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Abstract: A novel theory called bi-default theory is proposed for handling inconsistent knowledge simultaneously
in the context of default logic without leading to triviality of the extension. To this end, the positive and negative
transformations of propositional formulas are defined such that the semantic link between a literal and its negation
is split. Most theorems of default logic can be reproduced in the setting of the bi-default logic. It is proven that the
bi-default logic is a generalization of the default logic in the presence of inconsistency. A method is provided as an
alternative approach for making the reasoning ability of paraconsistent logic as powerful as the classical one.
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1 Introduction

The reasoning systems of classical logic suppose to reasoning with consistent knowledge; otherwise, a single
contradiction may destroy the vast amount of meaningful knowledge. Even if the pursuit of consistency,

nonmonotonic reasoning has also the problem when faced with inconsistency. Default logic!! is a widely
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investigated formalism of nonmonotonic reasoning. In the context of default logic, it is well-known that once the set
of axioms of a default theory is inconsistent, the default extension will collapse into triviality immediately.
Theoretically, nonmonotonic logic in general and default logic in particular may lead to inconsistency®. On the
other hand, it is advisable to introduce paraconsistency to conquer the trivial problem of reasoning in the presence
of inconsistency. Some formalizations of paraconsistent and nonmonotonic reasoning have been proposed, in which
a common technique is by appeal to multiple-valued logics, in particular a four-valued logic ([3~8], among others).
However, it will take much effort to use a multiple-valued logic directly as the underlying logic of the default

theory.

In this paper, we investigate the issue of simultaneously handling inconsistent information and consistently
revising beliefs in the context of default logic. A technique called bi-default theory is developed to reason with
inconsistent knowledge which allows the set of axioms of a default theory to be inconsistent. Compared with
Reiter’s original formalism, the bi-default theory does not lead to triviality. Technically, we transform a default

theory T into a pair 7% =(T",T77). Though T may be inconsistent, both 7% and T~ are always consistent.
Consequently, the truth value of a formula ¢ comes from two parts: one is the positive part @' according to

T*; the other is the negative part :p_ according to 7 . Indeed, we have a classical two-valued semantics for the

formula of the default theory in the viewpoint of the four-valued setting. Thus, the bi-default logic is both
paraconsistent and nonmonotonic. The bi-default logic can be regarded as a formalization of commonsense
reasoning with inconsistent and incomplete knowledge.

An advantage of the technique behind the bi-default theory is that the underlying logic of the bi-default theory
is still classical two-valued logic and thus naturally enjoys the nice properties of classical logic. Another advantage
is that it improves the reasoning ability of Belnap's four-valued logic™*. As well known, Belnap's four-valued logic
is strictly weaker than the classical logic even in the case of consistent theories. For instance, the disjunctive
syllogism: ¢, —@v¢ implying ¢, does not hold in the four-valued logic. To resolve this weakness, Priest!”! first
proposed the solution by introducing nonmonotonicity into a paraconsistent logic. In our setting, the disjunctive
syllogism works well in the consistent premise, but is effectively blocked in the case of inconsistent theories
without appealing to nonmonotonicity. This method gives a novel syntactic approach for reasoning from the

inconsistent theories as well.
The rest of this paper is organized as follows. In Section 2, we review Reiter’s default logic. In Section 3, two
transformations are presented for transforming a propositional formula ¢ to its counterparts @ and ¢ . In

Section 4, we introduce the bi-default theory. In Section 5, we discuss related works. Finally, we make conclusion in
Section 6.

2 Default Logic

Through out this paper, let £ be a propositional language. A theory is a set of formulas in £ . We write Th
and F for the consequence operator and provability relation.

In Reiter’s default logic, a default is an expression of the form
a:pf,.. B
4
where o, f,..., B, and y are formulasin L. « is said the prerequisite, p,,..., B, the justifications and

y the consequent of a default. A default theory is defined as a pair 7 =(W,D), where W is a set of formulas and

D is a set of defaults. A default is said normal if it is of the form -7 , prerequisite-free if it is of the form
I

o B 4

2Pk and prerequisite-free normal if it is of the form ~~. T =(W,D) is said a normal default theory (resp.
Y Y

prerequisite-free normal default theory) if every default d € D is normal (resp. prerequisite-free normal).
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A set E of formulas in £ is an extension of T=(W,D) if it is a fixed point of the operator 7/, i.e.
E=T(F), where I is defined as follows: Given a set of formulas S, 7°(S) is the smallest set of formulas
such that

(D) 1'(S)=Th(1'(5))

D2) WIS

D3) If(a@: B, B/¥)ED, ael(S) and =B ¢S,....,-p, &S ,then yel(S).

A default theory may have none, one or multiple extensions in general. By ext(W,D) we denote the family of
all extensions of a default theory 7 =(W,D). The set of generating defaults for E wrt T, written GD(E,T), is
defined by GD(E,T)={ (¢:f,...5./y)eD|acE and —B ¢E .., B, ¢E }. CONSEQUENTS(GD(E,T))
denotes the set of consequents of the defaults from GD(E,T).

Proposition 2.1.1"" A default theory 7 =(W,D) has an inconsistent extension iff W is inconsistent.

Proposition 2.2.!" If £ is an extension of a default theory T = (W,D), then

E =Th(W v CONSEQUENTS(GD(E,T))) .

Let T=(W,D) be a default theory. D" denotes the set {(0 lpe W} i.e. the set of prerequisite-free normal
4

default form of the axioms of the default theory 7 .
Marek, Treur and Truszczyhski'” described the family of extensions of an arbitrary prerequisite-free normal

default theory as follows.
Proposition 2.3.1'% Let W, ¥ < £. Let D= {:(p|(pe‘l’}. If W is inconsistent, then ext(W,D)={L}.
?

Otherwise, ext(W,D) is exactly the family of all theories of the form Th(W U @), where @ is a maximal subset
of ¥ suchthat W U@ is consistent.
According to Proposition 2.3, T=(W,D) and T =(W,D"uD) have the same extensions. Without loss of

generality, we can assume that all default theories have the form 7 =(W,D"uw D), and abbreviate it to
T=(W,D).

3 Transformations

We firstly give a brief review of the transforming technique proposed by Arieli in Ref.[11]. Let ¢ be a
formula in L. Define the scope of a negation operator — in the formula —¢ as the set of all occurrences of
propositional symbols in ¢ . An occurrence of atomic formula p in ¢ is positive, if it appears in the scope of an
even number of negation operators in ¢; otherwise, it is negative. Note that Arieli’s transformation needs all
formulas to be written in their logically equivalent negation normal form. In Ref.[12], Besnard and Schaub gave a

more general definition by the notion of polarity.
Arieli’s transformation is defined as follows: Let ¢ be a formula in £ . Substitute every positive occurrence

in ¢ of an atomic formula p by a new symbol p*, and every negative occurrence in ¢ of an atomic formula
p by —p , then the resulting formula is denoted by ¢@ . The language obtained from L by Arieli’s

transformation is denoted by L .
We use the similar notations of Arieli’s transformation and define two transformations as follows.
Definition 3.1. Let ¢ be a formula in £ . The positive transformation (p-trans, for short) is to substitute every

positive occurrence in ¢ of an atomic formula p by a new symbol p*, and every negative occurrence in ¢ of
an atomic formula p by —p~. The resulting formula is denoted by @*. The negative transformation (n-trans, for

short) is to substitute every positive occurrence in ¢ of an atomic formula p by a new symbol —p~, and every
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negative occurrence in ¢ of an atomic formula p by p*. The resulting formula is denoted by ¢~ .
The language obtained from £ by the transformations defined in Definition 3.1 is still denoted by L .
Example 3.2. Let ¢ =—(pVv —q)Vv—q, then
@ =—(p voqg)v——g =(p Ag)Vq
and

¢ =—(p"'Vv—q )v—q =(=p A=qg)Vv—q".
Definition 3.3. Given a two-valued valuation v of the atomic formula p in L, v denotes the

corresponding valuation on the atomic formulas p* and p~ of L, such that v interprets p* as w(p) and
p~ as —v(p).

Thus, the valuation v is a two-valued valuation of L .

Given a propositional theory A, A" represents the set {@ |peA}, and A" the set {@p |ped}. A
denotes A*u A .

It is clear that p-trans makes A" be classically equivalent to a formula in which negation does not occur, and
n-trans makes A~ be classically equivalent to a formula in which there is a single occurrence of negation in front
of each atomic formula p* (or p~). Therefore, given two valuations v, and v, such that v, assigns frue to
every atomic formula occurring in A" and Vv, assigns false to every atomic formula occurring in A~ ,

respectively, we may readily check that v, is a classically consistent model of A" (resp. v, is a classically

consistent model of A7); in other words, both 4™ and A~ are always consistent.
By induction on the structure of formulas in £ in a straightforward way, it is trivial to prove the following

propositions.

Proposition 3.4. Let ¢ be a formula in £.If ¢@" is the resulting formula of p-trans of ¢, then —@" is
the resulting formula of n-trans of —¢@.If @~ is the resulting formula of n-trans of ¢, then —¢" is the resulting
formula of p-trans of —¢,ie., =@’ =—¢p and —p =—p .

Proposition 3.5. Let ¢ be a formulain £, then v(p)=v(@ )=v(p ).

Here are more properties of p/n-trans.

Theorem 3.6. Let A be a propositional theory. A is consistent iff A* is consistent.
Proof. Immediately it follows from Proposition 3.4. O

Theorem 3.7. Let A be a consistent propositional theory, and ¢ is a formula in £. If A*F@" or
A" @ ,then Alg.
Proof. For every model v of A, by Proposition 3.5, v is the model of A®. By the completeness of

propositional logic and A" - @*, we have v(¢')=true, and by A" F @, we have V(@ )=true. By Proposition

3.5 again, v(@) = true, and by the completeness of propositional logic, 4+ ¢ .

Theorem 3.8. Let A be a consistent propositional theory, and ¢ 1is a formula which is not a tautology in

L.If A-g@ then A*Fp" and A" F o .

Proof. The proof proceeds by induction on the length of a derivation for ¢. Because ¢ is not a tautology,
the basis of induction is trivial by ¢ e 4. Suppose that the claim of the theorem holds for all formulas having
derivation of length <n, for some n>1, and let ¢,..., @, be a derivation of ¢=¢,. Since ¢ is not a

tautology, ¢, is the result of applying the inference rule modus ponens to ¢, and ¢;, for 1<i,j<n. By

Proposition 3.4, it is readily checked that @* can be derived by @~ and (ﬁji. By the induction hypothesis,

—+

@' ,....,p," isaderivation of @, =¢".Hence, wehave A" F@" and A" g .

© hEE

AT hupy/ www. jos. org. cn




1034 Journal of Software #AFFIR  2004,15(7)

Regarding p“and p~ as two independent atomic formulas, the reasoning ability of the single transform A"
(or A4 ) from a given propositional theory A is very weak. For instance, let A={p,—pvgq} , then
At ={p',pvq'l, A ={—p ,—p'v—q}, and hence A" =A" A ={p*',p vqg',—p ,—p v—qg}. It is clear

that the disjunctive syllogism works on A" but not on A" and A~ separately. The same issue will be further
discussed in the next section as the application of a special family of the bi-default theories.

4 Bi-Default Theory

In this section, the so-called bi-default theory is defined by the application of the p/n-trans in a default theory,
which can be well interpreted by a four-valued semantics. We will prove that the bi-default theory has nice
properties in several respects.

Definition 4.1. Let d be a default of the form ﬂ" LAVIRSA , then E—"% is the p-trans result of d,
denoted by d*, and CIRVRE/S :ﬂ;;""ﬂ"i is the n-trans result of d, denoted by d , d* and d are called
bi-defaults. D* represents theset {d*|deD},and D™ theset {d |deD}.

Definition 4.2. A bi-default theory w.r.t. the default theory T =(W,D) is a pair T® =(T*,T"), where
T"=W*",D") and T =W ,D").

Definition 4.3. Let 7% =(T*,T") be a bi-default theory over a propositional language £ . For any pair of
sets of formulas S*,S < L£,let I'(S*,57) be the pair of smallest sets of propositional formulas §'*, S~ from
L such that

(D1) S =Th(S"") and S =Th(S").

D2YW*<S" and W™ S .

(D3NVIf (@ : BB 7)eD" s @ eS™ and —f €S ,..., =B ¢S ,then 7" eS* and 7'eS;If
(a :E’,.,.,Bk’/f) eD, @ eSS and —f eS*,..., =f ¢S ,then ¥ €S and 7 eS”.

A pair of sets of propositional formulas E® =(E*,E”), where E*, E-c L, is a bi-extension of T® iff
(EYV,E")=[(E",E"),ie.iff (E",E") is a fixed point of the operator /.

By Proposition 3.4, —f" =—.7ﬁl.7 and —f" :T/fi+ (1<i<k), so in Definition 4.3 (D3'), =B (=B) is
compared with S~ (resp. S*) for consistency checking. As we have pointed out in Section 3, y* and 7~ are
added to both §'" and S’ in order to strengthen the reasoning ability of a single transform S'* (or S'). This
also explains why we presuppose the set of defaults has the form D" U D . By this assumption, when applying the

bi-defaults, consistent formulas of W' and W~ will be mixed up, but the inconsistent ones will be kept splitting.
To illustrate it, considering a simple default theory 7 =(W,D) where W ={p} and D= and thus

D" UD=1{:p/p}, one may check that E® =(E*,E") where E'=E =Th({p*,—p })is a bi-extension of T°%.
The bi-default d* = p*/p* is an applicable bi-default since W~ doesn't include —p*, then p* is added into
both E* and E~, the same is d . But if W ={p,—p}, d* is not an applicable bi-default again since W~
contains —p*, and so E* contains only p*,p~ and E~ contains only —p ,—p*. On the other hand, if

{p",p"y W™, then W must be inconsistent since at this time we have {p,—p} =W . The next example further
explains how the bi-default theory works.
Example 4.4. Let T®=(T",T") be a bi-default theory w.rt. the default theory T =(W,D), where

W ={z,—z,rnq} and D= {z’:—\zr/\qr—pqp}. (One interpretation of this theory reads r as

zZ —z rAq —p P
“republican”, ¢ as “quaker”, p as “pacifist” and z is any inconsistent information.)
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It is easy to see that 75 =(W*,D*) and T~ =(W ,D"), where
Wo={z"z,r" "q"}, W ={—z ,—z",—r" A—q},

- + E -+ + - + - - - + - -
2z r Nnq r p g :p _ t—mZ iz .k A—mg —F P g LD

o 4 ) — T }7 D :{ ) }
z r ng P 4 -

Since W is inconsistent, according to Reiter’s default theory, 7 has only one extension L. It is a trivial

+
D ={ —, —,

Z+
) _ _ _
z Z —Z - A—g —p —p

theory. But according to the bi-default theory, 7% has four bi-extensions which are given by E® =(E',E)
(i=1,2,3,4), where
E =Th(W" O{=r" n=q ,p =p"}) . B =ThW O{r' Aq',p ,—p'});
E) =Th(W" Oi=r" A—q . p",=p}), Ey =Th(W O{r' aq',p".—p });
ES =ThW" Oi=r A=q.p.p'}) . Ey =Th(W Oi{r' nq'.p .p'});
El=ThW'V{—r A—q ,—p',—p }), E, =ThW O{r' nq",—p",—p}).
Note that both E and E~ (i=1,2,3,4) are consistent over language L . Intuitively, without the
consideration of {z,—z}, E® (resp. E,”) is the corresponding bi-extension of Reiter’s original extension of the

default theory 7 which includes —p (resp. p); E,° and E,® are new bi-extensions which mean that both

—p and p hold in the same extension of T, therefore they are the corresponding bi-extensions of Reiter’s
inconsistent but non-trivial extensions (although they don’t really exist in Reiter’s default theory).
Belnap’s structure  FOUR ** contains four truth values: the classical truth values ¢ and f, the inconsistent

truth value T and the incomplete truth value 1. By means of the bi-default theory, any formula ¢ in the
language £ could be given a four-valued interpretation in the skeptical sense. It is worthy to note that an
alternative four-valued interpretation of ¢ in the sense of credulity was presented in Ref.[13].

Definition 4.5. Given a default theory T =(W,D), T? =(T*,T") is the bi-default theory w.rt. T, the

mapping v associates a propositional formula ¢ with a truth value from FOUR as follows:
t if 3E® st @' eE"
Wp)=4f if 3FE® st —p €E .
L otherwise.
In particular, we write v(p)=T iff v(p)=¢t and v(p)=f.

Example 4.4 (continued). T® has four bi-extensions E° (i=1,2,3,4). It s easy to verify that

v(z)=T, w(=z)=T, v(rag)=t, v(p)=T and v(—p)=T.

Here are some properties of the bi-default theory. In fact, many results of Reiter’s default logic could be
reproduced in the setting of the bi-default logic. For instance, the next theorem provides a recursive characterization
of the bi-extensions.

Theorem 4.6. If 7% =(T*,T7) is a bi-default theory w.r.t. the default theory T =(W,D), then a pair of sets

of propositional formulas E® =(E*,E™) is a bi-extension of 7% iff E* = E]El.+ and £ = OE; , where
i=0 i=0
Ef=W", E =W~
and for 120
E. =Th(E)YUL{7 (@ BB [7)eD", whete ES+a* and —f ¢ E ,..—f ¢E }
U7 @ BB /7 )eD  where E @ and —f ¢ E',.,—f ¢E"}
E. =Th(E)OU{7 @ B B |7)eD", where E &' and —f ¢E ,..—B ¢E }
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U7 @ B B |7 )eD ,where E & and —f ¢ E,.,—f ¢E"}
Proof. Observe first that the following conditions hold:
®1) UE =Th({JE") and |JE =Th(JE ).

i=0 i=0 i=0 i=0

D2) w*c|JE and W c|JE .
i=0 i=0
(D3) If @ :f B [7)eD" , @ e|JE' and —f eE ,..—f ¢E , then 7 e|JE' and
i=0 i=0
vielUE s If (@ :f B /7)eD , @ e|JE and —B ¢E',..~f eE", then 7 c|JE  and
i=0

i=0 i=0
0

—— +

7 € UEi .
i=0

Let T(E*,E")=(E'"",E'"), by the minimality of T, we have

E"c|JE' and E"c|JE7 (1)
i=0 i=0
For the proof from left to right, assume that E”® is a bi-extension of 7%, i.e. T(E*,E")=(E*,E"), and so
E'=E" and E =E" 2)

By a straightforward induction on i, one easily shows that E"c E* and E  c E~, for all i>0. Thus,
UE[J' c E’ and UEI.’ c E™,and so, by (1) and (2), E* :UE‘.+ and E~ :UE,.’ .
i=0 i=0 i=0 i=0

For the proof from right to left, assume that

E*=\JE' and E =|JE~ 3)
i=0 i=0
By straightforward induction on i, one may readily check that for all i>0, E cE"™ and E c E", and

hence, | JE'cE"" and |JE <cE~. By (1), |JE =E" and |JE =E" . In view of (3), E'=E" and
i=0 i=0 i=0

- prt \ -
E =E",ie T(E',E)=(E',E") andhence E® is abi-extension of T%. d

Definition 4.7. Let 7® be a bi-default theory and suppose that E” is a bi-extension of 7% . The set of
generating bi-defaults for E® w.rt. T® , written GD(E®,T?), is defined by

GD(E® . T*)={(@" : B .. 5, |7 )eD" | @' €E' and —B ¢E ,...,—f, ¢E }
U@ BB 7 )eD | @ eE and - ¢E',.,—f ¢E"}
Theorem 4.8. If E®=(E',E") is a bi-extension of a bi-default theory 7% wrt. T=(W,D), then
E* =Th(W* U CONSEQUENTS(GD(E®,T?))) and E~ =Th(W~ w CONSEQUENTS(GD(E® ,T*))).
Proof. Denote Th(W*" U CONSEQUENTS(GD(E®,T®))) and Th(W~ w CONSEQUENTS(GD(E®,T?))) by
RHS" and RHS™ , respectively. In view of Theorem 4.6

E*={JE' and E =|JE )
i=0 i=0
where E,*, E*,... are specified as usual. By induction on i, it is easy to show that E< RHS® and

E-cRHS ,forall i=0.

To prove that RHS'cE" and RHS < E , observe first that it suffices to show that
CONSEQUENTS(GD(E®,T*)) c E* and CONSEQUENTS(GD(E®,T*)c E™.

Let 7, 7 € CONSEQUENTS(GD(E®,T?)) . Thus, there exists a default (@*:f",...53,"/7*")e D" such
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that @ €E*, —B'¢E ,..—f ¢E and a default (a :,E]’,...,,Ek’/;?) eD” such that a €E
—'Bf ¢ E*,.,.,—.ﬁk’ ¢ £, respectively. So, by (4.4), a” €E", forsome i>0 and a € E;, for some j>0,and
hence, " €E,,"cE", y' €k, cE and y €E,'cE’, y €E,, cE .For the arbitrariness of 7" and
7~ , the conclusion holds. (]

Corollary 4.9. Given a bi-default theory 7% wrt. T=(0W,D), if E®=(E',E") is a bi-extension of T°,

then both E* and E~ are consistent.

Proof.  Assume to the contrary that either E* or E~ is inconsistent. [f E* is inconsistent, since E* isa
deductively closed set, E* =L ,any d =(a” :ﬁ[,...,ﬁ,{’/?’) e D™ can not be applied for —ﬁ’,’ ek (i=1,..,k),
and thus by Definition 4.7, GD(E*.T*)={(@ :B',... B /7 )eD" | @' €E" and —f ¢E ,..—f ¢E }.
Therefore, W* U CONSEQUENTS(GD(E®,T?)) includes only the p-trans resulting formulas which are classically
equivalent to a formula in which negation does not occur, thus by Theorem 4.8,

E* =Th(W*" U CONSEQUENTS(GD(E®,T*?))) is consistent, a contradiction. When assuming E~ is inconsistent,
the proof is similar.

Definition 4.10. Given bi-extensions E® =(E*,E7) and F®=(F',F"),
E*=F® iff E"=F" and E =F",

EPcF® iff E'cF" and E CF .
The next theorem is the maximality of the bi-extensions.
Theorem 4.11. If E® =(E*,E") and F®=(F*',F") are two bi-extensions of a bi-default theory 7% such
that E® c F® then E®=F"*.
Proof. Let (E,",E, ,E',E ,..)and (F,",F, ,F",F, ...) be sequences of sets of formulas defined as

those in Theorem 4.6, for E® and F* , respectively. Thus

E" = OE,.* and E” = OE,.’ ®)
i=0 i=0

F'= OF and F~ = OF (©)
i=0 i=0

By easy induction on i, one may verify that F," c E;* and F c E, for all i>0. Thus, by (5) and (6),
F*CcE" and F"cE ,andso E'=F" and E" =F ,thatisE® =F?%. a
Similar to the default theory, a bi-default theory may have none, one or multiple bi-extensions. Example 4.4 is

q9 —9
T =({p},<) has only one bi-extension. But for a normal bi-default theory, the bi-extension can be proven to exist.

an illustration for multiple bi-extensions. T® w.rt. Tz[Q,{:p,:p}] has no bi-extension. 7% w.rt.

Definition 4.12. Let 7% be a bi-default theory w.r.t. the default theory T =(W,D).If T is a normal default

theory, then T2 is called a normal bi-default theory.
Theorem 4.13. Every normal bi-default theory has a bi-extension.
Proof. LetT® be a normal bi-default theory w.rt. the normal default theory T =(W,D). Define the
sequence E,", E, , E, E,...of sets of propositional formulas by
ESf=W" , E =W~
and for >0
E."=THWEHOVT VT , E. . =Th(E VT VT,

where 7" and T are two maximal sets of propositional formulas satisfying the following conditions:

i i
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(I)Both EUT"UT" and E UT, " UT  are consistent.
(2) If y7 eT", then there is a bi-default (a” :;7*/77) eD" suchthat E'Fa’ and if 7 €T, then there
is a bi-default (a~ :;7'/;7') €D™ suchthat E  Fa .

By denoting E" =\ JE," and E =|JE; , weclaimthat E® =(E",E") isa bi-extension of 7”.In view of

i=0 i=0
Theorem 4.6, it suffices to show
T'={7"|@ :7" /7" )eD",where E'+a" and -y ¢E } @)
and
T ={y |(@ :7 /7y )eD ,where E-ta and —y ¢E"} (8)

Denoted by RHS™ the right hand side of Eq.(7) and RHS™ the right hand side of Eq.(8). Assume to the
contrary that 7, = RHS' or T, #RHS . If T #RHS", since clearly T, c RHS", there must be a formula

7" €RHS"-T7 . By the maximality of 7", the set E, UT,"UT uU{y’} is inconsistent, and so, because
E-UT UT cE, cE, EuU{y} is also inconsistent. Therefore, since E~ is deductively closed, we have

—y"eE". This contradicts 7" € RHS" —T". If T, #RHS , similarly, there exists a formula »~ € RHS -T_

such that —y~ € E* which is a contradiction with y~ € RHS™ —T, . O
Two distinct bi-extensions of a normal bi-default theory also satisfy orthogonality.
Theorem 4.14. If a normal bi-default theory 7% =(T*,T") has two bi-extensions E®=(E*,E") and
F®=(F* F),theneither E* UF* or E-UF~ isinconsistent.
Proof. By Theorem 4.6, E*=|JE and E =\JE , F'={JF" and F =\JF , where E', E ,
i=0 i=0 i=0 i=0

F' and F are defined as usual, for i>0. Since E*#F®, E*#F' or E-#F . By E,/=F,'=W" and

1
E,” =F, =W~ , there must be an integer i>0 such that E'=F", E =F but E,“#F," or E, #F, .
Assume first that E,,,* # F,,,* , thus, for some (& :7"/7*)e D", we have

(1) y'eE," and y"¢F," or(2Q) y'eF,," and y'¢E. "

i+l i+l i+l i+l

or for some (@~ :}7’/}7’) e D™, we have
() 7 ek, and y eF," or(4) y eF," and y ¢E, .
Assume that (1) holds. So, E'Fa” and hence F'ta’ . Butif F'Fa' and y"¢F, ", then -y eF .

i+l

On the other hand, 7" € E,," implies y" €E,,, ,by E, cE, y ' €E .Thus E"UF~ isinconsistent.

i+1

Assume that (3) holds. So, E”Fa  and hence F ta . Butif F Fa  and 7 ¢F,",then =y eF".
On the other hand, by y € E,," and E_, cE', y €E'.Thus E"UF" isinconsistent.

i+1

Similarly, in case of (2) we have E” UF~ is inconsistent and in case of (4) we have E'UF"' is
inconsistent.

If E, #F,, ,theclaim of the theorem is easily verified to hold by the same deduction. 0

The following theorem gives the relation between the default extension of a default theory and the bi-extension
of a bi-default theory. For any default theory 7 =(W,D), under restriction conditions, every default extension of
the default theory corresponds to a bi-default extension of the corresponding bi-default theory, in other words, the
bi-default logic is a generalization of Reiter’s default logic in the presence of inconsistency.

Theorem 4.15. Let T=(W,D) be a default theory such that W is consistent and every default
(@: P, BJy) from D is prerequisite-free and —B ... —B, , y are not tautologies. If
E =Th(W O CONSEQUENTS(GD(E,T))) is an extension of 7T , then E®=(A,A4) is a bi-extension of the

bi-default theory 7% w.rt. T, where A=Th(W* U CONSEQUENTS*(GD(E,T))).
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Proof. Observe first that E” =(A,A) satisfies:

(D1") A=Th(A)

(D2) W cA and W™ c A.

For any default d' =(a* :E*,...,ﬁf/?*) eD' and d =(a” :/?1',...,/?,('/;7') eD ,if @, a e, -f",
—ﬁf -\ ,...,—ﬁk*, —ﬁk’ ¢ A then by Theorem 3.7, Theorem 3.8 and —f,(1<i<k) are not tautologies, there
exists a default d=(a:p,...5/y)eD satisfying aeE and —f ¢E,....—f,¢E. By E=I(E),aecl(E).
Thus, by (D3) in section 2, we have y e /(E), and hence y € E . Since y is not a tautology, by Theorem 3.8,
7', 7 eA.Soitimmediately follows that A also satisfies

D3) If @ :B B[y )eD , @eA and —feA ,., —f eA then y'ed ; If
(o~ :E',...,E'/?')GD' , a €A and ﬁ,[g’l_ gA,..., ﬁﬁ,‘_ g A,then 7 eA.

Thus, by the minimality of /7~ , we have

L(AA) = (A A) ©)

Denote [ (A,A)=(A",A") . Since for any 7" , »'eCONSEQUENTS*(GD(E,T)) , there exists
d=(a:f,...p]y)eD satistying acE,—f ¢E,...,—f ¢ E, and accordingly d* =(@" :B",...5," [7")e D"
and d =(a :Bf,...,ﬁ[/?‘)eD’ . By Theorem 3.7, we have —B°, —B ¢A,.., -8}, -f ¢A. By
assumption, all defaults from D is prerequisite-free, thus, by (D3') of Definition 4.3, »*, ¥ e A" and 7",
7~ e A", and so we have CONSEQUENTS*(GD(E,T)) c A*,A" . In view of W* c A is consistent (since W is
consistent), by (D3') of Definition 4.3, it is trivial that W*c A" and W*c A" . Note that
A =Th(W* U CONSEQUENTS*(GD(E,T))), and hence it immediately follows that

(A, A) (A", 47) (10)

Thus, in view of (9) and (10), (A,A)=1"(A,A), which completes the proof of the theorem.

In fact, without the condition all defaults are prerequisite-free, Theorem 4.15 holds all the same, the reader
may refer to Ref.[13] to get that detailed but tedious proof.

However, there are circumstances in which the bi-default theory T° w.rt. the default theory 7T has

bi-extensions but 7 may not have. For example, one may check that the bi-default theory 7% w.r.t. the default

theory T = (@,{_WH has two bi-extensions E,” =Th({p*}) and E,® =Th({—p~}), but T has no extension. We
p

point out that this coincides with the fact that the law of the excluded middle is not valid in Belnap’s four-valued
logic.

Finally, a special family of bi-default theories T° w.rt. T=(W,D) are very attractive. In Theorem 2.3,
assuming W is consistent and ¥ =W , we immediately get that the default theory 7'=(W,D) has an unique
extension E =Th(W). In view of this, in Belnap’s four-valued logic, given a theory W , we may consider its
corresponding bi-default theory T? wrt. T'=(W,D") and reason under 7°. By Theorem 4.15, if W is
consistent, under the four-valued semantics, we shall get most of the conclusions excluding tautologies which could

be derived from the classical propositional theory W . As to the inconsistent theory, the bi-default theory still gives
as many conclusions as possible.

Denoted by E* the four-valued consequence relation, and define W E® ¢ iff v(p)e{t, T}, where v is the
mapping defined in Definition 4.5.
Proposition 4.16. =° is nonmonotonic and paraconsistent.

Proof. For instance, in the following Example 4.19 {p,—pv ¢q}E® ¢, but {p,—p,—pvq} ¥’ q. O
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Theorem 4.17. Let W be a propositional theory. If W E* @ then WE® .

Proof. By Theorem 2.8 given by Arieli in Ref.[11], WE* ¢ iff W' E* "' . By Theorem 4.13, the normal
bi-default theory 7% w.rt. T'=(W,D") must have a bi-extension E®=(E*,E"). Since W' < E*, we have
@' cTh(W")c Th(E*) = E*, and so by Definition 4.5, v(p)e{¢, T}.Hence WE®p. O

Theorem 4.18. If W is a consistent propositional theory and ¢ is not a tautology, then W’ ¢ iff
wE .

Proof. Since W is consistent, by Proposition 2.3, the default theory T =(W,D") has a unique extension
Th(W). By Theorem 4.15, E® =(Th(W*),Th(W*)) is a bi-extension of 7% wurt. T . Note that ¢ is not a
tautology, then the claim of the theorem immediately follows from Theorem 3.7, Theorem 3.8 and Definition 4.5. [J

By Theorems 4.17 and 4.18, it is clear that the reasoning ability of E® is far stronger than that of the
four-valued consequence relation. The following example illustrates this statement.

Example 4.19. Let W ={p,—p Vv q}. One may easily check that the bi-default theory 7° w.rt. T =(W,D")

has an unique bi-extension E® =(E*,E7), where

E"=Th({p*,—p",p vq',—p'v—q}),
E =Th({p",—p ,p vq',—p' v—q})
and so we have WE" p WE" —pvg and WE"¢q.
When adding —p into # , one may readily check that
E'=Th({p",p".p vq',—p ' v—q}),
E =Th({—p ,—p".p vq',—p'v—=g}).

And so,wehave WE? p, WE? —p, WE? —pvgq but Wk q.

As well-known, Belnap’s four-valued logic is strictly weaker than classical logic even in the case of consistent
premises. Interestingly, by the above example we have seen that the bi-default theory can be regarded as a novel
technique on how to strengthen the reasoning ability of Belnap’s four-valued logic. Moreover, due to the syntactic
approach of the bi-default theory, it can be viewed as an alternative approach to making paraconsistent reasoning as

powerful as the classical one.

5 Related Work

A similar technique like positive transformation appeared in Ref.[11], where the authors showed how
multiple-valued theories can be shifted back to two-valued classical theories through a polynomial transformation.

Their transformation of a formula ¢ is really the same as the positive part @ in our setting and based on a
mapping from four-valued valuation to two-valued one. We use a new transformation for getting the negative part
@ as well. In fact, the original inspiration of the bi-default theory came from the bilattices™™ that naturally

generalizes Belnap’s FOURP®# | where a pair of truth values, representing the degree of belief for or against an
assertion, composes a whole judgment of the assertion.
In Ref.[12], the signed systems were introduced by transforming an inconsistent theory into a consistent one, in

the same way as the positive transformation in our setting. While the semantic link between an atom and its
negation was restored by appeal to default logic which at last resulted in a family of paraconsistent consequence
relations. Roughly speaking, the signed systems do not aim at dealing with inconsistent default theories especially,
since the defaults in signed systems are used to reestablish the context between renamed atoms and the atoms from
the original theory. Nevertheless, the reader may readily verify that the signed systems have the same results as that
of the bi-default theory when the latter is applied to improve the reasoning ability of the four-valued logics. In this

sense, bi-default theory would be regarded as an alternative formalization of the signed systems.
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In Ref.[14], a formalization of inconsistent default reasoning was proposed based on a particularly
paraconsistent logic LEI. The main difference between that approach and the bi-default theory is the latter’s

underlying logic is still classical two-valued logic and thus enjoys the nice properties of the classical logic naturally.
6 Conclusions

Our main goal in this paper is to provide default logic with the ability for handling inconsistency and
nonmonotonicity simultaneously. Thus, the bi-default theory has potential applications in the practice of
commonsense reasoning in presence of inconsistency and incompleteness.

By the technique of the bi-default theory, we have successfully done. The bi-default theory can be well
interpreted by a four-valued semantics. We firmly believe that most results of the default logic in the literature could
be reproduced in the setting of the bi-default logic, because the bi-default logic is a generalization of Reiter’s
default logic under the four-valued semantics. A byproduct is that the bi-default theory can be applied to strengthen
the reasoning ability of Belnap’s four-valued logic, which provides an alternative approach for making
multiple-valued reasoning as powerful as the classical one.

The results of this paper are limited on propositional level, we will extend it to first-order case and make a

more comprehensive investigation into the bi-default theory in the future work.
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