1000-9825/2004/15(Suppl. Y0053 ©2004 Journal of Software £ # ¥ Vol.15, #97)

EANERTTANSRAETE
E LY, MEM, AEEY AR EhE'

(EEA¥ HENSEBERR LI 200433)
WLK¥ HHHRE S TRE AL 25 066004)

Efficient Processing of Large Intersection Queries on Set_Valued Data

WANG Wei'*, XIE Min-Feng', LIU Guo-Hua'?, PANG Yin-Ming', SHI Bai-Le'

!{Department of Computing and Information Technology, Fudan University, Shanghai 200433, China)
*{Department of Computer Science and Engineering, Yanshan Univetsity, Qinhuangdao 066004, China)
+ Corresponding author: E-mail: weiwangl@fudan.edu.cn, http://www.fudan.edu.cn

Received 2003-06-09; Accepted 2004-05-08

Wang W, Xie MF, Liu GH, Pang YM, Shi BL. Efficient processing of large intersection queries on set_valued
data. Journal of Seftware, 2004,15(Suppl.):53~67.

Abstract: Set is a common data type in database system today. But there is no efficient index structure for set type
data to support the queries relate to it. This paper presents a structure called Settrie. The structure is built based on
the comimon prefix patterns in database. Unlike invert file, the sets with same value are well organized. So the size
of the data accessed by a query is smaller than that of invert file. This feature will cause the improvement of the
selection operation’s performance. The experiments support this result. In this paper we also discuss several
optimizations approaches to Settrie.

Key words: index of set; Settrie; invert file; select operation; intersection

B B oAV ERBEAAR-AALBAETH—HESHMERY LF AT IHRXE
HEAH ek 315 38 T 0 £ D HIE 69— & 7] 45 M Settrie, XA 4 2 X FHIEE + IR 640 W EM
.5 Invert file R, 4 Settrie W & £ 64 26 A48 W4 4R PR A &3 F 5 9] 69 3048 F b Invert file | 483 T i&#
Ak e b gk 18 3t T RERA UM AR Tnvert file 383 T B4R L a0 B4R TG 69 M AR, B WEEE T30 T
#f Settric &9 /LA KA &,

S8 LR 5| Settrie; # HE A IR AR

+ Supported by the National Natural Science Foundation of China under Grant Nos69933010, 60303008 (B R AREE£E &), the
National High-Tech Research and Development Plan of China under Grant No.2002A A4Z3430 (B & S A BT L RE o (863
WANG Wei was bom in 1963. He is a professor at the Department of Computing and Information Technology, Fudan University.
His researches areas are database, data mining, digital library. X1TE Min-Feng was born in 1980. He is a Master student at the Depariment
of Computing and Information Technology, Fudan University. His current research interest is the storage of XML. LIU Guo-Hua was
born in 1966, He is a professor and doctoral supervisor at Department of Computer Science and Engineering, Yanshan University. His
researches areas are databage, XML. PANG Yin-Min was born in 1969. He is a Pb.D. candidate at the Department of Computing and
Information Technology, Fudan University. His current research interests include database and XML SHI Bai-Le was bora in 1935. He is
a professor and doctoral supervisor at the Department of Computing and Information Technology, Fudan University. His researcles areas
are database, data mining, digital library and security database.

© PHEBRESSAHITON htps/www. jos. org. cn

™

54 Journal of Software ¥4+ 2004,15(Suppl.)

1 Introduction

Set_valued data is a very popular concept to model entities in the real world. For example, there is a set of
keywords for each paper published in journal. There is a set of children for each family. So it is an important data
type in database management system!"). The semantic of query on set is studied in Object_Oriented da tabase!>*), But
there is still no efficient index schema to manage it and help to improve the performance of query operations.

We are concerned at the query operations looking for the sets that contain all or most of the elements of a given
set. This operation is useful in many applications, such as digital library system. User in a digital library system
usually gives a set of keywords and asks for papers, the keywords of which cover most elements in the given
keyword set.

Like most database management systems, building index is one of the best ways to improve the performance of
query. In Refs.[4,5] Sven Helmer and Guido Moerkotte studied four kinds of index structures for set_valued
attribute, and found that invert file was the most efficient one. For text document invert_file structure have also
been proved to be one of the most efficient index structure. But it has three weakness.

(1) The sequences of the elements which appear frequently in database in the invert file are very long.

(2) Invert_file does not consider efficient storage for sets with the same value, which appear in real data set
frequently.

(3) In most of the real set_valued data sets, common patterns appear frequently. Some phrases such as “query
optimization” and “access plan” always appear in the keyword list of a database paper together.

In Refs.[6,7] the authors studied the join operation on set_valued data. Two algorithms are all based on the
method of translating the set_valued data into signature first, then joining them on the signatures.

In this paper, an index structure for set_valued data: Settrie is presented. The index structure is based on the
common prefix patterns in the dataset. So the number of nodes accessed in the index structure is smaller for a query
operation. It will improve the performance of query operations. In this structure all common prefix patterns and
repeat data are merged.

The problem will be described in Section 2. In Section 3, the structure of Settrie will be discussed. The search
algorithms on the index structure will be studied in section 4. In section 5, the performance of the algorithm will be

shown via some experiments. We will review some related work in Section 6, and draw conclusions in Section 8.

2 Problem Formulation

In this section, we will give some definitions of the problem.

Definition 1. Suppose E is the set of elements appeared in DataBase. A Set-database is a set of set_value
tuples, denoted {T},...,T,}, T={idS;}(i=1..n), id; is the identify of the tuple in the database. S; is the set_valued
data, which is subsets of E.

In this paper the main topic is about the query on the columns which are set type. To emphasize the set
retrieval condition we use the term “Set-database” to denote the database discussed in this paper. For a set value
data S, |S] is used to denote the cardinality.

Definition 2. Given a real number ¢ and a subset Q; of E, the answer of a large intersection query of Q; on the
database D is the sets S; in D which satisfying |Q;NS;|> & *| Q.

For example user want to find all books which key words includes at least two words in {Query language,
Index, Query Algebra }.

Definition 3. For a large intersection query, if &=1, then the query is called a full containment query.

© HHEF

HAFIFFTIT hitp:/ www. jos. org. cn

EE ¥ RSHENTERSFHMAERT S 55

3 Index Structure

The index structure is divided into two layers. The upper layer is a trie. The low layer is a structure similar to
invert file on the nodes of the trie.

3.1 Data trie

Given a set-database, we use a trie to represent it. Assume there is a total order on E, and the elements in each
set.S; of the set database are sorted by the total order of E. A trie on E is a tree structure over elements in E as
follows: '

(1) Each node, except the root contains one element of £. Conversely, for every element in £ there is at least
one node contains that element.

(2) Any two children of a node contain different elements. The order of the child nodes of a node follows the
total order on E.

(3) The element of each node in the trie is larger than that of its parent,

(4) Each node contain five fields: Id, Range, Label, Pointer to its sons and pointer P. Id is used to identify each
node. The order of id is base on the preorder traversal of the trie. Range is the largest id of its descendent, Label is
the element in E. P point to the address of this set in data entry.

{5) Each node in the trie has only one parent.

Definition 4. This trie is said to represent the set-database. If,

(1) For each set in the given set-database, there exists a node v on the tric such that v represents the set. The
value of the set is the set of the elements on the path from the root to the node.

(2) For each leaf node v, the set represented by v is in the given set-database.

For example in the Fig.1, node 3 represent the set_value {a,b,c}. Following the path a.b.c you will find the
node 3. From property (4), the trie has an interesting character.

a{1.9)

)/

K24 o3S) 68 g5

/N /N

(3.3} e{4.4) 7.7 i(8,8)

Fig.1 Sample of trie

Theorem 1. For two nodes ay,1,,

(1) If nz is n,’s descent, then n,.Jd<n,.id and ny range<n, .rang.

(2) If ny isn't n,’s descent, at the same time 7, isn’t #;’s descent, then either ny.id> ny.rang or my.id>n,.rang.

Proof. (1) Because n, is m;’s descent, and the count of id followed the preotrder traversal of the tree, so
1. dd<n,.id. From (4) of the describe of the structure of trie, we have »,.range>na.range.

{2) Suppose the range {n,.id,n,.range} and {n,.id, n,.range} are overlap for two nodes », and »;, and #; are not
my’s direct relation. Suppose the id of node m is in range {n,.id,n,.range} and {n,.id,n,.range}. From (1) m is one of
n,’s descent. Atthe same time m is one of s descent. But from the definition of trie, it is wrong. In Setirie, no node
bas more than one father.

Theorem 2. Given an element @ in E, assume the id and range of the set of nodes which label is a are i},...,é,
and ji,...,fr. Then a set S in the set-database contains a(its id is i) if and only if exists i, and j, (1<r<k), for set tuple
(i,8) in set database, satisfying {<i<j,.

© PEEPERESEIII http/ waw. jos. org. cn

56

Journal of Software BARFI 2004,15(Suppl)

Proof. Sino¥S contain clement a, there is one node # labelled a on the path from the root to the node m which
represent 5. Suppose n represent set §° §” contain the elements in §, which is smaller than a. From the definition of
Settrie, node m is node n’s descent. Suppose the id and range of # is i, and j,. From Theorem 1, we have i< i<j,.

From the trie, it is easy to find the sets contain a set of eiements. For example, in Fig.l from the subtree of
node ¢(6,8), we will find all sets with prefix {a,e}. that is {a,e,i} and {a,ef}.

The following algorithm is used to build a trie. In the algorithm the sets in the set-database are added to the trie
one by one. For each set, find a path from the root's son node matching the set. If a path entirely matching the set
cannot be found, find the path matching as many prefik elements as possible of the set, then build a new path with

the rest elements.
Algorithm 1. Build the trie for the a set-database.
INPUT: The set-database SDB.
OUTPUT: The trie

{

}

For each set s; in SDB

{Sort the elements in s;; Put the elements in array EL;
if (Root=NULL) // Root i3 the root node of the trie;
Create the node Root;
if{(the element of node n is EL[1])and(# is a son of Roof))
currnode=n;
else *
{Create a2 new node m; Add m to Root’s son and m.element=EL[1);
curmode=m;}
For (i from 2 to length of EL)
{it;((the element of a node » is EL[iDand(# is a son of currtnode))
currrode=n,
else
{Create a new node m; Add m to currnode’s son and m.element=EL[i];
currnode=m;}}
return root;}
Travers the tree with preorder, and set the value for id and range;

For set data database {{a.b,c},{a,c},{a.g},{a.b.e}.fa,b} {a,ei},{aeft}. Figure 2 shows the process of
generating the trie. At first there is only one root node. With more and more sets are inserted into the trie, the trie

grow up. Figure 1 shows the result of the algorithm.

Root Root Root Root

S
A ANV ANERVAN

Y AN

[< c

{2)] (c) (d) {e)

Fig2 The process of building a trie

© hEFRES AT

http:// www. jos. org. cn

EF FREGHERTSHHGHRARESTE 57

3.2 Invert_system

In Settrie, the invert_system is a set of tuples like {ES,TNS}, ES is a set with one element(All elements appear
in the data set) or two elements(two elements are generated by the material optimnization in 5.7). 7N5S is a set of
sequences. The nodes have two attributes id and range. Id of the nodes in the trie follow the preorder. Range is
largest id of its descent. The sequence is called invert_sequence. Each node in the Settrie corresponds to a node in
the invert_sequence. The nodes with same label locates in the same sequence. For the sequence which ES contain
only one element, the sequence is the list of the nodes labeled the element in ES. For the sequence which ES contain
two elements, the sequence is the list of the nodes labeled with the larger element in ES. These nodes are son of a
node labelled with the smaller element in ES.

For example in Fig.1 the invert_system is:

{a}:(1,9);{b}:(2,4);{c}(3,3)(5,5); {e} :(4,4)(6,8); {/}:(7,7); {i}:(8,8); {g}:(9,9).

There is a data entry part in Settrie. Ii stores the pointers to the tuples in the database ordered by the id of the
node in the trie which represent the value. From it we can find the id or addresses of corresponding tuples in the
database.

Figure 3 is a sample of Settrie. In this figure set {o,c} appear three times in the database. From the node (35,5)
we will find all of them in data entry.

i i
;”-__—"‘ ________________________ 1 :
| I
DataBase Bttt Dttt , DataBntry 1 |
__________ I e e L | [
[! !] L] I
I jm———= Rt S it | === I
: [, ag I | w013 1
. | {]
I:Ea.b} | ' \ | 1 : : f‘:"_ i it
2:4abc} 1) | | | _i_L 2 11
3itag) [t [[1 “TTrTT s 0
ey [| | | (Pl s !
Sitaei} I : ' i ' b w !
6:{a.c} ! o 3 i1
7:{be} H2.4) o535 e68) 2(5.9) o11.12) f13,13) | 1 oy _ o : :
imhel I [R L R
oi(ach Py T 54
e Lol s
11:{bef ‘ | P A
12:4aeft I Py oo
13:{ac} | b 4 ==l
03 g D) e f12,12) Lo _
i [i P 1
R S oo A Leea 11 i
| f [i r Lo
L o — — e — Jrr e = — — qm———————— S | 1
| i 1 ' | 0
----- g indeinieinind: Sebinidiniied At b
L 1 '] i
I

Invert System {a}x(1,9%{b}:(2,4)10,13):{c}(3,3)5,5) | LEZ);{e}:(4.4)6,8) {F}:(7, T0(12,12X13, 13){i}-(8.8% {e}):(9.9)

Fig.3 Sample of trie
3.3 Comparison of Settrie and invert file

The size of the invert file is directly proportional to the fotal number of the elements of all sets. In Fig.3, the
size of the invert file is 31 nodes. Meanwhile the size of the invert_system is directly proportional to the total nodes
of the data trie. While the data trie can be considered as a2 compressed version of the source data. In the trie the sets
with common prefix are merged. The sets with same value are also merged. The number of nodes in the trie will less
than the number of elements in the invert file. For example, in Fig.1 the dataset has 18 elements, but in the data trie,

© TEEREARAIGUR hups v jos. org. en

58 Journal of Software HAFFIR 2004,15(Suppl)

there are only 9 nodes. For a new set data to be inserted, which has already appeared in the Settrie, the data trie will
not be updated. It means that if many records have same set field, the size of index structure is much less than that
of the invert file, and this case often happens in real world.

The Settrie can also be used to reduce the cost of sel ection operations. For example, if you want to find the sets
contain {a,b} in Fig.1. You only need to get the nodes labeled b, which is a son of a node labeled a. Then all nodes
in b's subtree are result. While with invert file, you must check all sets contain a or b,

3.4 Optimization to the structure

3.4.1 Frequent clement

As we described above, the length of the sequence of element 4 in the invert_system is equal to the number of
the nodes in the Settrie labeled a. If the nodes labeled @ appear many times in the data trie, the length of the
sequence of element g is great. It is not efficient to store and access these long sequences. It only contributes a little
to constraint the search scope. With the idea of material view, our invert_system is not a normal invert file system.
Not all elements have their invert sequence. While some two value set_values, which are accessed frequently have
their invert_sequence. For example, if element a appear in almost all sets in set_value database. The sequence
correspond to element a will be very long. So it is not efficient to execute a query operation involving element a.
But we found the set {a,5} appear only in very few sets. While set {a.b} is accessed frequently in users quei'y. So
the sequence of set {a,b} will improve the performance of users query. The rest of the problem is how to find the
frequently accessed elements pair.

Deflnition 5. Suppose L is the number of leaf in the trie, LS is the size of the node_code sequence. The
selectivity of the element set is The LS/L.

Definition 6. Given a threshold &, an element set ES is called high-selective if the selectivity of ES, s is less
than &. If 5 is greater than £, ES is called low-selective.

The definition of selectivity also considers the structure of tric. Some low-selective element in invert file
became high selective, because of the position of the element in the order for the ¢lements. For example in Fig.1,
element a is low-selective in the original database. But in the trie there is only one node labeled a.

Definition 7. A selective subset is a minimum one if it does not properly contain a high selective subset.

Definition 8. For a threshold 8, if a set is minimum selective subset and it appear more than § times in |
users query. Then the set is calied goed_material_subset.

With good_material_subset, we will find out the sets which are high selective, but it is accessed frequently.
These sets are good candidates for material. It will improve the queries efficiently.

3.4.2 Material optimization

This step is to find the good_material_subsets, then generate the invert_sequence for it. From the definition of
high selective, it is not difficult to find the low-selective elements from set database. The aim of this step is to find
the sets relate to those low-selective elements, Since high selective element should no be considered. We hope to
find those high selective sets which consist of low-selective clements. For example, the set {a} and {b} are
low-selective, while the set {a,b} is high selective, Another requirement for the set is it is frequently accessed. So
these sets come from the frequent subset of the users query log. Generally two el ements subset will contribute more
to users queries than large sets. The following algorithm is only used to find the good_material_subset with two
elements. .

Algorithm 2. Find the high selective sets which infect the query performance.

INPUT: The element set low-selective, and the set of queries

OUTPUT: The element pair which has high selective.

© PEBSFERSAIIFT hipd/ www. jos. org. cn

P ¥ Ao BRI EHGHHLETE 59

Get invert sequence for each element in set database, find the high selective elements.
For each low-selective element a generate a_project_database QPDE and DPDB,

//QPDR is the set of query which contain element a; DPDR is the set of elements which is descent of

Helement a in Settric
For each project_database PDB, put the top m frequent elements in PDR to Candidate
For each low-selective element b in Candidate, suppose b appeared ¢, times in DPDB.

if (25> 8) /! & is the threshold to judge whether the clement is high selective.
Put (a,b) in Result.

Return Result;

)

From the definition of good_material_subset, it must appear frequently in the query but not very frequently in
the Settrie. For this reason, two project_databases are used, one is for the query set, another is for the Settrie.

The tric has a very interesting character. For different total order of the elements, we will get different trie.
Because in difference order, the number of common prefix patiern are different. In Fig.4 there are two tries for
database {{a.b,c},{a,b,cf}.{b.c.d}{b,ef}} with different order of the elements, The order for (a) is a.b,c.d,e,f. That
for (b) is b,c,a,e,d). Then which order is better? There are 9 nodes in (a), but only 7 nodes in (b). So the order of (b)
is more efficient than (a). The next problem is how to find the better order. With the better order, the size for the
structure will be smaller and query performance will be better. In the trie the sets with common prefix pattern will
be merged. These merges will cause the drop of the size of the trie. Based on the assumption that frequently
appearcd ¢lements have large possibility belong to the same commop prefix. The following algorithm generates the
order based on the support of the efements in the set_database,

&

VAR /N
/N /N, N\

© d f

/ / |

{8} ()
Fig.4 The order optimization

Algorithm 3. Find a better total order on the elements in the database.
INPUT: The sample database 5.
OUTPUT: The total order on the elements in §.
{
for each set s, in §, and each elements g; in s,
countfa;]=count[a,]+1;
S=sort{count];
return §.

}

In this algorithm count is an array to record the count of the elements in the database. The elements are sorted
by count. The result of sorting is the new order. Since the elements frequently appear in the database are put in the
front part of the order. The size of the trie will be reduced. But the order of the elements will be update d the trie will
be rebuild if the distribution the elements changed a lot.

© PEERERSAEIIZ hitps/ wew. jos. org. cn

60 Journal of Software HAFFIL 2004,15(Suppl.)

3.5 Update operations

There are two update operations in set_database: inseri and delete.
3,51 Insert

The insert operation consists of twa steps. In the first step, the algorithm tries to find out whether the set data
to be inserted will add new node in the data trie. If a new node is added, it will be inserted to the imvert_system.
Otherwise, we only need to add the data entry.

352 Delete .

The delete operation also consists of two steps. In the first step, we try to find whether the set data to be
deleted will cause a node be deleted from the data trie. If a node is deleted, the node will also be deleted from the
invert system. Otherwise, only need to delete the data entry.

The algorithms for the two operations are similar. The algorithms consist of two steps. The first step is
traveling from the root to the node represent the set in the trie. So the time complexity for the first step is o(s), 0 is
the cardinality of the set. For a set database, n can be considered as a constant. The second step is to modify the
invert_system. Because the nodes in the sequence are sorted by the id of the node in the trie, It is possible to find
the node in the sequence in o{log(m)). m is the length of the sequence. The second step is similar to the update
operation on invert file. So the complexity is similar to that of invert file.

4 Search Algorithm

Users selection query on set-database can be categorized into three classes, the first one is full containment
query. The second is general Jarge intersection queties. The third is equal query. The query statement for the first
one is “find the sets which contain the set {a,,d2,...,.@,}". That of the second one is “find the sets which contain p%
elements in the set {a,,da,....a,)”. The last one is “find the sets which value is {2,,43,...,a,}”. Users selection query
on set-database can be categorized into three classes, the first one is full contatnment query. The second is general
large intersection queries. The third is equal query. The query statement for the first one is “find the sets which
contain the set {ai,da,... .a,}”. That of the second one is “find the sets which contain p% e¢lements in the set
{a,,a3,....a,}”. The last one is “find the sets which value is {ay.da2,....8x}7-

4.1 Full containment queries .

The algorithm of full containment query is to find all nodes locate in the same path from the root, labels on the
path covers set in users query. We create an array named Compare_Bed, there are two attributes for each element in
Compare_beds element. One is used to store the ES part of the invert_system. Another is a node of the sequence in
the inveri_system denoted nos.

Algorithm 4, Find all sets which contain the set {a,az,....4,}.

INPUT: The Settrie of the database,Set query={a,,43,-...4,} given by user;

OUTPUT: The ids of the sets contain query

{

from ES gather all one element sefs or two elements set, which is subset of {ay,4z,....9x};
Put the two kinds of sets into two sets 5, and 5;;
queryl=query,
for each set 5; in §;
if{queryl intersect with s;)
queryl=gueryl-s;; add s, to querycandidate; querycandidate is set of set;
for each set 5; in 5}

© PEESEREAEIEN http/ ww. jos. org. cn

ER FEsgmE iR hahEsd 61

if{gueryl intersect with 5.
gueryl=queryl-s; add s; to gquerycandidate;
Sort all sets in guervcandidate with the Jargest clement in the sets. And put the sets into the
Compare_Bed base on the order got in last step;
Link each element in Compare_Bed to the sequence under corresponding ES;
Get the first elements of each sequence. And put them into the nos field of correspond set
in Compare_Bed;
while none sequence meet the end sign '
{from Compare_Bed, get the clement Lt nos.range is the smallest one in Compare_Bed.
Put all set ¢, that 7, rang>t.rang into set Semi_result.
if (The union of sets in Semi_result cover {a;,8s,... ;@ }}......C
then
{from the subtree of node #,, get the wples contain{a,;,ay,...,a,}.
get the next element in sequence related to f and put it to Compare_Bed.}. ...A
else
get the next element in sequence related to ¢ and put it to compare_Bed. }
H
The whole process can be divided into two steps. In the first step, the sequences in the invert_system used in
the query are selected. Since this algorithm try to find all sets which contain the given set, in the first step, we need
10 find the ES part in the invert_system which cover the set in query condition. In the second step, the root of the
result trees is found out. The data structure used in the algorithm is shown in Fig.5. There is an invert_sequence
relate to each elements in Compare_bed. Each time an element in the sequence is get out and put into Compare_bed.
For the elements in the Compare _bed, the algorithm will judge whether the clements are all in the same set.

Compare—
Bed

g Invest sequenke b

Tvert sequence 2

3

Fig.5 The data structure

Lemma 1. For two sets A={a,,@2,....8,} ,B={@1,82,. . ;8m@ni1s---»tim} ,SUpPOse Node 7,7, are the two nodes in the
trie, which represent set A and B, then . fd<n;.ld and n, Range>n, Range.

Proof. From the definition of the trie, n, is one of #,’s ancestor. From Theorem 1, we will get the following
1esult n,. Jd>n, Id and n,. Range>n;. Range.

Theorem 3. All sets that contain set B={a,,ay,...,a,} will be found by Algorithm 4.

Proof. For any set B'={a,",a;',....2n'}, B' contain the set B={q,,a,,...,4,}. Suppose the elements in B and B'
are sorted. Suppose a'=a,. Suppose in the trie the node f; represent the set {a,",as',....a}. The nodes on the path

© PEERERSAEIIZ hitps/ wew. jos. org. cn

62 Journal of Software ¥AFFR 2004,15(Svppl)

from the root to node £ is f;.5...f; Set {e).e;,....6,} are subset of {f,.£5,..../1}, and e; labelled a;.

At first lets prove when e, left Compare bed[n], e{l<i<n) will be in Compare Bed{i]. When e, left
Campare_Bed{n], suppose the element in Campare_Bed[/](i<n} is not ¢. Because set {a,a3,....¢,} contain set
{a,,d3,...,a,}, from lemma | we have two cases: Campare_Bed[i)./&>e,.Range or Campare Bed[i}.Range<e,.Id. If
Campare Bed[i]./d>e, Range, then ¢ have left Compare-bed. But in the algorithm each time we always select the
node with smallest range. So e, left Compare-Bed after e,. It is conflict. If Campare Bed[i]. Range<e, Jd then
Campare_Bed[i].Range<e, Id<e,.Range. It is also cooflict. So when e, left Campare Bed[n], ¢ is in
Campare_Bed[{]. ‘

Because {e),e,...,e,} are the nodes on a path, all ﬁodes which in the subtree of node e, are returned as result.
From the definition of Settrie, the sets contain set B will be returned as result.

4,2 General large intersection queries

The gigorithm of full contzinment query is to find all nodes locate in the same path from the root, labels on the
path covers part of the set in users query.
Algorithm $. Suppose the query is “find all sets which contain &% elements in the set {a,,a3,...,a,}"
Input: The Settrie of the database, the threshold % of length of intersect part b, Set query={e.as,....a,}
given by user;
OUTPUT: The ids of the sets contain more than 6% elements in the set query
{
From ES gather all one element sets or two elements sets, which is subset of {a,2;,...,a,};
Put the two kinds of sets into two sets 5; and S5;
queryl=query; elemater=0,
for each elements g, in query that are low-selective
if (for each elements f;, sets {e.f;} €85, and Query)
put these sets into querycandidate;
for each set 5; in §,
queryl=gqueryl—s; put s; into querycandidate;
Sort all sets in guervcandidate with the largest element in the sets. And put the seis into the
Compare_Bed base on the order got in last step.
Get the first elements of each sequence. And put them into the nos field of correspond set
in Compare_Bed.
 while none sequence meet the end sign
{from Compare_Bed, get the set ¢, L.nos. range is the smallest in Compare_Bed.
Put all set ¢;, that ¢, rang>t.rang and ¢.id<t.id into set Semi_result.
if (The union of sets in Semi_result cover more than 5% elements in the set {a,.a;,...,a,})....C
then
{From the nodes in the subtree of ¢;, get al! tuples contain set {a;,as,...,9,}-
Get the next element in sequence related to £ and put it to compare_Bed.} ._.A
clse
{if(The union of sets in Semi_result may cover more than &% elements of set{a, a5,...,a,})
{Scan the nodes in the subtree of node ¢,. find all sets contain §% {a;,a;,...,a,}....B
get the next element in sequence related to ¢ and put it to compare Bed.}}}

© PEBREBEEIZON htps/www. jos. oTg. cn

EE ¥ R0 EBAXE Y HRALE T E 63

Lets explain the meaning of “The union of sets in Semi_result may cover more than 6% elements in the set
{a,,a,,...,a,}” with an example. For set {a,b,c,d}, suppose element d is low-selective. For a node p in the sequence
of {c}, if p have no node represent g and b in its ancestor, then the descendant of node p may not cover more than
75% elements in the set {a,b,c,d}). But for a node g in the sequence of {c} if ¢ have a node represent a in its
ancestor , then the descendant of node q may cover more than 75% elements in the set {a,b,c,d}). The reason is a
node represent 4 may in ¢’s descendant. So the algorithm needs to traverse the subtree of ¢ to get the right result. If
the order optimization is used, we only need to check the path from the node to the root. The reason is that the
low-selective element is always smaller than the high selective one in the new order. But if there is a sequence about
{c,d} is used, then we can tell whether d will be c’s descent.

This algorithm looks like the algorithm 4. The difference is in Algorithm 5 all potential subset which contain
more than &% elements should be find out. So the sequence selection part is difference.

Theorem 4. all sets that contain & *n elements in set {a;,a,,...,a,} will be found by Algorithm 5.

The proof of Theorem 5 is similar to that of Theorem 4. When we can not tell whether the set will cover 6% of
the query, it will search the path from root or scan the subtree of the node. This step will make sure the algorithm
will find the right result.

4.3 Equality queries

Another special query on set is equality query. Equality query are the queries, looks like “find all sets which
equal to set {ay,as,...,a,}".
Algorithm 6. Suppose the query is “find all sets which equal to the set {a,,a5,...,a,}”
Input: index trie, the root of the trie is R.
Output: sets which equal to the set {a,,a5,...,a,}
{
p is a point to the node in the trie.
i is a integer variable;
p=Root; i=1;
while (i<n)
{In the sons of node p, if there is a node g, g.lable=a;;
i=i+l;
P=q;}
From the data entry get all sets with the value {a;,az,...,a,}.
}
This algorithm is very simple, it just find a node which represent the given set in the Settrie.
Theorem 5. All sets which value is {a,,a5,...,a,} will be found by Algorithm 6.
Proof. At the end of the algorithm, we will arrive the node p with path a,,a,...,a,. From the definition of the
trie, this node represents the set {a,,a,...,a,}. So from the data entry of node p, we will get the tuples, the value of

which is {a;,as,....a,}.
5 Performance Analysis

We implement several experiments to evaluate the performance of our algorithm. The data were synthetically
generated, and allowed us to study the performance under different conditions.

All experiments were done on PIII 600 machines with 256MB main memory, running Windows 2000
Professional. And the algorithm is written with Standard C++ Library.

© PEERERSAEIIZ hitps/ wew. jos. org. cn

64 Journal of Software ¥AFFR 2004,15(Suppl.)

5.1 Synthetic datasets

Because there is no set data set generator, we use the program referred by Ref.[8] to generate the data set.

Each sequence in the data set generated by the program is divided into several transactions. Each transaction is
transferred into a set_value data. We also give an identity to each set_value data. Then the data set is transfer to a
set_value database.

In the following experiments, we generate several data sets to test the performance of the algorithm in different

conditions.
5.2 Compress rate

In our method, the invert system can be considered as the invert file on the nodes in the trie. Why our method
is more efficient than that of invert file? The reason is the number of nodes accessed by a query will be smaller than
that of the elements in the invert file. Based on the data set generated by the IBM’s sequence data set generator,
Fig.6 demonstrates the compress rate of the data trie. Compress rate is (number of elements in the invert file)/(the
number of nodes in the trie). From it we can get the following result.

(1) The rate of data set with higher average cardinality will be lower.

(2) With the growing of the size of the data set, the rate will also grow.

The principle of trie is to merge the same prefix part of the sets. The prefix part of the set also depends on the
total order on the elements. So only common patterns which appear as the prefix part of the sets will cause merge.
These merge will cause the increase of compress rate. The Common patterns does not appear in the prefix part will
not cause merge. So the compress rate for large cardinality data set is small. While in the large data set, it has more
possibility to have common prefix pattern.

Since additional information is added, the size of the index file may be larger than the original data set. In the
first experiment, we generate several data set with different sizes. There are no sets with same value in these data
sets. Figure 7 gives the ratio of index size and that of data set generated. In large data set, the size of the index is
less than twice of the size of data set. As we discussed in previous experiment, the ration for large data set is smaller
than that of small one. In the second experiment, we generate several data sets with 12 000 sets, but the dup]icate
rates are different. From Fig.8, we find the size of index is smaller than the original data set if the duplicate rate is
larger than 2. (duplicate rate is the average number of tuples in the data set which have the same value). The reason

is duplicate tuples in data set are merged into one tuple in Settrie.

[——len—2.5 —4—len=4 |

|

——4@— Ratio of si

I | 4

P _
g4 f ‘
23 F |8 ‘
H < :
g2 | 8 !
S 1 | 5 1
0 - . | = :
8k 40k 80k 160k 300k | 10k 20k 30k 40k 50k ‘
Number of sets Number of sets ‘
|
] L I I
Fig.6 Compress rate of trie Fig.7 The size of index and original file

EBEEPEIIAOT https/ www. jos. org. cn

EL FREOBBMIE NGO [BIET % 65

=@ Index file +Of‘iginal file | | ‘ {Iien:Z.S —':lén=4'
w 6 g
9 o
£s
1 o
@ | E 4
=
5 ‘ 3 s
8 | £
& ; : % 2
1 | 21 F
i i Eot
| 3
[[] 8 40 80 160 300
Duplicate rate ‘ ‘ Number of sets(k)
Fig.8 The size of index and original file with duplicate Fig.9 Comparison of query performance

5.3 Query performance

Because the number of the nodes in the trie is smaller than the number of elements in the invert file, the size of
the invert_system part in our structure is smaller than the size of invert file. Our query algorithm is similar to that
on the invert file. The I/O cost for the query on trie will be smaller than that on invert file directly. Fig.9 show the
relationship of the I/O cost for set query on invert file and our method. As what we can get from Fig.6, the large
data sets always have high compress rate. The reason is there are more common prefix patterns in larger data set. So
the performance is high. In Fig.9 the “Ratio for the cost of the two query method” is (the number of read operations
of ourmethod)/(The number of read operations of Invert file).

5.4 Performance of equal query

The algorithm for equal query is totally different to that of invert file. Our algorithm only needs to travel from
the root of the trie following the path corresponding to the set given by user. So the cost for equal query relate to the
cardinality of the set given by the user. While the I/O cost for equal query on invert file relate to the size of the data
set. Figure 10 shows the I/O cost of the equal query on invert file and our method.

;F Invert file ——f— Our method |

Number of 1/0 operations(K)
Query Ratio

75 375 75 150 ‘ ; 0 9 8 6 5 4 3

Number of sets(k) Duplicate Rate

Fig.10 Cost of equal query Fig.11 Relationship between the duplicate rate
and the size of trie

5.5 Duplicate data

Comparing to invert file, one of our method's benefit is to reduce to size for the sets with same value. As we
discussed in previous experiment, in our method only one copy of the duplicate data should be processed. As what
we see in Fig.11, if the duplicate rate is high, the size of the trie will be smaller. Each of them have different
duplicate rate. Because the size of the data set and the average cardinality of the sets in the data set are same, the
number of elements in the invert file is similar. Because the size of the trie is smaller, the query performance will

improve. As the size of the data set is smaller, the size of the invert system for the data set is also smaller. The query

© FERS

TSI hitp/ www. jos. org. cn

66 Journal of Software AR 2004,15(Suppl.)

performance will be better. Figure 11 is the result of our experiment. At first, we generate a set of query statements
on set, Then run the query statements on invert file and our method. Figure 11 is the curve of ratio of the run time of
the two methods. The “Query ratio” is (the number of read operations of out method)/(the number of read
operations of Invert file).

5.6 Order optimization

In our method the order of the elements in the set_database influences the structure of the data trie. Based on
assumption that frequent elements have large possibility appear in the same frequent two elements pattern. The
order optimization step will reduce the size of the trie. Figures 12, 13 and 14 show three group of experiments. The
average cardinality of the data set in the first group is 2.5. That of the second group is 4. That of the third group is 8.
These figures show the order optimization step will reduce the 10 percent to 20 percent of the size of the date trie.

5.7 Material optimization

Another optimization step is to material some two elements invert sequences. The sequences of low-selective
elements in the invert system are very long. It will reduce the performance of query on the sets contain these kinds
of elements. In this experience we generate several queries relate to the low-selective elements randomly. Based on
the sets in the queries we generate the set of good_material_subset. Figure 15 shows the cost the queries after
material optimization. In Fig.15, the X axis is the number of I/O before optimization for these queries. The Y axis is
the ratio of the number of I/O of the queries before and after the optimization. From it we will find the material

optimization will significantly improve the performance of the queries relate to low-selective element.

| BBefore optimization M After optimization | . PPN
= P P lLIBcfore optimization W After optimization i

200 300

|
|
|
1
|
|
|
|
|
i

number of nodes(k)
8

Number of nodes(k)
7
(=]

—
i
i
1
|
z
!
‘
i
|
|
|

7.8 39.2 79.2 158.1 315.1 8.5 42.6 85.7 171.4
‘ Number of sets(k) | Number of sets(k)
1 - - e } -_”7"7”—:
Fig.12 Result of optimization Fig.13 Result of optimization

| B Before optimization Ml After optimization |

|
|
|
|
~_ |
g s
3 i &
= |
s
E |
- 5
= |
“ ; 291 184 134 115 99
8.8 26.4 43.9 61.8 Number of I/0 before optimization(k)
Number of sets(k) |
|
Fig.14 Result of optimization Fig.15 Compress ratio of trie

© PEBRABREAFURT httpy/ www. jos. org. cn

EP ¥ AoMBALE NG HBALESE 67

6 Related Work

There is some work on the query operation of set_valued data. Reference [4] studied four index structures for
set valued data: Sequential Signature File, Signature Tree, Extendible Signature Hashing and Inverted File. Their
work was focused on the select operations relate to set_valued data, such as superset query, subset query and
equation query. In Signature based approaches, the set is transfer to a Signature with n bites. The set iu the query
will be also transfer to a signature. The sets which signature covers the signature of the user’s query will be the
candidate result. After the confirm step the real results are selected. Because of large number of false drop, they
found signature-based index structure have difficulties with some frequently used query set, such as small sets for
subset queries, large sets for superset queries. While invert file get much better performance on these operations. In
the invert file approach, the sets are organized with imvert file. There is a location sequence for each element in the
data set. In Ref.[6] several join method are studied, such as tree join, nested-loop join and signature based join. In
Ref.[7]. partitioned signature based join operation is studied. In Ref.[9], an index structure like R_tree is presented,
called RD-Tree. This paper also considered some basic query operations. In Ref.[10], a structure Fp-tree similar to
Settrie is used to maintain the frequent item set. Based on FP-tree an efficient frequent pattern mining algorithm is

proposed.
7 Conchusion

In this paper, we present an index structure for set type data. It can improve the performance of select operation
on set data. In the future we will study other operations on set data such as join. We will study the block based
storage of Settrie too.

References:
[1] Bancilhon F, Ferran G. The object database standard. PODS 92, 1992. 351~362.

[2] Beeri C. New data models and languape—the challenge. PODS92. 1992. 351362,
[3] Tannen V. Languages for collection types. PODS93, 1993,
[4] Helmer S, Moerkotte G. A study of four index structures for set-valued attributes of low cardinality Technique Report, 1999,
{5} Helmer S, Moerkotte G. Index siructures for databases containing data items with setvalued atiributes. Technical Report,
University of Mannheim, 1597,
[6) Helmer S, Moerkotte GG. Evaluation of main memory join algorithms for joins with ubset join predicates. VLDB'97. 1997,
{71 Ramasamy K, et al. Set containment joins: the good, the bad and the ugly VLDB*2000. 2000.
[8] Agrawal R, et al. Fast algorithms for mining association rules in large databases. VLIYE94. 1994,
[91 Hellerstein M, Pfeffer A. The RD-Tree: An index structure for sets. Technical Report, University of Wisconsin, Madison, 1997,
[10] HanJ, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proc. of the 2000 ACM SIGMOD Int’l Conf on
Management of Data {SIG-MOD 2000). Dallas, 2000,

BAFIFFIET bt/ www. jos. org. cn

© rhERRE

