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Abstract: Tiling an array of projectors has become a practical way to construct a high resolution display system. 
Unfortunately, such high-resolution display systems have limited use because they require specially developed 
parallel visualization programs that run on a custom-designed parallel machine or a PC cluster. This paper presents 
an automatic alignment mechanism for arbitrarily tiled displays running a desktop environment so that users can run 
ordinary applications developed for desktop PCs. The system consists of three primary procedures: detecting 
projector misalignment, calculating corrective transformations, and real-time warping for the desktop environment. 
This allows users to run any 2D, 3D or video applications without modifications or special hardware support. Our 
experiments indicate that the system is able to achieve sub-pixel accuracy and achieve real-time warping with 
minimum system performance degradation. 
Key words: automatic alignment; tiled display; high-resolution display; desktop environment; real-time warping 

摘  要: 通过拼贴一组投影仪来构建高分辨率显示系统已成为现在一个较实际的办法.但是,这样的高分辨率

显示系统用途有限,因为它们需要在定制的并行机或个人计算机集群上运行一些专门开发的并行形象化程序
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才能实现.针对个人计算机桌面环境下的任意拼贴显示给出了一种自动对准机制,使得桌面用户可以在其上运

行普通的桌面应用软件.该系统包括 3 个步骤:检测投影仪对齐失准,计算出纠正所需之变换,对桌面环境进行实

时的变形.这样就允许用户在运行任何 2D,3D 或视频程序时无须作任何修改,也无须使用专门的硬件支持.实验

结果表明,系统能够获得亚像素级的精度,并且能在系统性能衰减最小的情况下达到实时变形. 
关键词: 自动对准;拼贴显示;高分辨率显示;桌面环境;实时变换 
中图法分类号: TP391  文献标识码: A  

1   Introduction 

Large-Format high-resolution displays are increasingly useful in a variety of application environments 
including control rooms, CAD design, education, and business. For collaborative displays to be effective, it is 
important that they are easy to use and provide enough resolution and size to be readily viewable by the entire 
group.  

An effective way to build a high-resolution display system is to tile an array of projectors together and drive it 
with a high-performance graphics machine or a cluster of PCs. This approach has been used to tile tens of projectors 
together to build wall size display systems that deliver tens of million pixels per frame for large-scale data 
visualization applications[1]. While such systems have been useful for many large-scale scientific and collaborative 
applications, its application domain has been limited for two main reasons: cost and ease of use. High-Performance 
graphics machines are very expensive. Using a PC cluster to drive tiled displays can reduce the cost substantially, 
but it is still quite cumbersome to develop parallel visualization applications for a PC cluster. Ideally, users would 
like to drive a tiled display with a commodity PC system. This would be the most economical approach and could 
run any existing desktop application without modification. In addition, this approach presents users with an intuitive 
and familiar user interface. 

 
Fig.1  A two projector, automatically aligned, tiled Windows desktop 

The challenge is to develop a system to align tiled displays precisely and run desktop applications seamlessly 
and efficiently. An important aspect when tiling together projectors is to achieve precise geometric alignment. Even 
small amounts of misalignment will lead to gaps and double images which make the display unacceptable. Manual 
alignment is possible but tends to be time consuming and inaccurate. Automated approaches can be fast and 
accurate[2~4], but must be applied in real-time to the displayed imageries. Applying the alignment requires that a 
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projective warp be applied to each projector’s output. Warping the imagery is typically done on a per-application 
basis by introducing an additional rendering stage. In order to run all applications in the desktop environment 
seamlessly, one needs to develop a system that can warp the imagery for the entire desktop efficiently and 
transparently without accessing any source codes or rebuilding binary executables for any applications.  

The remainder of this paper presents a system we developed called DeskAlign which automatically aligns and 
warps the windows desktop of a tiled display driven by a single PC. Some previous work will be discussed in 
Section 2. Section 3 will talk about design choices in creating such a system. Section 4 will describe our system’s 
implementation and section 5 will present some evaluations and experiences with using DeskAlign. Section 6 will 
present our conclusions. 

2   Related Work  

Early display systems built with tiled projectors require manual alignment which is both time consuming and 
inaccurate[1]. Advances in graphics hardware have made it possible to warp imagery in real-time to correct 
misalignments for a large-scale tiled display system. Several techniques for camera-based automatic alignment of 
tiled projectors have been proposed. The common technique is to use a camera to detect projector feature points and 
derive transformations that can be used to warp the projected pixels, thereby delivering seamless imagery on the 
projected surfaces. Surati[5] builds lookup tables that map pixels from each projector to points on the display 
surface; this is done by physically attaching a calibration grid (printed by a high-precision plotter) onto the surface. 
PixelFlex[3] uses a single, wide field of view camera in conjunction with structured light patterns from each 
projector to determine camera projector homographies, enabling automatic alignment of a reconfigurable display 
system.  

Using a single camera image of the entire display surface becomes difficult as the size of the display system 
increases. This motivates approaches to integrate information about the projector geometry from a set of camera 
images, each of which observes only a portion of the display surface. Raskar et al proposed an approach to use two 
calibrated cameras in conjunction with projected patterns to recover the 3D model of a non-planar projection 
surface[4]. A similar technique was recently proposed to build into a projector[6]. In order to scale automatic 
alignment for a large number of tiled projectors, the Princeton scalable display wall used an uncalibrated 
pan-tilt-zoom camera to detect the relative misalignments of a large number of tiled projectors and used a simulated 
annealing algorithm to solve a global optimization problem to derive the transformations for imagery warping[7]. An 
improved technique was later proposed to build and refine a camera homography tree to automatically register any 
number of uncalibrated camera images[2], this can achieve sub-pixel alignment accuracy for a display system built 
with tens of tiled projectors.  

Previous approaches to running desktop environments on tiled displays have focused on PC cluster 
architectures. The common architecture uses a proxy machine. The proxy looks like a single display to the 
applications, but it then divides the display content and redistributes it to the tile nodes. A Windows implementation 
of such a system is the Virtual Display Driver (VDD)[1]. VDD creates a virtual Windows Desktop of arbitrary 
resolution. When applications running on that computer make GDI drawing calls, the calls are intercepted, scaled 
and sent to the appropriate nodes of the tiled display as shown in Fig.2. Distributed Multiheaded X (DMX)[8] is a 
similar proxy for X Window environments. An X-server runs on one PC and accepts display commands and then 
redistributes them to the cluster nodes (Fig.3). Both VDD and DMX operate with 2D drawing primitives in order to 
reduce the network bandwidth which would be required when sending pixel information. These 2D based proxies 
suffer two main drawbacks. First, they are operating system version dependent and can rely on unpublished 
interfaces; this makes them difficult to implement and maintain. Secondly, the proxy can become a performance 
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bottleneck in redistributing the graphics calls. 

 

Fig.2  Virtual display driver for tiled display 

 Fig.3  Distributed multiheaded X 

Another approach is to distribute pixels instead of 2D and 3D primitives. An example of this approach is an 
adaptation of Virtual Network Computing (VNC)[9]. VNC allows a user to connect to a remote computer and 
view/interact with the desktop environment at the pixel level. It requires the remote computer to run VNC Server. 
VNC Server transfers pixels, which are compressed using simple algorithms, to the client computer. The special 
VNC software to tile displays is called VNCWall. The VNCWall server is able to handle requests for multiple 
rectangular subsections of the display. This allows each node in the display to connect to the server and ask for a 
different subsection thus creating a tiled desktop. In order to use this approach to run a tiled desktop environment 
from a single PC, it needs to use a loopback mode allowing both client and server to run on the same machine 
(Fig.4). However, this approach is inefficient; it cannot provide real-time window refresh and dragging nor smooth 
cursor movements. Furthermore, this approach does not perform the necessary imagery warping for automatic 
alignment of tiled displays.  

                                     Fig.5  Rendering architecture of NVKeystone 

 
Fig.4  VNC loopback mode on a single PC 

3   Design Choices  

When creating an automatically aligned tiled desktop, there are three main steps: determining projector 
misalignment (deriving transformations), applying projector transformations, and distributing the desktop content to 
the display tiles. Each step has several design choices.  
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The first step, deriving the transformations for tiled displays, is loosely coupled with the next two steps. As 
mentioned in section 2 there are several existing techniques for determining projector misalignment. The design 
choice mostly depends on the scale and resolution of the screen configuration. One thing to note is that the method 
of detecting misalignment is independent of the other design choices.  

The second and the third steps, the method of applying the transformations and the method of distributing the 
desktop content to tiled displays, are tightly coupled. If the system responsible for tiling the desktop has information 
about the positions of the projectors, then it can adjust the amount of content it transfers for each projector. For 
instance, if a projector covering a small area of screen is surrounded by projectors covering larger areas, then the 
tiling system can send a smaller section of the desktop to the one, while sending more to the others. This allows the 
physical positioning of the projectors to be coarse and still produce a good final result. On the other hand, if the 
tiling system has no knowledge of the projector positions (other than which grid area it occupies), then it sends the 
same resolution to each display and the post rendering transformations must make the size of the projectors’ output 
match that of the smallest. This has the disadvantage of wasting projector resolution or requiring a more precise 
physical placement of the projectors.  

In order for the tiling system to be aware of the projector alignment, either the desktop system or its proxy 
must be able to handle this information. Current desktops do not have the capability to handle detailed projector 
position information. This type of integration would require the use of a proxy such as VDD, VNCWall, DMX, or 
possibly future versions of Windows Terminal Services∗. Proxies can add considerable overhead as data must be 
shipped to the proxy and then redistributed to the display nodes. Even if everything is on a single PC it still requires 
copying the data around as opposed to just sending drawing calls to the graphics card.  

If the tiling system is unaware of projector alignment, as is the case with the existing systems’ multi-monitor 
support, then we must apply alignment transformations after the content has been rendered on the graphics card. 
These transformations can be done in one of three places: the graphics card, the projector, or specialized pixel 
engines sitting between the graphics card and projector. Although some projectors have the ability to perform 
projective transformations, they are very expensive. There are video-switch pixel engines that can perform 
transformations but they are also expensive solutions. Among these alternatives, the most cost effective approach is 
to perform the transformations on the graphics card.  

An ideal way to perform transformations on a graphics card is to let a program specify required post-rendering 
transformations via a natively supplied API. Unfortunately, the current commercial solution, the NVIDIA 
NVKeystone extension (Fig.5), is limited to perform warping of one display per machine which conflicts with our 
goal of using one PC to drive multiple projectors. Another limitation is that it is designed for manual adjustment; 
there is no way to pass transformation information via an API.  

In the absence of graphic card support for post-rendering transformations, we propose a two-pass rendering 
approach by adding an imagery warping stage to the end of the rendering pipeline. Adding another rendering stage 
is difficult on PC platforms. In order to perform both rendering passes on the same graphics card, with a single 
graphics pipeline, one needs to have the ability to warp the rendered pixels in the frame buffer and have the control 
over when the buffer swapping occurs. Unfortunately, such control requires integration into the operating system. 
An alternative approach is to use a second graphics pipeline for the transformations[10]. This approach can leverage 
the quad headed graphics cards which have 4 graphics pipelines. To perform two pass rendering we group two 
pipelines together for each display. This approach can deliver good performance at a relatively low cost. 

                                                             

∗ Current versions of Windows Terminal Server only allow one client connection at a time and have no sub-region support. 
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4   DeskAlign System  

We have designed and implemented a system called DeskAlign which allows the Windows desktop and 
Windows applications to run on tiled projectors transparently and seamlessly. DeskAlign implements an automatic 
alignment mechanism to align tiled projectors that are physically misaligned. It uses a camera to determine the 
projector positions and calculates an appropriate perspective transformation for each projector. The display 
transformations are then applied on a multi-headed graphics card running on a single PC. These transformations 
warp the output imagery of each projector such that the final display appears aligned. 

The system is comprised of three components. 1) Detecting projector feature points 2) Determining corrective 
perspective transformations from the feature points and 3) Applying the corrective transformations on the graphics 
card using two pass rendering. We have chosen to use the Camera Homography Tree (CHT) alignment algorithm[2] 
for components 1 and 2. Component 3 implements the transformation in a similar way to Ref.[11]. 

4.1   Detecting projector positions  

The first step in automatically aligning a tiled display is determining the relative positions of the projectors. 
Simple image processing techniques can typically locate features to the nearest pixel in an input image. However, 
since a single pixel in our camera images covers several projected pixels on the display surface, our application 
demands more sophisticated methods. Also, commodity video camera lenses usually exhibit noticeable distortions, 
making simple perspective camera models insufficient. We use the following five-parameter model to correct for 
lens distortion.  

x'=x+x[k1r2+k2r4+k3r6]+[2p1xy+p2(r2+2x2)] 

y'=y+y[k1r2+k2r4+k3r6]+[2p2xy+p1(r2+2y2)] 

where r2=x2+y2, and (k1,k2,k3) are the radial distortion coefficients, and (p1,p2) the tangential distortion coefficients. 
These distortion parameters can be obtained via standard offline calibration procedures[12]. 

 
Fig.6  An example of the image processing and feature extraction procedure of our system 

The feature detection component of our system displays a sequence of calibration slides on the projectors. The 
standard approach would be to project a single known pattern, such as a checkerboard, from each projector and use 
the checkerboard’s corners as features. We improve upon this by projecting pairs of patterns: a set of horizontal 
lines followed by a set of vertical lines (Figs.6(a) and (b)). The intersections between these line sets can be 
determined with greater accuracy than standard corner detection. To process the images we fit a quadratic function 
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to the intensity values inside every 9×1 and 1×9 window in the image. A strong peak of the function under a window 
indicates that a line crosses through the window, and this provides a sub-pixel accuracy estimate of the line’s local 
position, shown by dots in Figs.6(c) and (d). The output of this procedure is a set of position estimates with 
floating-point precision along each visible line. These feature point positions are then adjusted for camera lens 
distortion using the model described above and line equations are fit to the observed data. The horizontal and 
vertical lines are intersected for creating a set of accurate, stable point features for each projector within a camera 
view.  

A GUI application called ‘DeskDetect’ was developed to handle the data collection phase (Fig.7). It gathers 
configuration information from the user, and captures feature point images of the projectors. DeskDetect coordinates 
the use of a camera with the tiled display. It sends commands to draw horizontal and vertical lines to the tiled 
display and takes images of these features.  

4.2   Calculating corrective transformations  

Once we’ve detected the feature points of the projectors, we need to calculate perspective 2D homographies, 
one per projector, that when applied will make the tiled display appear aligned. In the initial state of our system, we 
do not know the positions, orientations and optical parameters of the projectors or camera. But we assume that the 
camera and projector optics can be modeled by perspective transforms and that the projection surface is flat. Thus, 
the various transforms between camera, screen, and projectors can all be modeled as 2D planar homographies: 

 
Fig.7  DeskDetect GUI for collecting projector alignment information 
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where (x,y)and (X,Y) are corresponding points in two frames of reference, and h
r

=(h1...h9)T (constrained by | |=1) 
are the parameters specifying the homography. These parameters can be determined from as few as four point 
correspondences using standard methods. We employ the closed form solution described in Refs.[13,14]. It is 
summarized below.  

h
r

Given n feature point matches, {(xi,yi),(Xi,Yi)},i=1,...,n. Let 
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and compute the eigenvalues of ATA. h is given by the eigenvector corresponding to the smallest eigenvalue. 

Our system employs this technique to compute projector-to-camera homographies. The projector-to-camera 
homographies transform each projector’s area of projection into the camera’s coordinate system. These 
homographies are determined as follows. Each projector Pk displays calibration slides with highly-visible features, 
whose locations are known in projector coordinates (as described in section 4.1). By observing the locations of 
these features in the camera image, we can determine the relevant projector-to-camera homography cHk. We 
determine the camera-to-screen mapping sHc by having the user click on the 4 corners of the screen in the camera 
image. This enables us to compute sHk, the homography mapping projector Pk to the screen:  

sHk=sHc× cHk. 
 Note that sHk expresses the geometric distortion induced by the projector’s oblique placement. This distortion 

is removed by prewarping each projector Pk’s output by 1
ksH − (Fig.8).  

 
Fig.8  The display is aligned by applying a perspective transformation for each projector 

4.3   Applying alignment transformations 

The perspective transformations described in the pervious section must be applied to the output pixels in real 
time for the tiled display to appear aligned. As described in section 3, we chose to implement our alignment 
transformations on the graphics card. This eliminates the need to modify proprietary operating system code and 
allows us to avoid specialized hardware pixel engines or projectors.  

In order to add a warping stage to the pixels rendered from the entire desktop environment without modifying 
proprietary operating systems, we have chosen to use two graphics pipelines for each display. The DeskAlign 
software will grab the pixels from the frame buffer of the first graphics pipeline and push the pixels to the second 
pipeline to warp according to the transformations. The frame buffer of the second pipeline will then hold the 
resulting pixels. The DeskAlign software controls the frame buffer swapping of the second pipeline and drives the 
tiled projectors (Fig.9). This approach requires multi-headed graphics cards and uses half of them to drive the 
projectors.  
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Fig.9  Two pass rendering is used to apply the perspective transformation 

We implemented the DeskAlign system for the Windows desktop environment. Initially, DeskAlign opens a 
fullscreen application window on all of the graphics outputs connected to projectors. It then periodically copies the 
pixels from the frame buffer of the first graphics pipeline to the texture memory of the second graphics pipeline and 
then utilizes the texture mapping hardware to warp the pixels into the connected frame buffers that drive the 
projectors. DeskAlign leverages the DirectX software to perform the move and warping between the two graphics 
pipelines.  

The main potential for a performance bottleneck is the frame buffer copy. Our experience shows that as long as 
the pixel copy occurs entirely within the graphics card, performance will be good. But if the copy has to transfer 
back-and-forth through main memory, performance will be unacceptable. DirectX can perform on-card pixel copies 
to memory locations within the same address space. It is generally possible to configure quadheaded graphics cards 
to use a shared memory address space. For instance Nvidia quad cards can be set into “span” mode which pairs 
graphics outputs together.  

5   Evaluation and Experiences  

Our evaluation goal is to see how well the DeskAlign system performs in the Windows desktop environment. 
We are interested in two performance goals: How easy is the DeskAlign system to setup and at what frame rates the 
system can drive the tiled displays in the presence of warping for automatic alignment.  

We choose to measure performance in an underpowered environment. Our test platform is a PC with a 866 
MHz Pentium III processor and 256 MB memory, a PNY NVIDIA Quadro4 400 NVS graphics card and two 
Compaq MP1800 projectors.  

The system requires a relatively short set up time of about 10-15 minutes. Once all hardware and software have 
been installed in the PC, the setup involves hooking up the projectors and a camera, capturing some alignment 
images, running the alignment algorithm to generate the projector transformations and then sending the 
configuration information to the DeskAlign system. The alignment steps take under five minutes, and most of the 
setup time is in hooking up the projectors, booting the computer and configuring the NVIDIA driver. A final manual 
adjustment in software can also be made to get the resulting display as large and square to the screen as possible. 
This is done by dragging the corners of the display generated by DeskAlign to the desired positions, similar to a 
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technique used in Ref.[13]. The resulting display is aligned with subpixel accuracy when using an inexpensive 
webcam.  
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rectangular display. 

Fig.10  Autom
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