will return the di and Di, i∈B, as well as 

some requests of corruption.  

(Thus SIM knows all dj’s, in particular the corrupted players’, and all these values have the same distribution as in the 

real life run). 

3. For each player Pj, i∈G\{P}, execute Step 5 of GDKG according to the protocol. 

For player P, pick random values , , set = and = . Then broadcast 

,  and send T ,  to P

*
PR '*

PR ∈ qRZ *
PjT jPj d

P
R Ag −⋅ )( ** '*

PjT jPj d
P

R Bg −⋅ )( *'*

*
PA *

PB *
Pj

'*
PjT j for j=1,…,n. 

4. Broadcast di for each i∈G. 

5. For each player Pi, i∈G\{P}, execute Step 7 of GDKG according to the protocol; 

For player P, check for each Pj that Dj= (mod p). For Pidg j who passes the verification, P sends ,  to P*
PR '*

PR j. 

6. Execute Step 8 of GDKG on behalf of the players in G 

7. For each player in QUEL who received complaints from a subset A where A∉∆, participate in the reconstruction of their 

values.  

Fig.3  SIMThe black box simulator 

We have the following theorem about the effect of the simulator SIM.  

Theorem 5.1. Simulator SIM on input (p,q,g,h,y) ends in expected polynomial time and computes a view for 

the adversary that is identical to the view in the protocol GDKG on input (p,q,g,h,) and output y. 
Proof.  The view of the adversary in GDKG includes two parts: the public view the adversary sees and the 

internal states of the corrupted parties. 
Firstly we show that SIM outputs a probability distribution that is identical to the public view in the real run of 

GDKG.  
1. For Steps 1-3 of GDKG, the simulation of SIM is carried out according to the protocol, thus all the values 

generated in the simulation have the same distribution as that in the real run.  
2. Steps 4-8 of GDKG are the parallel executions of the zero-knowledge proof. Steps 2-8 of SIM have 

simulated them.  
The values di for i∈G are picked randomly as in the real protocol. 
The values Ai for i∈G\{P} are distributed exactly in the real protocol. As for the value = *

PA
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∏∈
−⋅

}{\
1)(

PQUELi iAy (mod ) and = / (mod ), SIM computes them in the pre-computations according to 

the same constraints (i.e. its relationship with  and other  for i

p *
PB 0PC *

PA p

y iA ∈ }{\ PQUEL ) as in the real execution. 
R i ∈ G j

ijT ijrg '
ijT ij′ ∈ }{P\G j

*
PjT jPjR ⋅* *

PjT ′ PjR′*

PB )*g

The values  and ij ijR′  for  and =1,…,n are uniformly distributed in Zq. 

In step 3 of SIM, the values = , = (mod ) for rh p i and =1,…,n are picked randomly as 
in GDKG. 

For values =  and = , the simulator computes them in step 3 of SIM according 
to the same constraint (i.e. the verification equation in step 8 of GDKG) as in the real execution. 

d
PAg −)( * jd−⋅ (

So the public view in the simulation is identical to that in the real run of GDKG. 
Next we show the simulator can produce a consistent view of the internal state for the corrupted players. 

Clearly, if a player is corrupted before step 2 of SIM, the simulator can produce a consistent view because it is 
following the protocol GDKG. After step 2 the simulator can show correct internal states for all the players in G 
except for the special player P because the simulator is PPT and has modified some of the P’s public states. Thus, if 
P is corrupted the simulator has to rewind the black-box to the beginning of step 2 and selects at random a different 
special player. This rewind makes the SIM end in the expected polynomial time, not polynomial time. □ 

6   Conclusion 

In this paper we propose an adaptively secure distributed key generation protocol (GDKG) against general 
adversary and give a complete proof for its correctness and secrecy via black box simulation. It doesn’t need the 
assumption of erasure, which is usually an unavoidable technique for designing adaptive secure protocol. It also has 
the corresponding complexity with the DL-Key-Gen in Ref.[6]. 
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