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Abstract: To solve the satisfiability (SAT) problem in propositional logic, many algorithms have been proposed in 
recent years. However, practical problems are often more naturally described as satisfying a set of first-order 
formulas. When the domain of interpretation is finite and its size is a fixed positive integer, the satisfiability 
problem in the first-order logic can be reduced to SAT. To facilitate the use of SAT solvers, this paper presents an 
algorithm for generating SAT instances from first-order clauses, and describes an automatic tool performing the 
transformation, together with some experimental results. Several different ways of adding formulas are also 
discussed to eliminate symmetries, which will reduce the search space. Experiments show that the algorithm is 
effective and can be used to solve many problems in mathematics and real-world applications. 
Key words: satisfiability problem; first-order logic; propositional logic 

摘  要: 命题逻辑可满足性(SAT)问题是计算机科学中的一个重要问题.近年来许多学者在这方面进行了大量的

研究,提出了不少有效的算法.但是,很多实际问题如果用一组一阶逻辑公式来描述,往往更为自然.当解释的论域是

一个固定大小的有限集合时,一阶逻辑公式的可满足性问题可以等价地归约为 SAT 问题.为了利用现有的高效 SAT
工具,提出了一种从一阶逻辑公式生成 SAT 问题实例的算法,并描述了一个自动的转换工具,给出了相应的实验结

果.还讨论了通过增加公式来消除同构从而减小搜索空间的一些方法.实验表明,这一算法是有效的,可以用来解决

数学研究和实际应用中的许多问题. 
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1   Introduction 

Many problems from various application domains can be regarded as deciding the satisfiability of certain 
logical formulas. In fact, the satisfiability problem in propositional logic, known as SAT, is a fundamental problem 
in computer science and artificial intelligence. Many researchers have been working on SAT, and many algorithms 
have been proposed to solve the problem. In the 1980’s, the algorithms are typically analyzed theoretically. Later 
on, empirical evaluation received more attention. Several efficient SAT solvers have been implemented, such as 
SATO[1], Walksat[2] and zchaff[3]. Their performances are evaluated against some hard SAT instances. Most of the 
problem instances are randomly generated, but there are also some structured problem instances. In recent years, as 
SAT solvers become more powerful, people pay more attention to such important applications as mathematical 
problem solving, hardware verification and so on. 

Practical problems are often more naturally described by a set of first-order formulas. In the problem library 
TPTP[4], fewer than 1% of the problems are described in pure propositional logic. With only a few exceptions (such 
as MACE[5]), we need to prepare a set of propositional formulas for SAT solvers, either manually or using 
problem-specific programs. This makes the use of SAT solvers inconvenient. 

On the other hand, some people have been working on satisfying first-order formulas in finite domains. This 
problem is known as finite model generation or finite model searching. A few efficient finite model searchers have 
been developed, such as FINDER[6] and SEM[7]. Although these tools are quite successful in solving some open 
problems in mathematics, they are very slow on some other problems (especially when many of the clauses are 
multi-literal), compared with current best SAT solvers. 

In this paper, we describe an algorithm for generating SAT instances from first-order descriptions of practical 
problems. We first recall some basic concepts in the next section. Then in Section 3, we elaborate on our approach 
for transforming first-order formulas into propositional ones. In Section 4, we discuss how to add extra formulas 
which can eliminate some symmetries in the problem, so as to reduce the search time of a SAT solver. Then we give 
some experimental results in Section 5. Finally, we compare our approach with other similar methods and mention 
some possible improvements in the future. 

2    Preliminaries 

In this section, we introduce some concepts and notations in mathematical logic, which will be used later. 
A propositional formula is constructed recursively from propositional variables and logical connectives like 

AND (‘&’), OR (‘|’), NOT (‘~’). A literal is a variable or its negation (e.g. p, ~q), and a clause is a disjunction of 
literals. A set of clauses is a conjunction of the clauses. A SAT solver accepts a set of clauses as input, and tries to 
find a Boolean value (TRUE or FALSE) for each variable, such that every input clause is true. 

In the first-order logic, we have function and predicate symbols, in addition to variables and logical 
connectives. Function symbols without arguments are called constants, like a, b, c. From functions and variables, 
we can construct terms. For instance, wifeOf(x) is a term. Here wifeOf is a function symbol. If a term has a function 
symbol which is not a constant, the term is called a complex term. 

A special predicate symbol is the equality predicate (EQ or ‘=’). Its negation is denoted by NEQ or ‘!=’. A 
first-order literal is a predicate applied to a term, or its negation. For instance, isMale(husbandOf(x)) is a literal. 
Here isMale is a predicate symbol and husbandOf is a function symbol. Again, a clause is a disjunction of literals. 
An example of clauses is: isMale(x) | gender(x)=Female. Note that every variable in a clause is assumed to be 
universally quantified. So the previous clause means, for any x, either x is male, or the gender of x is female. A 
clause is called a ground clause if it does not contain variables. 
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A set of first-order clauses is satisfiable if there is an interpretation of the function and predicate symbols in a 
non-empty domain such that every clause becomes true. There is no algorithm which can decide the satisfiability of 
an arbitrary first-order formula. Thus we focus on interpretations whose domains are finite, and the resulting 
problem is called finite model generation or finite model searching. Under this restriction, it is at least possible to 
decide the satisfiability by enumerating every possible interpretation. 

Without loss of generality, we can assume that the non-empty domain is denoted by a set of integers, e.g. {0, 1, 
2}. In many cases, a finite interpretation may be represented by some tables. Each table corresponds to the 
interpretation of a function (predicate) symbol. For instance, the following table satisfies the clause f(x,y)=f(y,x). 

F 0 1 2 
0 2 1 0 
1 1 2 1 
2 0 1 2 

Obviously, the table is symmetric with respect to the main diagonal, so for any x and y, f(x,y)=f(y,x) is true. A 
finite model searcher accepts a set of first-order clauses as input and finds a model such as the above one if it exists. 
Thus the goal of a model searcher is to decide the values of all the entries in the table(s). An entry is also called a 
cell. Syntactically a cell is given by a term whose arguments are elements of the domain. For instance, the cells in 
the second row of the above table can be represented as f(0,0), f(0,1), f(0,2).  

3   Transforming First-Order Clauses to Propositional Clauses 

At the beginning, we have first-order clauses with function symbols and variables. Our goal is to translate them 
into some propositional clauses such that, if the first-order clauses can be satisfied, the propositional clauses can 
also be satisfied, and vice versa. This is done in several stages, as explained below. 

3.1   Eliminating the variables 

We first collect the set of variables occurring in each clause and replace the variables with all the values they 
can take. Then we get a set of ground clauses. For example, suppose in the input, we have a clause f(x,y)=x and the 
domain is {0,1}. Then we instantiate it into the following four ground clauses: f(0,0)=0, f(0,1)=0, f(1,0)=1, f(1,1)=1. 

3.2   Translating ground clauses into semi-propositional clauses 

Now we have a set of ground clauses which contain only function symbols, predicate symbols and domain 
elements (0,1,2,…). In this subsection, our goal is to translate these ground clauses into an intermediate form called 
semi-propositional clauses. In such a clause, every literal takes one of the following forms: cell = d or cell != d. In 
subsection 3.3, we will obtain propositional clauses from the semi-propositional clauses. 

To get semi-propositional clauses, we record all the things people check when they test a ground clause. 
Basically we examine all the terms in the post-order and see whether the top predicate can be satisfied.  

Since common sub-expressions often occur in clauses and this will reduce the efficiency of the algorithm, we 
define a data structure called Non-common Terms (NT) to get rid of the redundancy. Each NT comes from a term 
and each term can correspond to an NT. All the NTs form an NT list. The information in NTs is like the following. 

Term type Examples NT 
Fixed value 0, 1, false (id, the value) 

Cell f(0,1), g(1,0,1) (id, cell-id, range of the cell, chosen value ) 
Complex term f(h(1),1), h(h(2)) (id, func-id, arity, pointer array which points to all the args, range, chosen value) 

For the sake of conciseness, we remove the first kind of NTs from the NT list and add their information into the 
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NT that corresponds to the complex term they appear. A predicate can be regarded as a special kind of functions 
whose range is {true, false}.  

Here is an example. 
Suppose we are given the clause: f(0,g(1,h(0)))=f(g(1,h(0)),2). It can be depicted as a tree. 

 
 
 
 
 
 
 
 
 

 

g 

h(0)11 

EQ

h(0)

2 g 0

f f 

Fig.1  Tree structure of a clause 
The term h(0) is a cell and we can see that g(1,h(0)) is a common subexpression. In our algorithm we use 

postorder traversal to process this tree. The resulting NT list is as follows. 

Id Corresponding term Content of NT 
1 h(0) (Cell) The id of h(0),… 
2 g(1,h(0)) The id of g, 2, (fixed value 1, PNT(1)*),… 
3 f(0,g(1,h(0))) The id of f, 2, (fixed value 0, PNT(2)*),… 
4 f(g(1,h(0)),2) The id of f, 2, (PNT(2)*, fixed value 2),… 
5 f(0,g(1,h(0)))=f(g(1,h(0)),2) The id of EQ, (PNT(3)*, PNT(4)*),… 

We omit the range and the chosen value in the table. 
(*) PNT(i) is a function to get the i-th NT in the NT list. 
Since we use postorder traversal in the algorithm, we can choose values for NT1, NT2,…, consecutively. When 

a complex term NT has a chosen value, all its arguments should have had the chosen value so we can map the 
function NT to one and only one Cell. 

After getting the NT list for every clause, we translate the clause into semi-propositional clauses. For a better 
understanding, we present our algorithm starting with the simplest clauses. 
3.2.1   Translating a clause having only one EQ literal 

We call the whole term appearing at the left of the EQ as the left term, and the whole term appearing at the 
right of the EQ as the right term. In the former example, we call f(0,g(1,h(0))) the left term and f(g(1,h(0)),2) the 
right term. We always add a new NT into the NT list for the left and right term unless the term has a fixed value. 

Let CL denote the clause we process now. We assume NTl is determined by the left term Tl, and NTr is 
determined by the right term Tr. We remove the last NT in the NT list that corresponds to the predicate EQ and 
assume that there are m NTs left. 

We consider the following two cases: 
Case 1: Neither Tl nor Tr is a domain element. 
Now we have m NTs and each of them can choose a value from its range. We restrict the choice such that NTl 

and NTr have the same value. From the discussion above, we can get the corresponding cells C1,C2,…,Cm one by 
one. For any k (1≤k≤m), let Vk be the value that the k-th NT takes. For every V=(V1,V2,…,Vm) such that Vl=Vr, we 
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generate two new clauses: 
 (C1=V1&…&Cl−1=Vl−1&Cl=Vl&Cl+1=Vl+1&…&Cr−1=Vr−1&Cr+1=Vr+1&…&Cm=Vm)->Cr=Vr (1.1) 
 (C1=V1&…&Cl-1=Vl−1&Cl+1=Vl+1&…&Cr−1=Vr−1&Cr=Vr&Cr+1=Vr+1&…&Cm=Vm)->Cl=Vl (1.2) 

We can rewrite them into CNF form: 
 C1!=V1 |…| Cl−1!=Vl−1 | Cl!=Vl | Cl+1!=Vl+1 |…| Cr−1!=Vr−1 | Cr+1!=Vr+1 |…| Cm!=Vm | Cr=Vr (1.1′) 
 C1!=V1 |…| Cl−1!=Vl−1 | Cl+1!=Vl+1 |…| Cr−1!=Vr−1 | Cr!=Vr | Cr+1!=Vr+1 |…| Cm!=Vm | Cl=Vl (1.2′) 

The set of all clauses like (1.1′) and (1.2′) is denoted by CL1. 
If an interpretation mapping the cell Ck to Vk (1≤k≤m) can satisfy the clause CL, it will be a solution of (1.1′) 

and (1.2′), and if it can’t satisfy CL, it won’t be a solution. Other interpretations are always the solutions of (1.1′) 
and (1.2′). Since we generate similar clauses for all the possible value combinations, we will just get the set of all 
the suitable interpretations after solving the clause sets.  

Case 2: One of Tl and Tr is a domain element. 
If Tl is a domain element, we choose those vectors with Vr equal to that domain element, and let CL1 just 

include those clauses like (1.1′). If Tr is a domain element, we choose those vectors with Vl equal to that domain 
element, and let CL1 just include those clauses like (1.2′).  
3.2.2   Translating a clause that has only one NEQ literal 

Now we consider a clause that has just one literal and the predicate of the literal is NEQ. To translate this 
clause, we repeat the work we did before. While none of Tl and Tr is a domain element, we still choose the vector 
V=(V1,V2,…,Vm) such that Vl=Vr, but we just generate one clause: 
 (C1=V1&…&Cl−1=Vl−1&Cl=Vl&Cl+1=Vl+1&…&Cr−1=Vr−1&Cr+1=Vr+1&…&Cm=Vm)->Cr!=Vr (2.1) 

It can be rewritten into the following clausal form: 
 C1!=V1 |…| Cl−1!=Vl-1 | Cl!=Vl | Cl+1!=Vl+1 |…| Cr−1!=Vr−1 | Cr+1!=Vr+1 |…| Cm!=Vm | Cr!=Vr (2.1′) 

When one of Tl and Tr is a domain element, we do similar work as Case 2 in 3.2.1, except changing the last 
literal of the clause from Cr=Vr(Cl=Vl) to Cr!=Vr(Cl!=Vl). 
3.2.3   Translating other clause that has only one literal 

We assume the predicate of the literal is P(…). We repeat the work as Case 1 in subsection 3.2.1. Similarly, we 
choose V=(V1,V2,…,Vm), but now we needn’t add any restriction on them. Let CP denote the corresponding cell of 
the P(…). So we can generate a clause like the following one: 
 (C1=V1&…&Cm=Vm)->CP=true (or CP=false if the literal is negative)  (3.1) 

It can be changed into the following clausal form: 
 C1!=V1 |…| Cm!=Vm|CP=true(false) (3.1′) 
3.2.4   Translating a clause with more than one literals 

We assume the clause CL is L1 | L2 |…| Lh, where L1,L2,…,Lh are the literals of CL. We can get the 
corresponding clause sets of L1,L2,…,Lh by the method described above. Let us denote these clause sets by 
CL11,CL12,…,CL1h. So we can get the corresponding clause sets of CL as (CL11 | CL12 |…| CL1h). We can change 
CL11 | CL12 |…| CL1h into the CNF form. 

3.3   Translating the semi-propositional clauses into propositional clauses 

In addition to the above clauses, we should add some other clauses to keep the consistency. For every cell C, if 
its range of values is {0,…,n−1}, we should add clauses like: 
 C=0 | C=1 |…| C=n−1 (4.1) 
 C!=a | C!=b (0≤a<b≤n−1) (4.2) 

The set of clauses like (4.1) and (4.2) is denoted by CL2. 
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Now we get a set of semi-propositional clauses. Then we change these clauses into propositional clauses by 
translating each equality like Cj=Vj into a Boolean variable. Hence we get an SAT problem instance. 

4   Symmetry Constraints 

One advantage of the first-order reasoning is that we can employ more structural information in the problem 
formulation. In contrast to random problems, structured problems usually have a lot of symmetries. In other words, 
there is much isomorphism in the search space. Taking them into consideration may reduce the search space. One 
way is to use special extra constraints for a particular class of problems. For example, adding a certain form of 
inequalities greatly reduces the search time for the quasigroup problems[8]. This method is effective sometimes, but 
one needs insight to find the constraints.  

A more general approach is to use the so-called Least Number Heuristic (LNH)[7]. We shall not give details 
about it here. But roughly speaking, it reduces the number of possible values for certain cells and thus prunes the 
search tree. For simplicity, in this section, we assume that the input has only one function f which is binary. Then 
using the LNH is essentially the same as adding the following formula (S1): 

     (f(0,0)=0&((f(0,1)=0&(f(1,0)=…)) 
         | (f(0,1)=1&(f(1,0)=…)) 

| (f(0,1)=2&(f(1,0)=…)))) 
(f(0,0)=1&((f(0,1)=0&(f(1,0)=…)) 

         | (f(0,1)=1&(f(1,0)=…)) 
| (f(0,1)=2&(f(1,0)=…)))) 

In general, the LNH is only effective at the first few levels of the search tree. But it can greatly reduce the 
search space when the size of the domain is large. 

How can we take advantage of the symmetries when transforming first-order clauses into propositional 
clauses? In the following, we discuss several methods. 

(1) As demonstrated in Ref.[9], we may slightly modify the finite model searcher SEM and ask it to generate a 
set of partial solutions while using the LNH. From each partial solution, we can generate a set of propositional 
clauses. As a result, from each set of first-order clauses, we get several sets of propositional clauses. If any of the 
latter sets is satisfiable, the original problem has a solution. 

(2) MACE[5] has a command-line option ‘-c’, which says that constants in the input should be assigned unique 
elements of the domain. It can eliminate much isomorphism in many cases. But it is not safe, in the sense that there 
may be a solution in which two constants are assigned the same value. This kind of solution will not be found when 
the option ‘-c’ is used. 

(3) Certainly we can translate the formula (S1) into a set of propositional clauses and add them as extra 
constraints. However, there are too many such clauses when the domain size is not too small. 

(4) An approximation of LNH is to add the following clauses (S2): 
       f(0,0)=0 | f(0,0)=1. 
       f(0,1)=0 | f(0,1)=1 | f(0,1)=2. 
       f(1,0)=0 | f(1,0)=1 | f(1,0)=2 | f(1,0)=3. 
       …… 
This is only an approximation, because some combinations actually need not to be considered. For example, 

when f(0,0)=0&f(0,1)=1, we should not consider the case f(1,0)=3 according to the LNH. Although it is an 
approximation of the LNH, it still prunes the search tree greatly, since we now need to examine only 2 (instead of n) 
possible values for f(0,0), only 3 (instead of n) possible values for f(0,1),… More accurate approximations are 
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possible. For example, we can add the constraint: f(1,0)=3->f(0,1)=2. The clauses (S2) also imply that f(0,0)!=2, 
f(0,0)!=3,…,f(0,0)!=n−1. So some clauses in CL1 and CL2 can be eliminated. We can replace Eq.(4.1) by S2. In this 
way, we get SAT instances which are easier but not too large. 

5   Experimental Results 

Based on the above ideas, we have implemented an automatic tool for generating SAT instances, called SAGE. 
To deal with the symmetry problem, we choose to adopt the last method for adding extra clauses, for its simplicity 
and generality. 

We have tested out tool on a number of well-known problems: 
(1) Logic and abstract algebra: This class includes the problems “Cl_bn1”, “Group” and “Ortho”. Some of 

them are described in Ref.[10]. The problem “Ortho” is a previously open problem, solved by McCune in Ref.[11]. 
The domain size is 8.  

(2) Combinatorics: Quasigroup existence problems described in Ref.[8]. Qgi.j means the i’th quasigroup 
problem with domain size j. Also included are some Latin square problems.  

(3) Puzzles: “jobs” and “salt”, which are well-known in AI and logic programming. Gra-16 is an interesting 
graph problem designed by the author. 

The following table summarizes the results. All running times are given in seconds. We use SATO[1] Version 
3.2.1 as our SAT solver, on a SUN Ultra SPARCstation 60. 

Table 1  Comparison with other tools 

Problem name Number of generated clauses SATO’s time Time after adding LNH SEM’s time MACE’s time 
Group 22794 0.12 0.12 <0.01 0.21 

Ortho 1582158 1199.19 57.76 1.66 
2.52 

(1.71)*** 
Jobs 1525 0.01 − <0.01 −** 
Salt 150 <0.01 − <0.01 −** 

QG1.7 68411 0.34 0.43 6.93 0.48 
QG2.7 83531 1.98 0.46 8.44 0.56 

QG5.10 42320 1475.09 25.92 0.02* 
1533.83 

(0.20)*** 
Gra-16 12544 0.22 1.02 >2 hours −** 
Latin 6 59514 3.21 − 62.19 497.0 
Latin 7 158607 10771.49 − >24 hours >24hours 

Notes: (*) If we don’t use LNH for the qg5, the running time of SEM will be more than an hour. 
(**) Since MACE can’t solve problems that have more than one sort, we didn’t use it to solve these 

problems. 
(***) The time within the parentheses is the execution time of MACE when special constraints are 

added to eliminate isomorphism. 
The fourth column of the table shows the time of SATO when we add the first three clauses of (S2), together 

with the clause f(1,0)=3->f(0,1)=2. 
We can see that, when combined with SATO, our tool can solve most problems quite efficiently. It is at least as 

good as MACE and SEM on most problems. For some problems, the performance of SATO+SAGE is much better. 
The table also shows that employing symmetries is quite useful on hard problems (especially those unsatisfiable 
problems such as Ortho and QG5.10). For the problem instance qg2.7, using approximate LNH reduces 3.50% 
variables, 12.97% clauses and 76.77% search time. But for some easy problems, it seems not very useful.  
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The translation time is omitted in the table. For many problems, the translation time is much less than the 
solving time. The search times can be reduced if we choose more efficient SAT solvers and if we add more 
constraints for eliminating isomorphism. 

6   Related Work 

There are other tools which are similar to ours. For example, Kim and Zhang[12] described a tool called 
ModGen, and McCune designed another tool called MACE[5]. Both ModGen and MACE can solve finite domain 
search problems stated in first-order logic. Each tool generates an equivalent SAT instance, solves it, and translates 
the SAT solution back into the first-order form. 

Although the main design of these three tools is similar, there are still some differences between our tool and 
the others. Firstly, ModGen only uses SATO and MACE only uses ANL-DP to solve the generated SAT instance. 
However, there are many other efficient SAT solvers and it is still unknown which one is the most suitable for a 
certain problem. Our tool SAGE allows the user to choose an arbitrary SAT solver and offers an interface to 
translate the SAT solution into an understandable one. Secondly, we use some extra constraints to reduce the search 
space, and these constraints are independent of any particular problem. Another minor difference is that we first 
instantiate the first-order clauses (rather than flatten them into relational form). This gives us more chances of 
finding common sub-expressions. For example, suppose that in the input, there is a clause h(g(f(y,z)),g(f(y,x)))=y. 
After instantiating this clause, we get n3 ground clauses, and n2 of them have common subexpressions g(f(y,z)) or 
equivalently g(f(y,x)). For this example, MACE generates n7 clauses, and SAGE generates (n7−n6+n4) clauses. 

7   Conclusions 

To use a SAT solver, one usually has to prepare a set of propositional clauses. In this paper, we have described 
a method and an automatic tool which generates such a clause set from an abstract problem description in first-order 
logic. Its input is a set of first-order clauses together with the domain size(s), and its output is a set of propositional 
clauses which can be accepted by most SAT solvers. 

Most of the examples used in this paper come from mathematics. There are several reasons. Firstly, these 
problems are well known and difficult. Some of them are previously open problems. Secondly, it is easy to state the 
problems and communicate them with other researchers. Moreover, assisting mathematicians is an important goal of 
AI. In fact, Ref.[8] received the outstanding paper award in IJCAI-93, and McCune’s success in solving a 
long-standing open problem is considered as a major achievement in AI. However, it should be noted that our tool is 
based on the general formalism of logic, and logical formulas can express problems from a wide variety of domains 
(e.g., planning, hardware verification). We believe that it will be quite useful. In the future, we shall try to explore 
more symmetries to reduce the search space, and try to generate fewer clauses. 
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