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Abstract: On the basis of the current single layer Markov chain anomaly detection model, this paper proposes a 
new two-layer model. Two distinctly different processes, the different requests and the system call sequence in the 
same request section, are classified as two layers and dealt with by different Markov chains respectively. The 
two-layer frame can depict the dynamic activity of the protected process more exactly than the single layer frame, 
so that the two-layer detection model can promote the detection rate and degrade the false alarm rate. Furthermore, 
the detected anomaly will be limited in the corresponding request sections where anomaly happens. The new 
detection model is suitable for privileged processes, especially for those based on request-response. 
Key words: Markov chain; system call; request; anomaly detection; intrusion detection 

摘  要: 在现有的单层马尔科夫链异常检测模型基础上,提出一种崭新的两层模型.将性质上有较大差异的两个

过程,不同的请求和同一请求内的系统调用序列,分为两层,分别用不同的马尔可夫链来处理.两层结构可以更准确

地刻画被保护服务进程的动态行为,因而能较大地提高异常的识别率,降低误警报率.而且异常检测出的异常将被限

制在相应的异常真正发生的请求区内.检测模型适合于针对特权进程(特别是基于请求反应型的特权进程)的异

常入侵检测. 
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An intrusion detection system (IDS) is one that identifies intrusions, where an intrusion is defined as a misuse 
by an authorized user or as an unauthorized use by external adversaries[1,2]. An intrusion detection classification 
appears in Ref.[3]. There are two general methods for detecting intrusions: anomaly detection and pattern 
recognition. Our detection method belongs to the former. The audit data used in our detection model are system call 
traces. A system call trace is an ordered sequence of system calls, which a process performs during execution. The 
system calls in the trace depend on the execution path of the process. A process execution path depends on many 
factors such as the inputs and the states of the system. These factors determine what execution path a process takes 
at each passable branch point. Therefore, the inputs to process are important data for constructing normal profiles 
and detecting anomaly. The parameters and return values of call are often ignored in anomaly detection system that 
operates on system call traces[4−8]. In 1996, Forrest and others first introduced a simple intrusion detection method, 
which is based on monitoring the system calls of the privileged processes[6]. Her work shows that a normal process 
behavior could be characterized by local patterns in its traces, and deviations from these patterns could be used to 
identify security violations of an executing process. Over the past several years, many statistical learning techniques 
in IDS have been developed. Several of these methods have the potential for generating more accurate and (or) 
more compact models based on the system call trace data[4−8]. Warrender[7] wrote a survey on the intrusion detection 
methods based on system calls. Markov chain is a powerful tool of anomaly detection[9−15]. A high order Markov 
chain detection model appears in Ref.[10], but the computation and memory are too expensive.  

Our detection model differs from the above research studies. On the one hand, above methods, which operate 
on system traces, only use call names as audit data, but ignore call parameters and return values. This factor may 
bring false alarm and false negation. In our detection model, requests/commands which are the kernel inputs to 
process and appear in the call parameters, are used to denote the states into which the process enters, and the call 
return value is also used. In fact, this means that the dynamic activity of process depends on not only code but also 
current input. On the other hand, above methods, which use Markov chain to detect anomaly regard the call trace as 
a whole. As illustrated in this paper, we view the call trace of process as being composed of two-layer Markov 
chains. This refined description to call trace will contribute to a more accurate intrusion detection. 

The outline of the paper is as follow. The definition of intrusion detection that operates on system call trace is 
given in section 1. Section 2 provides a general outline of the traditional Markov chain anomaly detections. Section 
3 describes two-layer Markov chain anomaly intrusion detections. We then describe a wu-ftpd detection prototype 
and experimental results in Section 4. Discussion is given in section 5. Future work and concluding remarks are 
provided in section 6. 

1   Definition of Intrusion Detection System That Operates on Call Traces 

An application can be viewed as a function f which takes the current application state st and input it as 
parameters, and returns the output ot and next state st+1

[16]: f(it,st)=(ot,st+1). The state set S can be partitioned into 
two no overlapping subsets, i.e. safe state set Ss and compromised state set Sc: φ=∩ cs SS . IDS that operates on 

system call traces can be defined as a function d which is to reconstruct the states of the application from the system 
call traces: d(ct,pt,qt,mt)=(mt+1,nt) ,where ct is the system call name at time t; pt and qt are the call input and output at 
time t respectively; mt and mt+1 are the states of the IDS at time t and t+1 respectively. nt mirrors the state of the 
protected application at time t. IDS needs to remain synchronization with the protecting application (i.e. nt=st) so 
that the IDS can decide if the application has entered into a safe or compromised state. Ideally, we expect pt=it and 
qt=ot. So using call name, call inputs and return value for anomaly detection is very reasonable. 
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2   Traditional Marko Chain Anomaly Detection Technique 

The traditional first-order Markov model of event (call) transitions assumes that the next event depends on 
only the last event in the past. Let Mt be the value of a random variable or the state of a system at time t. A Markov 
chain is a stochastic process with the following assumptions[13,14]: P(Mt+1=it+1|Mt=it,Mt-1=it−1,…,M0=i0)=P(Mt+1= 
it+1|Mt=it); P(Mt+1=it+1|Mt=it)= P(Mt+1=j|Mt=i)=pij. For all time t and all states, pij is the probability of the system in 
state i at time t and in state j at time t+1. The first equation denotes that the probability distribution of the state at 
time t+1 depends only on the state at time t, and does not depend on the previous states. The last equation specifies 
that a state transition from time t to time t+1 is independent of time t. If the system has a finite number of states 
1,2,…,n, we can define a Markov chain model by a transition probability matrix P=(pij)nΕn and an initial probability 
distribution vector Q=[q1,q2,…,qn] [11,15,16], where qi is the probability of the system in state i at time 0, 
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follows: . In the Markov chain detection model, the normal profiles are matrix P 

and vector Q. They can be learned from the historic data of the system’s normal behavior: p

+− 1ikt

ij=Nij/Ni, qi=Ni/N. Nij is 
the number of observation pairs Mt and Mt+1 with Mt in state i and Mt+1 in state j; Ni is the number of observation 
pairs Mt and Mt+1 with Mt in state i and Mt+1 in any state; Ni is the number of Mt in state i; N is the total state number 
of observations. After learning normal profiles, the anomaly detection is to observe the window of size k on the 
continuous steam of audit for viewing the last k audit states from the current time t (Mt−k,Mt−k+1,…,Mt), and compute 
the probability of this sequence. The higher the probability we get, the more likely the sequence of states come from 
the normal activities. A sequence of the states from the intrusive activities are expected to receive a low probability. 
Two different measures to express the strength of anomalous signal are MC (mismatch count) and LFC (locality 
frame count)[17]. 

3   Two-Layer Markov Chain Anomaly Detection Model 

3.1   Audit data 

In a two-layer Markov chain detection model, request, call name, and call return value are used to detect 
anomaly. The request can be the application supporting interactive requests/commands, and also can be command 
line parameters of the simple application which doesn’t support the interactive request or command. The key is that 
each request can provide an independent and simple function. Request determines mostly the current function and 
call sequences. Not all call parameters are used, otherwise the number of states will become much huger.  

In the two-layer Markov chains detection model, server process activity is viewed as being composed of a 
high-level requests/commands layer. Within each request section, a series of system calls are to perform the request 
function. The request often appears in read call. For example, “read(0,“PWD\r\n”,1024)=5” denotes that FTPD 
receives a PWD request from a user. Using this characteristic can identify the request from the call trace and then 
partition the trace into the request sections. 

The low layer is the call status series in each particular request. Each call status is composed of a call name and 

its return value:  

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Clearly, it is different between open(“readme.txt,ORDONLY”)=8 and open(“readme.txt, ORDONLY”)=−1. 
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The former denotes that the call open is a success and returns the file descriptor 8, but the latter denotes that the call 
open is a failure. Therefore, only using call name for detection can raise the false alarm and false negation. 

3.2   Two-Layer Markov chains 

Most of the complicated server daemons such as FTPD, HTTPD, and SENDMAIL etc. directly support some 
requests/commands. For example, FTPD daemon has USER, PASS, PORT and QUIT etc. Traditional Markov 
detection model regards the server application call trace as a whole. Each request of an application can provide an 
independent and simple function so that constructing a Markov chain for each request can provide a more exact 
detection model. Our detection model can be regarded as two-layer Markov chains. The high layer is a request 
Markov chain, and the low layer is a request corresponding to the system call status Markov chain (see Fig.1).  
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.
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Fig.1  Two-Layer Markov chains 

3.3   Profiling normal behavior 

Profiling normal behaviors is to construct the transition probability matrix and initial probability distribution 
vector for each Markov chain from the normal trace data. To the high layer request Markov chain, the state is a 
request name. The size of the transition probability matrix requestP(pij) is requestNumΕrequestNum, and the size of 
the initial probability distribution vector requestQ(qi) is requestNum. requestNum is the number of requests which 
appear in the normal training traces. To low-layer Markov chains, each request has a Markov chain. The state of the 
low layer Markov chains is callStatus. The size of callStatusPi(pjk) (transition probability matrix of requesti 
corresponding to Markov chain) is callStatusNumiΕ callStatusNumi, and the size of callStatusQi(qj) (initial 
probability distribution vector of requesti corresponding to Markov chain) is callStatusNumi, where callStatusNumi 
is the total number of callStatus which appears in requesti corresponding to the call traces in the training traces. 

The two-layer Markov chain model equates to the traditional Markov chain model in computing complexity of 
profiling normal behaviors, but the size of the needed memory to store parameters is greater than that of the 
traditional Markov chain model. Because each request performs an independent and simple function of the server 
daemon, our profiling method can describe more exactly the normal activities of the server daemon. 

3.4   Anomaly detection 

Measures to express the strength of anomalous signal can use MC or LFC in every Markov chain in a trace, 
and then use the maximum of MC or LFC values to determine anomaly. But we can also define another measure: AS 
(anomaly signal). In a trace T, we define SA(T)=max{SHA(T), SLA(T)}, where SHA(T) is a MC or LFC value of the 
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T, respectively. We note that every value, , maybe computed from different low layer Markov chains. SA(T) 
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expresses how much T deviates from the normal profiles. The value of the normalized anomaly signal, SA(T), is 
between 0 and 1. The two-layer Markov chain model equates to the traditional Markov chain model in computing 
complexity of anomaly detection. 

3.5   Classification error 

In IDS, there are two types of classification errors: false alarms (false positives) and false negatives. A false 
alarm occurs when a call trace generated by legitimate behavior is classified as anomalous, and a false negative 
occurs when a call trace generated by an intrusion is classified as normal.  

In the two-layer Markov chains detection model, each Markov chain can choose different thresholds of the 
mismatch probability and state sequence length. Therefore our detection model can provide a higher anomaly 
detection rate and a lower false alarm than the tradition Markov chain anomaly detection model. 
Let  be the set of all Markov chains in trace T;},...,,{)( 21 TlmmmTM = iε and ki are the thresholds of the mismatch 

probability and state sequence length of mi respectively; is the set of all the overlapping state sequences of 

length k

)(tS
im

)(t
ii in mi of the trace T; , where p(s) denotes the probability of the sequence s. 

In order to detect an intrusion trace I, at least one request or callStatus sequence generated by the intrusion must be 
classified as mismatch, i.e. 
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Although we would like to minimize both kinds of the errors, we are more willing to tolerate false negatives 

than false positives. False negatives can be reduced by adding layers of defense, whereas layering will not reduce 
the overall false positive rates[6]. Therefore, to the given normal traces N, we can choose threshold εi of the 
mismatch probability and state sequence length ki by  and the toleration degree to false positives for 
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minimal probability of length k request sequence in N and l is the minimal request sequence length of likely normal 
trace to ensure that every trace has at least one length k request sequence. Then choose ε by toleration degree to 
false positives. In a general way, the
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 is the minimal probability of length k call status sequence in request r in N and l is the minimal call 
status sequence length of request r in N to ensure that each trace included in request r has at least one length k call 
status sequence. Then choose 

),,(min kNrPC

ε  by toleration degree to false positives. In a general way, the ε can be 
), k,(min NrPC=ε  to zero false alarm of call status anomaly in request r for the given normal traces N. 

4   A wu-ftpd Detection Prototype and Experimental Result 

On a Red Hat Linux system, we use Perl to implement a wu-ftpd daemon detection prototype. We use the 
wu-ftpd2.6.0 as an anomaly detection application, because wu-ftpd is a widely deployed software package to 
provide File Transfer Protocol (FTP) services on Unix and Linux systems, and exists many intrusion scripts on the 
Internet.  

4.1   Training and testing trace data  

We use command strace (“strace –p pid –f –o output.file”) to get trace data. Strace is a system call trace, i.e. a 
debugging tool that prints out a trace of all the system calls made by another process. The program to be traced need 
not to be recompiled. Strace can also trace child processes, which are created by the currently traced processes as a 
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result of the fork or vfork system call at the recent Linux kernel. Because Linux uses multi processes rather than 
multithreading to implement multitasking, we can use strace to trace multitasking. Each line in the trace contains 
the pid, system call name, followed by its arguments in parentheses and its return value. All of the training data are 
normal traces, while the testing data include both the normal traces and intrusion trace data. The data used in this 
study is described in Table 1. The normal training trace data come from a live wu-ftpd daemon, with a careful 
checking by Snort[18] and other experts to keep no anomaly activity in normal training traces. The intrusion scripts 
are downloaded from Internet (http://www.hack.co.za and http://packetstormsecurity.nl) (in Table 2). In fact, only 
three scripts (bobek.c, wu-lnx.c and wuftpd2600.c) can triumphantly penetrate into system and get a root shell.  

Table 1  The training and testing trace data 
 Number of trace Number of call Number of request 

Training traces 32 728,138 17,787 
Normal traces 59 842,295 13,084 
Intrusion testing traces 20 47,365 679 

Table 2  Intrusion scripts from Internet 
Script names Description 

ADMwuftpd.c,w00f.c,wu-ftpd.pl wu-ftp beta 18 remote overflow 
beroftpd.c beroftpd 1.3.4(1) site exec format strings exploit 

bobek.c, wuftpd2600.c, wu-lnx.c wuftpd 2.6.0 SITE EXEC vulnerability 
Ftpexp.c getwd() overflow 

ftp-ozone.c layer violation 
ftpspy.c vulnerability of passive ftp connection 

ftpwarez.c wu-ftpd beta17 remote root overflow 
Glob.sh Glob vulnerability 

ifafoffuffoffaf.c wuftpd 2.5.0 heap overflow 
own-proftpd.c proftpd pre4 remote overflow 

pasvagg.pl pasv dumps core with root passwd 
proftp-ppc.c, proftpX.c proftpd-pre1,2,3 buffer overflow 

wuftp25.tar.gz wuftpd 2.5.0 heap overflow 
crash_ftpd.c crash proftpd 1.2.0pre4 servers 

ftpsed.pl proftpd dos vulnerability 

4.2   Request recognization 

In our prototype, the ftpd is managed by the inetd daemon. Wu-ftpd2.6.0 has 47 directional support requests, 
but in which 10 requests are not implemented. We add START and OTHER request into the request set. The START 
denotes the ftpd start process, and OTHER denotes the unidentifiable request. We use process ID to identify calls 
belonging to the same process in the trace data. The request can simply use “read (0,...)” to identify. 

4.3   Learning wu-ftpd normal profile 

The process of learning wu-ftpd normal profiles is to construct the transition probability matrix and initial 
probability distribution vector for each Markov chain from wu-ftpd training trace data. After learning, the total 
nonzero parameters in all of the probability state transaction matrixes are 1574; total nonzero parameters in all of 
the initial probability distribution vectors are 581. To the traditional Markov chain model, total nonzero parameters 
in the probability state transaction matrixes are 356; total nonzero parameters in the initial probability distribution 
vectors are 68.In each probability state transaction matrix, many values of items do not exist because the 
corresponding call transactions do not appear in the training trace data at all. Let these values of items be chosen as 
a little probability constant number 1e-5 according to 0.01.  

4.4   How much is the normal training trace enough? 

To build reasonable probability state transaction matrixes and initial probability distribution vectors of the 
Markov chains, how much are the training trace data needed? We use one training trace as one step; use subscript i 
to denote the parameters built from the previous i training trace data; use R to denote the request set, and let C 
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denote the call status set. Then we apply the result values of the following equations to evaluate the probability state 
transaction matrixes and initial probability distribution vectors. 
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The high layer Markov chain parameter requestP matrix and requestQ vector use the first and second equations 
respectively, while the low layer callStatusP and callStatusQ use the third and last equations respectively. Here, 
using requesti(r1,r2) to denote the transaction probability from request r1 to r2, and requestQi(r) to denote the initial 
probability of request r; using callStatusPi(r,c1,c2) to denote the transaction probability from call status c1 to c2 in 
request r corresponding to the low layer Markov chain, and callStatusQ(r,c) to denote the initial probability of call 
status c in request r corresponding to the low layer Markov chain; function f(x) is to get the number of the nonzero 
items in matrix or vector x. The values are smaller; the parameters are more stabile and reasonable. If the 
parameters are stable enough, the training data are enough. During computing, the value of the item is regarded as 
zero if it does not appear after training. Using the training trace data, the results are described in Fig.2. From Fig.2, 
we know our training trace data are enough to create the stable and reasonable Markov parameters. 
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Fig.2  The changing of hdp, hdq, ldp and ldq 

4.5   Finding ε and k  

To the given normal training traces N (see Table 1), using the method in subsection 3.5, we choose the best 
parameter values of threshold of the mismatch probability and state sequence length for high layer request Markov 
chain and each low layer call status Markov chain. The threshold of mismatch probability is chosen to become zero 
false alarms for these normal training traces. We use 80 as the maximum length because the maximum of the 

minimum length of call status sequence in each request in training traces is 80, i.e. . 

The results of the sequence length to each Markov chain are given in Table 3 (the threshold of mismatch probability 
is not given here). 

80)}},({min{max =
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Table 3  The sequence length k for every Markov chain  
Request CDUP CWD DELE HELP LIST MKD NLST NOOP OTHER 

k 21 8 14 15 23 30 80 5 8 
Request PASS PASV PORT PWD QUIT REST RETR RMD RNFR 

k 19 19 6 8 23 8 17 43 9 
Request RNTO SITE STOR SYST TYPE USER XPWD etc. High level 

k 20 14 15 8 8 16 8 1 2 

4.6   Comparison of detection performance comparing 

We compare the detection performance of the two-layer Markov chain model with that of the traditional 
Markov chain model by ROC curve[13]. Each point in an ROC curve indicates a pair of the hit rate and the false 
alarm rate for a signal threshold. If an intrusive trace in the testing data is classified as anomaly, this is a hit. If a 
normal trace in the testing data is classified as anomaly, this is a false alarm. The hit rate is computed from the 
dividing of the total number of hits by the total number of intrusion traces in the testing data. The false alarm rate is 
computed from the dividing of the total number of false alarms by the total number of normal traces in the testing 
data. By varying the value of the signal threshold, we obtain an ROC curve. The closer the ROC is to the top-left 
corner (representing 100% hit rate and 0% false alarm rate) of the chart, the better the detection performance in the 
intrusion detection technique yields. 

In Fig.3, we provide three ROC curves. The ROC (1) is for the traditional Markov chain model, in which the 
sequence length is 17(the average value of sequence lengths in Table 3). The determination of anomaly or normal 
uses the LFC method, and the ROC curve is created by changing the sequence mismatch threshold value from 0 to 
1. The ROC (2) is for the tow-layer Markov chain model, but in which each Markov chain uses the same sequence 
length 17 and sequence mismatch threshold as in ROC (1), determining anomaly or normal uses the LFC method as 
in ROC (1) too, and the ROC curve is created by changing the sequence mismatch threshold from 0 to 1. The ROC 
(3) is also for the tow-layer Markov chain model, in which each Markov chain uses the sequence length in Table 3 
and corresponding to different sequence mismatch thresholds, determining anomaly or normal uses the AS method, 
and the ROC curve is created by changing the AS threshold value from 0 to1; For the LFC method in experiments, 
we arbitrarily choose 20 as a (reasonable) size for the locality frame, and take 10 mismatches in a local frame as the 
anomaly threshold. From Fig.3, despite using the same sequence length, the LFC method and the method to create 
ROC, the detection performance of the two-layer Markov chain model is better than the traditional Markov chain 
model’s. Using different sequence lengths, different sequence thresholds for each Markov and AS method, the 
two-layer Markov chain model can get the best detection performance. In experiment, we try other LFC frame 
lengths (30, 50 and100 etc.) and many others mismatch anomaly thresholds, but the results are similar to those of 
Fig.3.  
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If an anomaly is detected, the two-layer Markov chain model can provide other useful information: request 
name in which the anomaly occurs. For example, the model can accurately denote the maximum anomaly signal 
location in the SITE request section for the three scripts (bobek.c, wu-lnx.c and wuftpd2600.c) which just use SITE 
EXEC vulnerability in the wuftp daemon (CERT Advisory CA-2000-13, http://www.cert.org/advisories/CA-2000- 
13.html) to triumphantly penetrate into systems and get a root shell. Although intrusion scripts used in the 
experiments are old and known in real-life world, they are new and unknown to the detection model because they 
are not used to train the model at all. Therefore it is reasonable to expect that the two-layer Markov chain model is 
equally effective for detecting the really and truly new and unknown intrusions to those used in the experiments. 

5   Discussion 

5.1   Extensibilities 

When following the following three steps, we can easily extend our model to protect other applications, 
especially for the privileged daemon processes such as SENDMAIL, HTTPD, POPD, LPD and NAMED etc. (1) 
Getting the application request set. For most daemon applications, this is easy. The key of request is simple and 
independent of the function. (2) Finding the way to identify request from the living system call trace. (3) Using our 
model frame to create the needed anomaly detection model. We can also use other anomaly detection techniques in 
our model, such as expert system, petri net, and neural network etc. 

5.2   Strace command 

When using the strace command to trace application, the application performance may lose about 100%− 
200%. This is the main flaw of our detection model. An amelioration way can be the integration of the trace 
function into the operation system kernel. For Linux, it is a feasible way. 

6   Conclusions and Future Work 

In this paper, we present a new two-layer Markov chain anomaly detection model, a general framework for our 
model, and a wu-ftpd anomaly detection prototype. The experimental results clearly demonstrate that the detection 
performance of the two-layer Markov chain detection model is better than the first Markov chain model’s. Moreover 
our model can easily be extended to other applications and anomaly detection techniques. Using our detection 
model, the anomaly can be localized in the place where happens, i.e. it will be limited in the corresponding request 
sections, but not in the entire trace. For future work, we will use more call recorder information. We are also 
interested in extending our model to a mixed detection model (anomaly and pattern matching). We are currently 
pursuing these directions. 
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