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Abstract:  The problem of constructing a Petri net feedback controller, which enforces linear inequality constraints
involving the marking vector and the Parikh vector on a discrete event system (DES) modeled by Petri nets (PN), is
discussed in this paper. A novel method for design of controller enforcing the constraints is presented. First the
constraints involving the marking and Parikh vectors are transformed into the constraints involving Parikh vector
only using Petri net state equality, and then the controller is constructed based on the viewpoint that a place can be
seen as a linear inequality constraint on the Parikh vector. The method is proved to be simpler and more efficient
than that presented by Iordache and Moody through an applied instance that was also used by Moody et al., and
holds remarkable advantage especially for large systems.
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1 Introduction

PN models are examined in the DES control synthesis by many researchers due to the advantage of the

graphical and distributed representation of the system state and the computational efficiencies!'). In this paper we

* WANG Shou-Guang was born in 1977. He is a Ph.D. candidate at College of Electrical Engineering, Zhejiang University. His
current research interests include Petri net theory and application. YAN Gang-Feng was born in 1959. He is a professor and doctoral

supervisor at College of Electrical Engineering, Zhejiang University. His researches areas are CAD and CAM.

© hEE

HOFIFFIT hetps/ www. jos. org. cn




420 Journal of Software #AFFIK  2005,16(3)

deal with synthesizing the supervisors of DES modeled by PN, which enforce the conjunction of a set of linear
inequality constraints involving the Parikh vector and the reachable marking of a PN model. Many researchers®™%
have studied the logical conjunction of separate linear constraints involving marking only, which have the following
form
"u<b 1)
where /: P — Z is an n x1 weight vector, be Z, Z is the set of integers, # is the number of places, and u:P — Z is
an n x 1 marking vector. A large class of the forbidden marking problems for modeling of the finite resources
condition for liveness and deadlock prevention can be specified by the constraints of the form (1)[%. The
constraints of the form (1) are called generalized mutual exclusion constraints (GMECs), and it is proved that
GMECs can be enforced by a set of places called control places with arcs going to and coming from the plant
transitions in Ref.[2]. Moody™* the computed control places based on the concept of place invariants. The
controllers designed to enforce constraints of the form (1) in Refs.[2—4] are Petri net, so they are called Petri net
controller. While the controllers in Refs.[5,6] are logical controllers. One advantage of representing the controller as
a PN is that the computation of the control action is faster, since it does not require separate computation of the
control. An additional advantage is that a closed-loop model of the system under control can be built and analyzed
for the properties of interest using PN techniques. Because of the above-mentioned advantage of PN controller over
logical controller, this paper enforces the constraints of the form (1) using PN controller.
The constraints of the form (1) have been extended in Ref.[9] to the form
Mu+h™v<b (2)
where h:T — Z isan mx1weight vector, Z is the set of integers, m is the number of transitions, v:7 — Z is an
m x1Parikh vector and v(r) denotes the number of times the transition ¢ has fired since system initialization.

Tordache®

viewed the Parikh vector term as a marking term, i.e. v(¢) was viewed as the marking of a sink place
added to the transition ¢. According to the viewpoint, lordache transformed the constraints of the form (2) into the
constraints of the form (1) that are enforced on the transformed PN, and then designed controllers by using the
method presented by Moody et al. The methods presented in Refs.[2—4] for the constraints of the form (1) were
based on the concept of place invariants. The computation involves a single matrix multiplication. But for a
complex plant with its high dimension incidence matrix, it is troublesome for incidence matrix multiplication.
According to this problem, this paper presents a technique that can solve this problem. In this paper, first the
constraints of the form (2) are transformed into the constraints involving Parikh vector only, which have the
following form
h'v<b 3)
and then the controller is constructed based on the viewpoint that a place can be seen as a linear inequality
constraint on Parikh vector. The method presented in this paper has advantage over the method proposed by
Tordache and Moody because the incidence matrix of the entire model, which is used and manipulated for the design
of controller in Refs.[3,9], doesn’t need to be considered. It is proved in Section 4that the method presented in this
paper is simpler and more efficient than the one presented by Iordache and Moody by an example, and it holds
remarkable advantage especially for large systems.
Assume that all the transitions are controllable because our interest is how to enforce the given constraint (2),

not the controllability.

2 Background

A place/transition (P/T) net is a structure N= (P,T,Pre,Post) where P is a set of n places represented by circles;

T is a set of m transitions represented by bars; PUT =<, PNT = ; pre : PxT — IN is pre-incidence matrix
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that specifies the arcs directed from places to transitions; pre: P xT — IN is post-incidence matrix that specifies the
arcs directed from transitions to places, where IN={0,1,2,...}. The incidence matrix C of the net is defined as
C=post-pre. A pair of a place p and a transition ¢ is called a self-loop if p is both an input and output place of . A PN
is pure if it has no self-loops. In the sequel, we assume that the PN is pure. We denote the preset (postset) of a
transition teT ast={peP|pre(p,t)=0} (t-={peP|post(p,t)#0}). Similarly, -p={t T | post(p,t) #0} (p=
{teT| pre(p,t) # 0} ) denotes the preset (postset) of a place p € P. The preset (postset) of a set is defined as the
union of the preset (postset) of its elements. A marking of N u:P— IN isan nx1 vector. (N, u) is called a net
system or a marked net. A transitiont €T is enabled under u, in symbols u[>¢, iff Vpe-t:u(p)= pre(p,t) hold.
If u[>t holds the transition ¢ may fire, resulting in a new marking u’, denoted by u[r>u’' with
u' =u+ post(-,t)— pre(,t)=u+C(,t). A firing sequence from u, is a (possibly empty) sequence of transitions
o=ti...t; such that ug[t;>u [t;>u,...[>t;. A marking u is reachable in (V,uy) iff there exists a firing sequence o such
that ug[ o>u. Given a net system, the set of reachable markings is denoted as R(N,ug). A Parikh vector v of (V,up) is a
mapping v:T — IN . For transition ¢e7 , v(¢) represents the number of times transition ¢ has fired since the initial

marking u,. If marking u is reachable from initial marking u,, the state equation u =u, +c-v is satisfied.

3 Controller Synthesis

We assume that the PN model discussed in the paper is a pure P/T and that its transitions are both controllable

and observable.

3.1 The constraints containing the marking only

The system to be controlled is modeled by a PN with n places and m transitions and is known as the plant or
process net. The incidence matrix of the process net is C. The control goal is to force the process to obey the
constraints of the form (1). Moody et al. transformed this linear inequality constraint into an equality by introducing
a nonnegative slack variable into it, and then computes the controller by solving the equality. The next theorem
summarizes the construction above:

Theorem 1. Given a net system (N,u,) with controllable and observable transitions, its incidence matrix C and
conjunction of a set of constraints of the form (1). For each constraint /7u<b, if b—I"u,>0, then a control place p. to
be added to the plant with its incidence matrix C(p.)=—I"C and the initial marking uy(p.)=b—I"u, enforces the
constraint /"u<b. Furthermore, the controller is maximally permissive.

From Theorem 1, we know that it is necessary for us to express the incidence matrix according to the PN

model and operate on the incidence matrix of the plant in order to compute the controller.

3.2 The constraints containing marking vector and Parikh vector

The constraints containing marking vector only have been extended in Ref.[9] to the constraints containing
marking vector and Parikh vector.

Given a constraint of the form (2) on a net system (N,u), Iordache®® presented a transformation approach in
which the constraints of the form (2) is transformed into the constraints of the form (1). We illustrate the idea of
Tordache’s transformation on an example.

Example 1. Consider the PN of Fig.1, and assume that we desire to enforce the following constraint

u(p ) V() <2 @

Iordache transformed the net as in Fig.2 by adding a net a sink place ps with its initial marking u(ps)=0, the

constraints (4) can be written without referring to v:

u(pr)tu(pe)<2 )
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So Iordache reduced the problem to the supervisory synthesis problem for constraints of form (1) on the

transformed net, and then designed the controller using Theorem 1.

Fig.1 APN Fig.2 A transformed PN of Fig.1 Fig.3 PN of Fig.1 with a controller

3.3 Description of designing the controller for the constraints containing marking vector and Parikh vector

Given a net system (N,u,), Vp e P, we have the following state equation
u( )= 2 pre(p.t)-v(1)+ 3 post(p.t)-v(1) (6)
tep- te:p
So we can transform the constraints of the form (2) into the constraints of the form (3) using the state equation (6).
Example 2. Consider the PN of Fig.1 and the constraint (4). According to Eq.(6), we can transform the

constraint (4) into the following constraint, which involving Parikh vector only

uy(p) = D pre(pit)-v(1)+ X post(pit)-v(t) +v(1,) <2

ep- tep
that is —v(t)+v(t)+v(t4)<1 @)
Because u(p) >0, according to Eq.(6), we have
> pre(p.t)-v(t)= Y post(p,t)-v(t) <u,(p) ®)
tep- te:p

So we have the following proposition

Proposition 1. Every place of a PN can be seen as a control place enforcing a single inequality of the form (3).

Proposition 1 shows that a constraint of the form (3) can been enforced by adding a control place to the plant if
b >0 . The significance of Proposition 1 is that it provides a way to design controller for the constraints of the form
(3) since every place of a PN can been seen as a control place enforcing a single inequality of the form (3).

For the convenience of the description, we make the following definitions before presenting the detailed steps
of designing controller.

Definition 1. Given a net system (N,u,) and a constraint /7u<b, a place p e P is said to be a constrained place

for the constraint [7u<b if p€||l||, where ||/||={pE€P:/(p) #0} denotes the support of the vector /.

According to Definition 1, we can transform the constraints of the form (1) to the following form
2 [(p)u(p)<b ©)
pelil
Example 3. Consider the PN of Fig.1. The objective is to control the net so that places p; and p, never contain
more than on token, i.e. we wish to enforce the constraint u(p,)+u(p,)<1.
According to Definition 1, we have ||/||={p,p>}.
Definition 2. Given a net system (V,u) and a constraint hv<b, a transition e T is said to be a constrained
transition for the constraint A"v<b if te|h| where || h|l={teT :h(t)#0} denotes the support of the vector /. We
define|| A* ||={t €T :h(t) >0}, and|| 7™ ||={t € T : h(t) < 0} . Obviously, we have |Ai|=|A" ||U|A |.

According to Definition 2, we can transform the constraints of the form (3) to the following form
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2 h(6)v(0)= 2 1h()Iv(1)<b (10)

tellh” || tell”]|

Example 4. Consider the PN of Fig.1, and the constraint (7). According to Definition 2, we have
IAl={titauta}, 177][={t2ta} and [[7]={11}

Assume that there exists a controller that enforces the plant to obey the constraints of the form (2). With the
above definitions, the design method of the control place conforming to the constraint of the form (2) is summarized
as the following algorithm.

Algorithm 1.

1) Transform the constraint of the form (2) to the constraint of the form (3)

Given a constraint of the form (2) as follows

"u+h™v<b (11)

According to Eq.(6), the constraint (11) is transformed to
h'"v<b’ (12)
where b'=b->"1(p)u,(p) (13)

pelll

and W(t)=h(t)+ Z I(p)post(p.t)-v(t)- Z I(p)pre(p,t)-v(t) (14)

pellne- pelllin-t

Constraint (12) can be written as
D ()v(e)- D IH () v(r) < b (15)
el | el

2) Design the controller for constraint (12)

A) For each t¢€||h'" ||, draw an arc from the controller place p, to transition ¢, and set the weight of the arc 4'(?),
i.e. pre(p.,t)= h'(?).

B) For each t¢| A" ||, draw an arc from the transition ¢ to controller place p,, and set the weight of the arc
[0l i.e. pre(pe.t)=| h'(D)].

C) Let the initial marking of the control place uy(p.)=b".

We illustrate the above algorithm by using the following example.

Example 4. Consider the PN of Fig.1, and assume that we desire to enforce the constraint of the form (2)
u(p)+v(ts) <2. By Algorithm 1, first we can transform this constraint into the following constraint of the form (3)

—v(t) () +v(ts)<1.
We have ||h|={titr.ts}.||h" | ={t2,ts}and ||A'7||={t;}. Then we draw arcs between the transitions in ||| and the
control place p,. Finally we set the initial marking of the control placeu,(p.)=b"=1.

The plant with the addition of a controller is shown in Fig.3. The controller is the same as the one computed by
the technique proposed by lordache, but our method need not consider the entire plant, just consider part of the
entire plant in the above example, because the incidence matrix of the entire plant and its operation, which are used
in Iordache’s method, are not be used in our method. So our method is simper and more efficient in computation
than the methods presented in Refs.[3,9]. When the plant is a large system, the advantage of this design method is
more obvious, which will be illustrated in the example in Section 4.

Lemma 1. Given a system (N,u,) and the constraint A’v<b, if b <0, then there doesn’t exist a control place for
the constraint.

Proof. When the plant is in the initial state, i.e. v=0, the constraint #’v<b is not satisfied. So the constraint

cannot be enforced.
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Proposition 2. Given a system (N,ug) and the constraint/"u+h"v<b. If b— z I(p)u0 (p)< 0, then there

pelll
doesn’t exist a control place for the constraint.

Proof. The proof follows immediately from Algorithm 1 and Lemma 1.

Theorem 2. Given a system (N,u,) and the constraint /"u+h"v<b. If b— Z I(p)u,(p) 20, then a control place

pellll

Do, which is designed according to Algorithm 1, enforces the constraint /u+h"v<b.

Proof. According to Algorithm 1, the marking of the control place p,. satisfies

u(p)=b'-h"v (16)
Because b’ =b— Y I(p)u,(p),and i'(t)=h(t)+ > I(p)post(p.t)-v(t)— D I(p)pre(p.t)-v(t). The equality
pell pellline: pelllin
(16) can be written as
u(p)=b—-"u—h"v 17)

This concludes the proof.
Theorem 3. The controller derived using Algorithm 1 is maximally permissive in that it forces the set of
constraints of the form (2) to be obeyed, while allowing any action that is not directly forbidden by the constraints.
Proof. The PN enabling condition indicates that a transition is inhibited only if its firing would cause the
marking of any of its input places to become negative. Thus a controller place only acts to inhibit a transition when
the firing would cause u(p.)<0. According to equality (17), we can know that if u(p,)<0, then /"u>b. The controller
will only act to inhibit in situations where the firing of a transition would cause a direct violation of the constraint

inequality.
4 Example

In this section, the example of An Automated Guided Vehicle (AGV) coordination system is used to illustrate
the efficiency of the method presented in this paper. The example originally appeared in Ref.[5] and has been
studied intensively in the area of DESP>'®!''1. AGV includes three workstations, two part-receiving stations and one
completed parts station. There are five AGVs which can transport material between the stations. To avoid conflict
within shared zones, which are shown as the shaded regions in the PN model of Fig.4, it is specified that AGVs in
this system are to be controlled so that any zone is occupied by no more than one AGV at any time.

The control objective can be written as the following constraints

> u(p)<i1 (18)

peZonel

2 u(p)<1 (19)

peZone

2 u(p)<l (20)

peZone3

2. u(p)<1 21)

peZone4

For constraint (18), according to Algorithm 1, first transform it to the following constraint
VitV ty sy vitys<l (22)
then draw the arcs between the transitions in {z1,¢12,¢13,¢14,215.L16517-18} and the control place p,.;, and finally set

ug(pc1)=1. The other control places p.,, p.3 and p.4 associated to the corresponding constraint can be synthesized
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with the same algorithm and the detailed procedure is omitted. The controller consists of four control places p.i, p2,
Pes and p4 that are connected to the system model as shown in Fig.5.

Workstation2 Workstation2
| — ]

Workstationl Workstationl

Workstation3

Fig.4 The automated guided vehicle PN Fig.5 The controlled AGV PN

The controller obtained using Algorithm 1 is identical to the controller of Moody and Iordache based on place
invariant™®). But the method in this paper is simper and more efficient than the method proposed by Moody and
Iordache. Our method has advantage over the method by Moody and Iordache because the incidence matrix of the
entire model, which is used and manipulated for the design of controller in Refs.[3,9], doesn’t need to be considered
in Algorithm 1. The advantage is obvious when the system to be controlled is large and complex. Consider the AGV
example again. The PN model of the AGV system has 64 places and 53 transitions and its incidence matrix is a
64 x53 dimension matrix, which has 3392 entries. It is very troublesome for the incidence matrix multiplication.
But for each constraint, only 8 entries are needed to participate in operation for solving the control place in this

paper (see the constraint (22)). So our method holds remarkable advantage over the method in Refs.[3,9] in this
example.

5 Conclusions

This paper has discussed the issue of synthesizing PN controller, which enforces the conjunction of a set of
linear inequalities on the reachable marking vector and the Parikh vector of the plant modeled by PN. A comparison

with other techniques has been carried out to prove the effectiveness of the proposed approach.
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