
 Vol.16, No.3 ©2005 Journal of Software 软 件 学 报 1000-9825/2005/16(03)0453

抵抗一般结构敌手的自适应安全分布式密钥生成协议
∗

何云筱+, 李 宝, 吕克伟

(中国科学院 研究生院 信息安全国家重点实验室,北京 100039)

An Adaptively Secure Distributed Key Generation Scheme Against General
Adversary without Erasure

HE Yun-Xiao+, LI Bao, LÜ Ke-Wei

(State Key Laboratory of Information Security, Graduate School, The Chinese Academy of Sciences, Beijing 100039, China)

+ Corresponding author: E-mail: heyx@ustc.edu, heyx97@yahoo.com

Received 2003-12-25; Accepted 2004-05-04

He YX, Li B, Lü KW. An adaptively secure distributed key generation scheme against general adversary
without erasure. Journal of Software, 2005,16(3):453−461. DOI: 10.1360/jos160453

Abstract: Transformation of the widely used Pedersen’s Verifiable Secret Sharing (Pedersen-VSS) to
Pedersen-VSS-General secure against general adversary is first presented. Then a misunderstanding about the use of
zero-knowledge (ZK) proof in the DL-Key-Gen scheme proposed by R. Canetti etc. is pointed out, and an
improvement to it is made. An adaptively secure distributed key generation scheme against general adversary
without the assumption of erasure is developed. A detailed black-box simulator for the security proof of the
proposed scheme is also given.
Key words: distributed key generation; adaptive security; general adversary; verifiable secret sharing;

zero-knowledge proof

摘 要: 首先将基于门限结构的彼得森可验证秘密共享方案(Pedersen-VSS)转换成可以抵抗一般结构敌手攻击

的方案(Pedersen-VSS-General).指出R. Canetti等人在设计分布式密钥生成方案(DL-Key-Gen)时,关于零知识证明使

用的一个错误,并给出一种改进方案.基于以上设计,提出一个可以抵御一般结构敌手攻击的自适应安全的分布式密

钥生成方案,该方案的安全性不依赖于“擦除”假设.对于这个方案给出详细的基于黑盒模拟的安全性证明.
关键词: 分布式密钥生成;自适应安全;一般结构敌手;可验证秘密共享;零知识证明
中图法分类号: TP309 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant No.90304013 (国家自然科学基金); the National

High-Tech Research and Development Plan of China under Grant No.2003AA144151 (国家高技术研究发展计划(863)); the Foundation

of President of Graduate School of the Chinese Academy of Sciences under Grant No.yzjj2003010 (中国科学院研究生院院长基金)
HE Yun-Xiao was born in 1979. He is a graduate student at Graduate School, the Chinese Academy of Sciences. His current

research areas are secure multi-party computation and zero-knowledge proof. LI Bao was born in 1962. He is a professor at Graduate
School, the Chinese Academy of Sciences. His current research area is information security. LÜ Ke-Wei was born in 1970. He is an
associate professor at Graduate School, the Chinese Academy of Sciences. His current research areas are secure protocols and proof of
security.

 454 Journal of Software 软件学报 2005,16(3)

1 Introduction

Distributed key generation is a main component of fully distributed cryptosystems. It allows a set of
players to jointly generate a pair of public and private keys without assuming a trusted party. The public key is the
output in public, while the private key is maintained as a (i.e. not known to any players) secret shared via a sharing
scheme. Each player obtains a share of the private key as his secret that can be later used to enable other distributed
cryptosystem such as signature and decryption. This research has attracted a lot of attention in recent years. The first
distributed key generation scheme was proposed in Ref.[1]. The basic idea of the protocol (as well as in the
subsequent variations (e.g. [2]) is to have parallel executions of Feldman’s verifiable secret sharing protocol
(Feldman-VSS)

n

n
[3] in which each player acts as a dealer of a random secret that he picks. The secret key x is

taken to be the sum of the properly shared ’s. Since Feldman-VSS has the additional property of revealing
= , the public key can be obtained naturally by multiplying all the ’s that correspond to those properly

shared ’s. This solution has been used in many environments. However in Ref.[4] it is pointed out that Pedersen’s

scheme can’t guarantee the correctness of the output distribution. In the same paper a protocol secure against
non-adaptive adversary was proposed by using jointly Feldman-VSS and information-theoretic secure Pedersen-
VSS

iP iz

i

iz

iy izg y y

iz

[5]. At the same year, Ref.[6] presented a new protocol secure against adaptive adversary based on Ref.[4] by
replacing Feldman-VSS with an honest-verifier ZK proof of knowledge. To ensure that the verifier is honest, Ref.[6]
adopts a technique of “distributed challenge generation”. By using this technique the assumption of erasure is
needed to prove the secrecy. This is also considered to achieve high efficiency. We will show in subsection 3.1 that
this protocol in fact can’t guarantee the claim.

We stress that all results mentioned so far only apply to threshold adversary structures. The contributions
include: 1) Transform the widely used Pedersen-VSS to Pedersen-VSS-General secure against general adversary; 2)
Present an improvement to the protocol of Ref.[6]. Then based on it we give an adaptively secure distributed key
generation protocol (denoted by GDKG) against general adversary; 3) Give a detailed proof of the security via
black-box simulation for the protocol. Also we point out that the protocol needs no erasure to prove secrecy when
used as an independent scheme.

In Section 2 we present the basic communication and adversarial models, as well as the security requirements

and notations for the protocols. In subsection 3.1 we show the misunderstanding in Ref.[6] on using an

honest-verifier ZK proof, and introduce a standard technique to transform the ZK proof to one against any verifier.

In subsection 3.2 we introduce Monotone Span Programs (MSP) and present the Pedersen-VSS-General. In Section

4 we present the main protocol GDKG and in Section 5 we give the detailed proof for its correctness and secrecy.

2 Notation, Model, and Security Requirements

2.1 Notation

Let p, q be two large primes satisfying , g be an element of order in , and be a random

element in the subgroup generated by g.

1| −pq q *
pZ h

2.2 Model

The participants are a set of players ,..., that can be modeled by PPT(probabilistic polynomial time)

Turing machines. We assume a synchronous communication model. All the participants are connected with a
complete network of private point-to-point channels. In addition, all players have access to an authenticated
broadcast channel. These assumptions allow us to focus on high-level descriptions of the protocols; however, they

n 1P nP

 何云筱 等: 抵抗一般结构敌手的自适应安全分布式密钥生成协议 455

may be instantiated using standard cryptographic techniques.
In distributed protocols the adversary is allowed to corrupt any subset of players as specified by the security

model (This is modeled by the Adversary Structure implemented by an MSP in this paper). A malicious (or
Byzantine, active) adversary may cause the participants to deviate arbitrarily from the protocol after corrupting
them. An adaptive (or dynamic) adversary means that it can decide which parties to corrupt at any time during the
run of the protocol and, in particular, its decisions can be based on the information it gathered during this run. We
assume an adaptive and malicious adversary A in this paper. The computational power of the adversary is also
modeled by PPT Turing machine.

2.3 Security requirements

In Ref.[4], the requirements of a secure distributed key generation protocol have been introduced for threshold

case. Next we will rewrite them for general adversary structure case.

Correctness:

(C1) The shares provided by any subsets of honest players in the access structure (see subsection 4.1) define the

same unique secret key x .

(C2) All honest parties have the same value of the public key = (mod) where y xg p x is the unique secret

guaranteed by (C1).

(C3) x is uniformly distributed in . qZ

Secrecy:

The adversary can learn no additional information on x except for what is implied by the value

= (mod). y xg p

3 Two Main Tools

We introduce two main tools for designing the GDKG protocol in this section.

3.1 Zero-Knowledge proof of knowledge

To prove the knowledge of the discrete-log x of = (mod) to the base y xg p g , Schnorr presented a 3-round

zero-knowledge proof of knowledge[7]:

1. The prover chooses r ∈ qRZ , computes T = and sends rg T to the verifier.

2. The verifier chooses d ∈ qRZ and sends it to the prover.

3. The prover computes R = r + and sends it to the verifier. xd ⋅

4. The verifier checks if = . Rg dyT ⋅

The values T , and d R above are called commitment, challenge and response respectively. It is well known

that the above protocol is only honest-verifier Zero-knowledge. In Ref.[6] a technique of distributed challenge

generation is used to ensure that the verifier is honest i.e. to ensure the challenge is really random in Zd q. This is

considered to achieve the effect of zero-knowledge proofs of knowledge (where each of the players proves

something to each of the other players) in a single 3-move honest verifier zero-knowledge proof. But we stress that

although all players participate in the generation of the challenge, only one challenge d has been generated and

answered by each player, as a prover. So in fact the error probability of the zero-knowledge proof in Ref.[6] is still

. This distributed challenge generation results in the dependence on erasure (we will explain this in Section 5).

)(2nο

q/1

 456 Journal of Software 软件学报 2005,16(3)

In this paper we will adopt another standard method to force the verifier to be honest by having the verifier

commit to the challenge as a first round. The protocol GDKG performs n parallel zero-knowledge proofs to achieve

a more reasonable error probability. Although this may add complexity to the protocol, the elimination of the

distributed generation of a challenge has also significantly reduced the complexity, compared to the original protocol

in Ref.[6]. We point out that this replacement removes the dependence on erasure.

3.2 Pedersen-VSS-General

3.2.1 LSSS and MSP
In this paper, we consider linear secret sharing schemes (LSSS). An LSSS is defined over a finite field K, and

the secret to be distributed is an element in K. Each player receives from the dealer a share consisting of one or more
field elements; each share is computed as a fixed linear function of the secret and some random field elements
chosen by the dealer. The size of an LSSS is the total number of field elements distributed. Only certain subsets of
players, the qualified sets, can reconstruct the secret from their shares. Unqualified sets have no information about
the secret. The collection of qualified sets is called the access structure of the LSSS (denoted by Γ), and the
collection of unqualified sets is called the adversary structure (denoted by ∆).

Most proposed secret sharing schemes are linear, but the concept of LSSS was first considered in its full
generality by Ref.[8], which introduced the equivalent notion of Monotone Span Programs.

Definition 3.1. The quadrupel M=(K ; M ;ϕ ; ε) is called a monotone span program, MSP for short, where K

is a finite field, M is a matrix (with f rows and 1+e columns, 1+e ≤ f) over K,ϕ :{1,…, }→{1,…, } is a

surjective function and

f n

ε =(1,0,…,0) is the target vector (without loss of generality. For a detailed introduction, see

Ref.[9]). The size of M is f.
MSP’s and LSSS’s are in natural 1-1 correspondence[10]. Hence one can identify an LSSS with its underlying

MSP. Here we show how to construct a linear secret sharing scheme from an MSP M.
To distribute s∈K:

1. The dealer chooses a random vector :=(b , ,…,) where =b 0 1b eb 0b s .

2. The dealer computes and sends 〈Ml,b〉 to for each =1,…,)(lPϕ l f

About the reconstruction phase, we have the following proposition:

Proposition 3.2. A set of players G can reconstruct s precisely ⇔ ε ∈ Im . Otherwise they get no

information on

T
GM

s (see Ref.[8] for a proof of this).
Definition 3.3. The MSP M (LSSS) is said to compute the access structure Γ, if G∈Γ⇔ ε ∈ Im where the

matrix M

T
GM

G consists of the rows of M which are labeled by a number in G. On the other hand, say M (or
corresponding LSSS) implements adversary structure ∆, if ∆ is the collection of unqualified sets of M (or
corresponding LSSS).
3.2.2 Pedersen-VSS-General

In Ref.[5] an information-theoretic secure VSS, denoted by Pedersen-VSS, against threshold adversary
structure was proposed. Assume ∆ is the adversary structure that our scheme need to deal with and M=
(K ; M ;ϕ ; ε) is an MSP implementing ∆. Now we show how to build Pedersen-VSS-General (see Fig.1) secure

against general adversary structure from a given MSP. The resulting protocols will be secure for whatever adversary
structure the MSP happens to implement. Also we refer that for the practical interests, Ref.[11] has introduced how
to build an MSP secure against a given adversary structure.

We stress that Pedersen-VSS-General retains the main properties of Pedersen-VSS which are summarized as the
following lemma:

 何云筱 等: 抵抗一般结构敌手的自适应安全分布式密钥生成协议 457

Lemma 3.3. Pedersen-VSS-General satisfies the following properties in the presence of a PPT adversary that
can corrupts the subsets in the adversary structure implemented by the original MSP:

1. If the dealer is not disqualified during the protocol then all honest players hold shares that suffice to
efficiently reconstruct the secret s.

2. The protocol produces enough information to prevent cheating at reconstruction time.
3. The view of the adversary is independent of the value of the secret s.

 To distribute s ∈ K securely:

1. The dealer chooses two random vector :=(, ,…, b) where =b 0b 1b e 0b s and :=(, ′ ,…,) b′ 0b′ 1b eb′

2. The dealer computes and sends sl=〈Ml,b〉, s′l=〈Ml,b′〉 s′l= to for each l =0,1,…,f; The dealer also Computes

and broadcasts C

)(lPϕ

j= , jj bb hg ′⋅ j =0,1,…, e .
3. Each player Pi checks if

'll ss hg ⋅ =∏ (1)
=

e

k

M
k

lkC
0

for each l satisfying ϕ(l)=i.

If a check fails, Pi broadcasts a complaint (0,dealer, l , i) against the dealer.

4. For each complaint(0,dealer, l , i), the dealer broadcasts the values , s′ls l that satisfy Eq.(1).

5. All the players reject the dealer if

(1) he received complaints from all players of a subset A where A∉∆, or

(2) he answered some complaints in Step 5 with values not satisfying Eq.(1);

Otherwise they accept the dealer.
Fig.1 Pedersen-VSS-General

4 GDKG Protocol

The distributed key generation protocol secure against general adversary without the assumption of erasure is

presented in detail in Fig.2. We denote this protocol as GDKG. The solution uses a similar structure as the DKG in

Ref.[4] and DL-Key-Gen in Ref.[6]. But we use different VSS scheme and ZK proof of knowledge to achieve

correctness and secrecy against general adversary. The protocol proceeds as follows:
Generating x (Steps 1−3): This is achieved by having each player commit to a random value via a Joint

Pedersen-VSS-General (Step 1). These commitments are verified by other players and the set of parties passing

verification is denoted by QUEL(Step 2). Then the shared secret is set (implicitly) to

iz

x = (mod)(Step

3). In addition to enabling the generation of a random 、 uniformly distributed value x, the n parallel
General-Pedersen-VSS for generating x has the side effect of having each player broadcast an

information-theoretically private commitment to of the form = which enables the “extraction” and

publication of the public key next.

∑∈QUALi zi q

iz 0iC 00 ii bb hg ′⋅

y

Extracting (Steps 4−10): Because we in fact set = = =y y xg ∑ ∈QUALi izg ∏∈QUALi
zig (mod), we could

compute it if

p

 458 Journal of Software 软件学报 2005,16(3)

Input: Parameters (p,q,g) and h, an element in the subgroup generated by g

Public Output: y, the public key

Secret Output of Pi: { |ϕ(l)=i}, the share of the random secretlx x distributed by the LSSS (all other secret outputs are

erased)
Generating x:

1. Each player Pi, as a dealer, performs a Pedersen-VSS-General of a random zi he picks:

(a) Pi chooses two random vectors b =(, ,…,) where = and bi 0ib 1ib ieb 0ib iz i′ =(0ib′ , 1ib′ ,…,). Pieb′ i broadcasts

= , =0,1,…, e . PikC ikik bb hg ′− k i computes the shares =ils 〉〈 iblM , , ils′ = 〉′〈 ib,lM (mod q) and sends them to

 for each l=0,1,…,f.)(lPϕ
(b) Each player Pj verifies the shares he received from the other players. For each i=1,…,n , and each l satisfying ϕ(l)=j,

Pj checks if:

ilil ss hg ′⋅ = (2) ∏
=

e

k

M
ik

lkC
0

)(

If the check fails for an index (i,l), Pj broadcasts a complaint (0,i,l,j) against Pi.

(c) Each player Pi who, as a dealer, received a complaint (0,i,l,j), broadcasts the values ,ils ils′ that satisfy Eq.(2).

(d) Each player marks as disqualified any player that either

� received complains from all players of a subset A where A∉∆, or

� answered to a complaint in Step 1(c) with values that falsify Eq.(2)

2. Each player builds the set of non-disqualified players QUAL.

3. Each player Pj sets his share of the secret as the set of

xl=∑ (mod q) and
∈QUALi ils lx′ = (mod q) for each l,satisfyingϕ(l)=j. ∑∈

′
QUALi ils

Extracting y=gx (mod p):

Each player Pi exposes = (mod p) to enable the computation of = (mod p). iy izg y xg

4. Each player Pj chooses a random value dj, and broadcasts Dj= (mod p). jdg

5. Each player Pi, i∈QUEL, broadcasts = = (mod p) and = (mod p) s.t. C = . PiA 0ibg

ij g

izg
ijr T

iB 0ibh ′
0i ii BA ⋅ i also

chooses random values , and sends T = , ijr ijr′ ij′ = (mod p) to Pijrh ′
j for j=1,…,n.

6. Each player Pj broadcasts dj.

7. Each player Pi, i∈QUEL, checks for each Pj if Dj=gdj (mod p). For Pj who passes the verification, Pi computes

= + , ijR ijr 0ij bd − ijR′ = ijr′ + 0ij bd ′− and sends them to Pj.

8. Each player Pj checks for each Pi, i∈QUEL, that = T and = . If the check fails for an

index i, P

ijRg jd
iij A− ijRh ′ jd

iij BT −′

j broadcasts a complaint (0,i,j) against Pi.

9. If a player Pi, i∈QUEL, receives complains from all players of a subset A where A∉∆, then each player Pj broadcasts

his share from Pi (i.e. all satisfying ϕ(l)=j). ils

Reconstruct zi iz from (si1,…,sid) and set = = (mod p) iA 0ibg izg

10. Each player computes =y ∏∈QUAli iA (mod p)

Fig.2 GDKG

We could have each player “deliver” (i∈QUEL) in a verifiable way. To that end, we require each Pizg i to

 何云筱 等: 抵抗一般结构敌手的自适应安全分布式密钥生成协议 459

“split” his commitment Ci0 into two components = (mod) and = (mod)(Step 5). To show that he

gives the correct split, each P

iA izg

iA

p

glog

iB

D

0ibh ′

hBlog

p

i proves that he knows both and with the zero-knowledge proof

presented in subsection 3.1(Steps 4−8). If a player fails to prove a correct split, then his value z
iAD i

i is reconstructed
(Step 9). Combined with the assumption that the adversary is PPT (this implies that to compute a discrete-log is
infeasible), we can be confident that the broadcast of by the players who pass the verification of Step 8 are

really the values we need. For the players who don’t pass the verification of Step 8, the reconstruction of Step 9
ensures this.

y x p

5 Security Proof for GDKG

In this section we prove the protocol GDKG satisfies the security requirements in subsection 2.3.
Correctness of GDKG: The main difference between GDKG and DL-Key-Gen[6] is that we replace

Pedersen-VSS and distributed challenge generation in Ref.[6] with Pedersen-VSS-General and first round
commitment respectively. As we have pointed out that both of the new tools retain the security of the old. Hence it is
easy for the readers to obtain the confidence of correctness from the proof of correctness in Ref.[6](or Ref.[4],
because these three protocols enjoy the similar structure). We stress that at the end of GDKG protocol the shared

secret key is implicitly x =∑∈QUALi iz (mod), the public key is = (mod) and each player Pq g i gets his share

{ |lx)(lϕ = , =0,1,…, } of x distributed by the MSP M. i l f

Adaptive security of DGKG: The basic idea is to present a black-box simulator SIM for the GDKG protocol

(see Fig.3). The black-box simulator SIM can access a black-box (or oracle) representing the input-output relations

of the real-life adversary. The same idea has been widely used in the proof of zero-knowledge (e.g. [12]) and the

security of multiparty computation protocols (e.g. [13]). This simulation is the crux of the secrecy proof. Because

the success of simulation implies that anything the adversary gets by participating the protocol can be obtained by

the SIM itself without interfering in the run of the protocol, we can make sure that no information about the private

key x beyond the value = (mod) is revealed in the process of the protocol. y xg p

To show this we provide the value of y as input to the simulator SIM and require it to simulate a run of GDKG

that ends with y as its public output. We denote by G(resp. B) the set of currently good (resp. bad) players. The

simulator acts according to the protocol GDKG for all the players in G except a special one P. The state of P

(selected at random by SIM) will be used by the simulator to “fix” the output of the simulation to y. Because we

have transformed the ZK proof in the presence of honest verifier to the one against any verifier, the simulator SIM

can still prove that it knows P’s contribution (in Steps 4−8 of GDKG) although it doesn’t know some secret

information relative to this special player (in particular the component zP that this player contributes to the secret

key). However, if the adversary corrupts P during the simulation (with probability which is relative to the adversary

structure the MSP implements, but is small enough for the environment) the simulator will not be able to provide

the internal state of this player. Thus, the simulator SIM will need to rewind the adversary and select another special

player.

For the DL-Key-Gen in Ref.[6], to prove its secrecy the assumption of erasure is needed due to its use of

distributed challenge generation. To ensure the correctness i.e. the randomness of the challenge, many commitments

have to be used, and this unavoidably makes the difficulty to prove adaptive secrecy. Fortunately, after we replaced

 460 Journal of Software 软件学报 2005,16(3)

distributed challenge generation with the first round commitment, we need no longer the assumption of erasure

when we use GDKG alone. If we use it as a module in a large system, we can achieve secrecy only by requiring

each player Pi erases all secret information generated in the protocol aside from his share { |lx)(lϕ = } at the end of

the Step 10(in fact, even no erasure is executed we meet with difficulty only when the special player P is corrupted).

i

Input: public key y, parameters (p,q,g), and h
1. Perform Step 1 to Step 3 of GDKG on behalf of the players in G. At the end of this step the set QUAL is defined.
Perform the following pre-computations:

� Choose one honest player P∈G randomly

� Compute = = (mod) and = (mod p) for i∈QUEL/{P} iA 0ibg izg p iB 0ibh ′

� Set =*
PA ∏∈

−−
}{\

1)(
PQUELi iAy (mod p) and = / (mod p) *

PB 0PC *
PA

2. For each player Pj, j∈G, perform Step 4 of GDKG;

For each player Pj, j∈G, SIM initiates an execution of the black-box which will return the di and Di, i∈B, as well as

some requests of corruption.

(Thus SIM knows all dj’s, in particular the corrupted players’, and all these values have the same distribution as in the

real life run).

3. For each player Pj, i∈G\{P}, execute Step 5 of GDKG according to the protocol.

For player P, pick random values , , set = and = . Then broadcast

, and send T , to P

*
PR '*

PR ∈ qRZ *
PjT jPj d

P
R Ag −⋅)(** '*

PjT jPj d
P

R Bg −⋅)(*'*

*
PA *

PB *
Pj

'*
PjT j for j=1,…,n.

4. Broadcast di for each i∈G.

5. For each player Pi, i∈G\{P}, execute Step 7 of GDKG according to the protocol;

For player P, check for each Pj that Dj= (mod p). For Pidg j who passes the verification, P sends , to P*
PR '*

PR j.

6. Execute Step 8 of GDKG on behalf of the players in G

7. For each player in QUEL who received complaints from a subset A where A∉∆, participate in the reconstruction of their

values.

Fig.3 SIMThe black box simulator

We have the following theorem about the effect of the simulator SIM.

Theorem 5.1. Simulator SIM on input (p,q,g,h,y) ends in expected polynomial time and computes a view for

the adversary that is identical to the view in the protocol GDKG on input (p,q,g,h,) and output y.
Proof. The view of the adversary in GDKG includes two parts: the public view the adversary sees and the

internal states of the corrupted parties.
Firstly we show that SIM outputs a probability distribution that is identical to the public view in the real run of

GDKG.
1. For Steps 1-3 of GDKG, the simulation of SIM is carried out according to the protocol, thus all the values

generated in the simulation have the same distribution as that in the real run.
2. Steps 4-8 of GDKG are the parallel executions of the zero-knowledge proof. Steps 2-8 of SIM have

simulated them.
The values di for i∈G are picked randomly as in the real protocol.
The values Ai for i∈G\{P} are distributed exactly in the real protocol. As for the value = *

PA

 何云筱 等: 抵抗一般结构敌手的自适应安全分布式密钥生成协议 461

∏∈
−⋅

}{\
1)(

PQUELi iAy (mod) and = / (mod), SIM computes them in the pre-computations according to

the same constraints (i.e. its relationship with and other for i

p *
PB 0PC *

PA p

y iA ∈ }{\ PQUEL) as in the real execution.
R i ∈ G j

ijT ijrg '
ijT ij′ ∈ }{P\G j

*
PjT jPjR ⋅* *

PjT ′ PjR′*

PB)*g

The values and ij ijR′ for and =1,…,n are uniformly distributed in Zq.

In step 3 of SIM, the values = , = (mod) for rh p i and =1,…,n are picked randomly as
in GDKG.

For values = and = , the simulator computes them in step 3 of SIM according
to the same constraint (i.e. the verification equation in step 8 of GDKG) as in the real execution.

d
PAg −)(* jd−⋅ (

So the public view in the simulation is identical to that in the real run of GDKG.
Next we show the simulator can produce a consistent view of the internal state for the corrupted players.

Clearly, if a player is corrupted before step 2 of SIM, the simulator can produce a consistent view because it is
following the protocol GDKG. After step 2 the simulator can show correct internal states for all the players in G
except for the special player P because the simulator is PPT and has modified some of the P’s public states. Thus, if
P is corrupted the simulator has to rewind the black-box to the beginning of step 2 and selects at random a different
special player. This rewind makes the SIM end in the expected polynomial time, not polynomial time. □

6 Conclusion

In this paper we propose an adaptively secure distributed key generation protocol (GDKG) against general
adversary and give a complete proof for its correctness and secrecy via black box simulation. It doesn’t need the
assumption of erasure, which is usually an unavoidable technique for designing adaptive secure protocol. It also has
the corresponding complexity with the DL-Key-Gen in Ref.[6].

References:
[1] Pedersen T. A threshold cryptosystem without a trusted party. In: Proc. of the Eurocrypt’91. LNCS 547, Springer-Verlag, 1991.

522–526.

[2] Gennaro R, Jarecki S, Krawczyk H, Rabin T. Robust threshold DSS signatures. In: Proc. of the Eurocrypt’96. LNCS 1070,

Springer-Verlag, 1996. 354−371.

[3] Feldman P. A practical scheme for non-interactive verifiable secret sharing. In: Proc. of the 28th FOCS. 1987. 427−437.

[4] Gennaro R, Jarecki S, Krawczyk H, Rabin T. Secure distributed key generation for discrete-log based cryptosystems. In: Proc. of

the Eurocrypt’99. LNCS 1592, Springer, 1990. 295–310.

[5] Pedersen T. Non-Interactive and information-theoretic secure verifiable secret sharing. In: Proc. of the Crypt’91. LNCS 576,

Springer-Verlag, 1991. 129−140.

[6] Canetti R, Gennaro R, Jarecki S, Krawczyk H, Rabin T. Adaptive security for threshold cryptosystems. In: Proc. of the Crypto’99.

LNCS 1666, Springer-Verlag, 1999. 98−115.

[7] Schnorr CP. Efficient signature generation by smart cards. Journal of Cryptology, 1991,4(3):161–174.

[8] Karchmer M, Wigderson A. On span programs. In: Proc. of the 8th Annual Structure in Complexity Theory Conf. IEEE Computer

Society Press, 1993. 102−111.

[9] Fehr S. Efficient construction of dual Span Program. Manuscript, 1999.

[10] Beimel A. Secure schemes for secret sharing and key distribution [Ph.D. Thesis]. Israel Institute of Technology, 1996.

[11] Cramer R, Damagard I, Maurer U. General secure multi-party computation from any linear secret sharing scheme. In: Proc. of the

Eurocrypt2000. LNCS 1807, Springer-Verlag, 2000. 316−334.

[12] Goldreich O. Foundations of Cryptography Basic Tools. Publishing House of Electronics Industry, 2003.

[13] Canetti R. Studies in secure multi-party computation and application. [Ph.D. Thesis]. Weizmann Institute of Science, 1995.

	Introduction
	Notation, Model, and Security Requirements
	Notation
	Model
	Security requirements

	Two Main Tools
	Zero-Knowledge proof of knowledge
	Pedersen-VSS-General
	LSSS and MSP
	Pedersen-VSS-General

	GDKG Protocol
	Security Proof for GDKG
	Conclusion

