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Abstract: Representing a curve contained in a surface is very important in dealing with path generation in 
computer numerical control (CNC) machining and the trimming issues that frequently occur in the field of 
CAD/CAM. This paper develops methods for tangent direction continuous (G1) and both tangent direction and 
curvature continuous (G2) interpolation of a range of points on surface with specified tangent and either a curvature 
vector or a geodesic curvature at every point. As a special case of the interpolation, the blending problems of curves 
on surface are also discussed. The basic idea is as follows: with the help of the related results of differential 
geometry, the problem of interpolating curve on a parametric surface is converted to a similar one on its parametric 
plane. The methods can express the G1 and G2 interpolation curve of an arbitrary sequence of points on a parametric 
surface in a 2D implicit form, which transforms the geometric problem of surface intersection, usually a 
troublesome issue, into the algebraic problem of computing an implicit curve in displaying such an interpolation 
curve. Experimental results show the presented methods are feasible and applicable to CAD/CAM and Computer 
Graphics. 
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摘  要: 如何表示曲面上的曲线,在处理诸如数控加工中的路径设计以及 CAD/CAM 等领域频繁出现的曲面
裁剪问题时显得日益重要.给出了数据点的切方向(切方向及曲率向量或测地曲率值)指定而 G1 连续(G2 连续)
插值曲面上任意点列的方法.作为曲面上曲线插值问题的特例,还讨论了曲面上曲线的混合问题.基本思想是借
助于微分几何的有关结论,曲面上曲线的插值问题被转化为其参数平面上类似的曲线插值问题.该方法能够用
二维隐式方程来表示曲面上的插值曲线,从而把在显示该曲线时所面对的曲面求交的几何问题转化为计算隐
式曲线的代数问题.实验证明该方法是可行的,而且适用于 CAD/CAM及计算机图形学等领域. 
关键词: 插值;混合;G1连续;G2连续;切映射  
中图法分类号: TP391   文献标识码: A 

In the fields of CAD/CAM, computer graphics, computer animation, robotics, CNC machining and so on, 
numerous problems involve the representation of a space or a planar curve. There is an extensive range of literatures 
touching upon the problems. However, so far, only several efforts have been made towards developing more 
effective methods for representation of surface curves (curves contained in the specified surfaces). Pobegailo 
proposed an approach for G1 interpolation and blending on a sphere[1]. Dietz et al. solved G0 interpolation problem 
on quadrics for the prescribed pairs (P1,t1),…,(Pn,tn) of points and parameters with the help of rational Bézier curves 

[2]. Hartmann developed a method for curvature-continuous (G2) interpolation of an arbitrary sequence of points on 
a surface (implicit or parametric) with the specified tangent and a geodesic curvature at every point [3], which can be 
directly employed in G2 blending of curves on surfaces. Other related researches focus on G1 and C1 interpolation 
presented in Refs.[4~5] respectively. Apparently, the method in Ref.[5] is good for display of the resulting 
interpolation curve. However the resulting interpolation curve is a composed curve that might have too high degree. 
In addition, direct approximation such as that with piecewise 4-point Bézier cubic curves or linear curves was also 
applied to the representation of surface curves in practical applications[6,7]. In fact, almost all trim-related literatures 
introduce approximate methods. The aim of this paper is to develop methods for G1 and G2 interpolation of an 
arbitrary sequence of points on surfaces with a prescribed tangent and curvature at any points. With the help of 
relevant results in differential geometry, we convert the problems of space G1 and G2 interpolation on surfaces into 
the similar ones in parametric plane. Other contributions in this paper include that we obtain the corresponding 
curve in parametric plane of a space G1 and G2 interpolation curve on a regular surface and discuss the blending 
issues of surface curves (implicit or parametric) such that the blending curve segment can be described in an 
implicit form.  

The rest of the paper is organized in the following manner. Section 1 introduces the necessary mathematical 
bases that are involved in the presented methods for the representation of surface curves, while problem statements 
are given in Section 2. Interpolation and blending issues are discussed in Section 3, where two kinds of methods to 
represent surface curve are developed in Sections 3.1 and 3.2 respectively, and the blending method is developed in 
Subsection 3.3. Practical examples and comparisons are given in Section 4. Finally, Section 5 finishes the paper 
with conclusions.  

1   Mathematical Preliminary 

Suppose r(u,v)=(x(u,v),y(u,v),z(u,v))T, u,v∈[0,1] is a Cr1 regular surface[8]. Furthermore taking the equation of a 
Cr2 curve in (u,v) plane as u=u(t), v=v(t), t∈[a,b] and substituting them into the above surface equation, we get a 
space Cmin[r1,r2] curve: 

 Ttztytxtvtuztvtuytvtuxt ))(),(),(()))(),(()),(),(()),(),((()( ∗∗∗==r , ],[ bat ∈  
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which is contained in the surface and called the surface curve. Obviously the curve )(),( tvvtuu ==  is the original 

image curve of the curve r(t) under the mapping r: [0,1]×[0,1]→R3. 
Now let us consider the relations between tangent vectors, between their second derived vectors, and between 

their curvatures of the space curve r(t) and its original curve in parametric plane respectively. Write the original 

image curve as Ttvtut ))(),(()( =α . From the derivation formula of composite function, i.e., chain rule, it follows 

that: 
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Assume k and kg denote the curvature vector and geodesic curvature of curve r(t) respectively, and αk is the 
curvature of its original image curve )(tα  at the corresponding point. From differential geometry of curve, we 

have 
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Obviously, it is difficult for us to get an explicit expression satisfied by the curvature |k| and αk of the surface 

curve. However, let’s turn to kg for help. Suppose N is the unit normal vector of surface at a specified point, then 
from (3), we get 
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Then from (3) and noting the fact kr ⊥′ , the following result can easily be got: 
Proposition 1. At a given point with a specified tangent direction, the curvature vector of a surface curve on a 

regular surface and the curvature of its original image curve determine each other uniquely. 
From (4), it follows that: 
Proposition 2. At a given point with a specified tangent direct, the geodesic curvature of a surface curve on a 

regular surface and the curvature of its original image curve determine each other uniquely, 
By Propositions 1 and 2, we further conclude:  

Proposition 3. At the corresponding point, a surface curve on a regular surface and its original image curve 
have the same continuity such as that of position, tangent vector and curvature. 
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Proposition 4. A surface curve on a regular surface is G1 continuous and curvature–continuous (vector), if and 
only if its original image curve is G1 continuous and curvature–continuous at the corresponding point, and the 
similar conclusions hold for geodesic curvature.  

Now let us consider the surface. In fact, it is defined by a mapping r: [0,1]×[0,1]→R3. Since we assume the 
surface is a regular surface, the mapping is an one-to-one mapping and the tangent mapping induced by it is an 
isomorphic mapping between tangent spaces of the plane domain and that of the surface at the respective 
corresponding points. Using ))(( 0tT rr  and ))(( 0tT αα  to denote the tangent spaces of surface at the point )( 0tr and 
corresponding plane domain at the point )( 0tα  respectively, then the tangent mapping ))(())((: 00 tTtTd r rαr →α is 

a linear one-to-one mapping (isomorphic). By differential geometry[8], this mapping can be expressed in the 
following matrix form: 
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where the column vector ))(( 0tT αX α∈ . For a regular surface, the transform matrix of (5) satisfies 
2)( =vurank rr . So from (1) and (2), we get the following conclusion: 

Proposition 5. At corresponding points, the tangent vector of surface curve on a regular surface and that of its 
original image curve determine each other uniquely, and the similar case is true to their second derived vectors. 

As for a concrete computation, please refer to formulae (1) and (2). 

2   Problem Statements 

Since most CAD systems adopt parametric representations for free-form shapes, we mainly consider the issue 
of interpolation curve on parametric surfaces.  

Problem 1. Given an arbitrary sequence ri, i=1,…,s, of points on a rC regular surface, where 2≥r , find an 
interpolation curve passing them with tangent direction ti at corresponding point ri. 

Problem 2. Find an interpolation curve passing an arbitrary sequence ri, i=1,…,s, of points on a rC regular 
surface ( 3≥r ) on conditions that the curve’s tangent direction and geodesic curvatures or curvature vectors at any 
points ri are specified. 

Problem 3. Given two curves on a surface, find a transition curve on the surface that connects the known 
curves at two specified points with G1 or G2 continuity at the two points.  

3   Interpolation and Blending on Surfaces 

In this section, we want to solve the above problems with the so-called functional spline method[9]. Hartmann 
et al. once used this method successfully in creating a G2 interpolation curve expressed by the intersection curve of 
a given surface and a functional spline surface (implicit)[3]. However, with the presented method, the interpolation is 
processing in parametric plane other than in space. In addition, the last interpolation curve is represented implicitly 
by a plane curve in parametric plane instead of by the intersection of two surfaces which always involves 
complicated algorithms of finding surface- to-surface intersection when there is a need to display the interpolation 
curve, for example, when people handle the trimming surface problem. 

3.1   Interpolation problem 1 

First, we target problem 1. It is sufficient to consider the interpolation curve defined by only a pair of points, 
such as 21, rr  with the prescribed unit vectors 21 , TT  at the corresponding points on the surface ),( vur since our 
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tactics is a piecewise interpolation. As points on the regular surface, 21 and rr correspond uniquely to the original 

image points respectively, say ),( 111 vu=α  and ),( 222 vu=α  in parametric plane under the mapping r . We indeed are 

able to solve the original image points through traditional Newton iteration method. However we strongly 
recommend another method presented in Ref.[10] that has a better compute stability and a quicker convergence rate 
than the traditional methods. Sometimes if we want to get an exact image point instead of an approximate one, then 
such methods as the resultant method[11], the Gröbner Base method[12] and Sederberg method[13] can all be used to 
deal with the issue. Moreover, from Proposition 5, under the tangent mapping rd , the tangent vectors 21 , TT  at 
corresponding points 21, rr of the desired interpolation curve determine respectively their original image vectors 

that belong to the tangent spaces at their corresponding points in parametric plane. Let us assume the original image 
vectors are 21, tt  respectively, which actually are the tangent vectors at points 21 , αα of the plane curve 

determined uniquely by the desired interpolation curve on surface. In fact, they can be computed by Eq.(1) or (5). 
See Figs.1~2. 
                                                                               l2 

   r(u, v)                                                               
                                                        u                      t2  

                                                                    
                  r1             r2                         α1            α2 
 

                   T1         T2                             t1              
                                                                           l2     

 
Fig.1  Interpolation on surface             Fig.2  Interpolation on parametric plane 

 
Now the problem of interpolation on surface is reduced to the same problem on plane, which is easy to solve 

referring to the results[3,9]. Before getting the equation of interpolation curve, the following assumptions are 
necessary. Let ),(),,( 222111 vuvu == xx be the coordinate vectors of the points 21 , αα  in parametric plane 
respectively, 0)()( =−= iiig xxnx  the normal equation of straight line il  which passes iα along the vector it , 

2,1=i , and 0)()( 11212 =−= xxnxg  the connecting line equation of the points 21 , αα , where ),( vu=x . In addition, 
the assumptions ,0)(1 >2xg 0)( 12 >xg  (otherwise, we multiply 1g or 2g  by “−1”) are also necessary. Then from Li 
et al.[9] the desired interpolation curve that possesses the tangent vectors 21, tt  at the points 21 , αα respectively can 

be expressed as follows: 

 0)1( 2
21 12

=+− ggg µµ , 10 << µ  (6) 

The constant µ  can be used as a shape parameter in adjusting the shape of the interpolation curve. 
Furthermore let iα be the original image point of ir  in parametric plane, iT  the unit tangent vector of the desired 
curve at the point ir , and it the unit original image vector of iT  under the tangent mapping rd . If 0)( =xig , 

si ,...,1= are the normal equations of straight line il that passes iα along the vector it , si ,...,1= , then the solution 

of problem 1 can be expressed piecewisely as follows: 

 Tvuzvuyvuxvu )),(),,(),,((),( =r  and 0)1( 2
1,1 =+− ++ iiiiii ggg µµ , 10 << iµ  (7) 

where 0)()( 1,1, =−= ++ iiiiig xxnx  is the normal equation of the straight line connecting iα and 1+iα , 1,...,1 −= si . 
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Similarly all iµ , 1,...,1 −= si , are shape parameters for the last shape modification of the whole interpolation curve. 

Remark 1. Referring to Hartmann’s method[3], we can easily get a G2 continuous surface curve with the 
curvature vector at one of those specified interpolation points. Here all iµ , 1,...,1 −= si , are fixed values 

determined by the prescribed curvature. 

3.2   Interpolation problem 2 

As for problem 2, we only consider the case that curvature vector of the interpolation points are specified (the 
cases for a given geodesic curvature can be handled similarly). Given a sequence of triplets (ri,Ti,ki), i=1,…,s, 
where Ti and ki are the tangent vector and the curvature of the desired curve at point ri respectively, from 
Propositions 1 and 5 we know every triplet (ri,Ti,ki) has an unique original image triplet corresponding to itself 
under the mapping r and its tangent mapping dr. Writing it as (ai,ti,ki), where ti and ki are the tangent vector and the 
curvature of the corresponding curve in parametric plane at point ai respectively, they can be computed by (1) or (5) 
and (3) respectively with the given Ti and ki. Now the problem is reduced to interpolating the triplet (ai,ti,ki), 
i=1,…,s, in plane. Similar to dealing with problem 1, we only consider one pair of triplet, i.e., the case 2=s . Let us 
assume that t1,2 is an unit vector with the direction a2−a1, t1 is not parallel to t1,2, and ),(),,( 222111 vuvu == xx represent 

the coordinate vectors of the points a1, a2 respectively, then the implicit equation of the circle that passes the point 
a1 and possesses the tangent vector t1 and the curvature k1 at a1 is 
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Similarly, we can get another circle that passes the point a2 and possesses the tangent vector t2 and the curvature k2 

at a2. Its equation is 
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Next, take the straight line determined by the two points 21, αα  as the transversal curve that is needed in 
constructing a desired function spline. Let the equation of the straight line be 0)()( 11212 =−= xxnxg . Assume 

0)( 21 >xf  and 0)( 12 >xf  (otherwise, we multiply 1f or 2f  by “–1”). Then from Li et al.[9] the equation of curve 

that interpolates the triplets (ai,ti,ki), i=1,2, in parametric plane is 

 0)1()( 3
21 12

=−−= gfff µµx , 10 << µ . 

Its corresponding surface curve that interpolate the triplets ),,( ,inii kTr , 2,1=i , on the given surface is  

 Tvuzvuyvuxvu )),(),,(),,((),( =r  and 0)1()( 3
21 12

=−−= gfff µµx , 10 << µ  (10) 

Thus, analogous to problem 1, it is easy to get the solution to problem 2. 
Remark 2. Interpolation curve (7) or (10) possesses local property, i.e., changing one point or one tangent 

vector or one curvature vector affects the shape of two neighboring curve segments while changing one shape 
parameter iµ affects only the shape of one corresponding curve segment.  

Remark 3. As for displaying the surface curve (7) or (10), we need such an algorithm for tracing an implicit 
plane curve as that described in Refs.[14~16].  

Remark 4. As a by-production, this kinds of representation methods for surface curves such as that in solutions 
to problems 1 and 2 also solves the problem of representation of the bound curve in parametric plane that 
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determines the deformation regions[17]. 

3.3   Blending curves on surfaces——problem 3 

Actually, the problem of blending curve (as defined in Ref.[3]) on surfaces is a special case of interpolation 
curves on surfaces. So those interpolation methods described in the above sections can be used directly in 
constructing a G1 or G2 blending curve (transition curve) between two given curves parametrically or implicitly on a 
parametric surface. The blending curve is completely determined by the tangents or tangents and curvatures at the 
two ends of the transition curve segment and has nothing to do with the global geometry and representation of the 
two given curves. In contrast to the general interpolation problem, we must first specify two points on two curves, 
compute the tangent directions or curvatures of two surface curves at the two points respectively, and use them as 
interpolation conditions. Then the remaining work for us to do is similar to dealing with the interpolation issue. As 
for curvature computation of surface curves with all kinds of expression forms, one can consult the formulae given 
out in Ref.[3].  

4   Examples and Comparisons 

For the sake of simplicity, we take a paraboloid for example and construct an interpolation curve on it to 
demonstrate the presented method. Let its equation be: 

 ),4/98/)(,,(),( 22 +−−= vuvuvur  ]4,4[]4,4[),( −×−∈vu . 

Specify the interpolation conditions on the paraboloid as follows: 
 r1=(–2 2 ,0,5/4), T1=(5,5,5 2 /2); r2=(2,–2,5/4), T2=(2,–4,3). 
According to Section 3.1 we obtain the corresponding interpolation conditions on parametric plane: 
 α1=(–2 2 ,0), t1=(5,5); α2=(2,–2), t2=(2,–4). 

Construct a planar interpolation curve, which passes the two points α1, α2 with the corresponding tangent 
vectors t1, t2. See Fig.4. Here we take the shape parameter (see Section 3.1) as 17.0=µ , then the equation of the 

surface curve (see Fig.3) is 

 ),4/98/)(,,(),( 22 +−−= vuvuvur  0),( == vuff )(x .  

 
                                                               v    

                                                                   t1 
             T1     ),( vur  

             r1                r2                         α1             f(x)=0        
                                                                               u  

                               T2 

                                                                                α2   
                                                                    

 t2 

Fig.3  G1 interpolation curve segment on a paraboloid         Fig.4  Interpolation curve segment on  
parametric plane 

 
Still taking a paraboloid as an example, we construct a surface interpolation curve passing the given end points 

with the specified tangent directions and curvature vector at the end points. 
Let’s adopt the interpolation conditions on surface as follows: 
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 r1=(–2 2 ,0,5/4), T1=(0,–2 2 ,0), k1=( 2 /4,0,0); r2=(2,–2,5/4), T2=(2,2,0), k2=(–1/4,1/4,0), 
where k1, k2 denote the curvature vectors of the desired surface curve at the two end points. Compute their 
counterparts in parametric plane and write them as follows: 
 α1=(–2 2 ,0), t1=(0,–2 2 ), kα1= 2 /4; α2=(2,–2,), t2=(2,2), kα2= 2 /4. 
Then using the method described in Section 3.2, we get the equation of the original image curve f(x)=0. Finally, 
analogous to (10), the equation of the desired surface curve can be obtained. See Figs.5~6, where the shape 
parameter is taken as µ=0.35. 
 

                                                                 v   
T2 

                   k1     k2      

                  r1              r2                                                       u 
                 T1   ),( vur                             α1                        t2 

                                           
t1       f(x)=0      α2 

 
 

Fig.5  G2 Interpolation curve segment on a             Fig 6  G2 Interpolation curve segment on  
 paraboloid  parametric plane 

 
Now we construct a G1 continuous interpolation curve on the paraboloid. Take the interpolation conditions on 

the surface as follows: 
 r11=(–2 2 ,0,5/4), T11=(0,–2 2 ,0); r12=(2,–2,5/4), T12=(2,2,0); 
 r21=(2,–2,5/4), T21=(5,5,0); r22=(0,0,9/4), T22=(–2,–2,0). 
Analogously, compute their counterparts on parametric plane and write them as follows: 
 α11=(–2 2 ,0), t11=(0,–2 2 ); α12=(2,–2), t 12=(2,2); 
 α21=(2,–2), t 21=(5,5); α22=(0,0), t 22=(–2,–2). 
Then construct planar interpolation curve f(x)=0 (see Fig.8). The desired curve is the image curve of the curve 
f(x)=0 under the mapping ),( vur . See Fig.7. 

v 
         

 
 r(u,v)                                                          u  

 
                                     f(x)=0    

  
 
 

Fig.7  G2 continuous interpolation curve on a paraboloid  Fig.8  The original image curve on parametric plane 
 
    The examples presented above demonstrate the method is effective. Compared with the existing main 
method[3], its interpolation process proceeds in parametric plane rather than in space. It can be used in the cases that 
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not only the geodesic curvature but also curvature vector at every interpolation point is prescribed (in Figs.5~6, 
curvature vector instead of geodesic curvature are prescribed as interpolation data). Moreover, it involves only 
tracing an implicit planar curve instead of any surface-to-surface algorithm, usually a troublesome process, on 
which the method [3] often depends, for displaying the resulting interpolation curves. In addition, Ref.[4] also 
reports a G1 interpolation method. In contrast to this method, the interpolation curve generated by the presented 
method obviously has good controllability since we introduce free shape parameters into every interpolation curve 
segment that can be used in interactive modification, and interpolation process does not need to perform any 
curve-to-surface intersection. Reference [5] describes a C1 interpolation, of which the resulting interpolation curve 
is a composed curve. Unfortunately, a curve generated by composition might have a very high degree; For a 
bi-cubic surface composed with a cubic curve, the resulting surface curve has a degree 18 that might be prohibited 
in most CAD systems. Compared with it, this method relaxes the limitation of interpolation conditions, avoids high 
degree of interpolation curve, and has more comprehensive applicability in CAD engineering practice.  

5   Conclusions 

Approaches for the representation of surface curves have been developed. The main idea of the methods and 
their marked difference from the existing methods lie in the fact that we transform the problem of representation of 
the surface curves into the one of representation of the planar curves and that the distribution of interpolation points 
can be arbitrary. The concrete steps of the method are summed up as follows: 

 Prescribe the interpolation information such as points, tangent vectors and curvature on surface. 
 Compute the corresponding interpolation information on parametric plane. 
 Construct planar interpolation curve. 

Though we only pay an attention to the representation of curves contained in parametric surface in Section 4.1, 
in fact, the method can deal with the representation of curves contained in such an implicit surface that can be 
parameterized. What is more, with the help of the thoughts of the presented method, many good methods designed 
for general interpolation curves can be used in dealing with the issue of interpolation curves on surfaces.  
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