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Abstract: The paper introduces an algorithm for creating smooth spline surfaces over control triangular meshes 
capable of outlining arbitrary free-form surfaces with or without boundary. The resulting surface has a degree 4 
parametric polynomial representation and is represented as a network of tangent plane continuous triangular Bézier 
patches. The approximation of resulting surface to mesh is controlled by a blend ratio; when the blend ratio is zero, 
surfaces interpolate meshes. The algorithm is a local method, simple, efficient and fit for appearance design. 
Key words: spline surface; control triangular mesh; triangular Bézier patch; geometric continuity; blend ratio 

摘  要: 介绍了一种在控制三角形网格上创建光滑样条曲面的算法,该控制网格能够刻画具有或没有边界的

任意自由曲面.生成的曲面有一个 4次参数多项式表示并且被表示成一个切平面连续的三角形 Bézier片网.曲面

对网格的逼近程度受到一个混合比控制,当混合比为 0 时,产生的曲面插值网格.该算法是一种局部方法,简单且

效率高,适合于外形设计. 
关键词: 样条曲面;控制三角形网格;三角形 Bézier 片;几何连续性;混合比 
中图法分类号: TP391   文献标识码: A  

Since a single B-spline patch can only represent surfaces of simple topological type (deformed planar regions, 
cylinders, and torus), a surface of arbitrary topological type must be defined as a network of polynomials. Most 
methods using piecewise polynomials to construct a surface from a mesh of points fall into one of two categories: 
global or local. With a global algorithm, a large linear, irregularly sparse system of equations is solved to match 
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data. This makes it more difficult to reason a priori about the shape of the resulting surface. The works on global 
algorithm are seen in Refs.[1~3]. Local algorithms avoid solving large linear systems of equations and are more 
geometric in nature. J.PETERS gives a few properties of local algorithm in Ref.[4]. The works on local algorithm 
are also referred to Refs.[5~8]. The present is a local algorithm modeling surfaces of arbitrary topological type by 
smoothly approximating a control triangular mesh. The advantage of this technique is  
z Free-form modeling capability  There are no restrictions on the number of triangles meeting at a mesh point. 
z Low-degree parametrization  The surface is parametrized by degree 4 triangular Bèzier patches. 
z Evaluation by averaging  The coefficients of the parametrization in Bernstein-Bèzier form can be obtained 

by applying mask to the input mesh. Thus the algorithm is local and can be interpreted as a rule for cutting an 
input polytope such that the limit polytope is the spline surface. 

z Convex hull property  The surface lies locally and globally in the convex hull of the input mesh. 
z Taut interpolation of the control mesh for zero blend ratio Cut of zero depth result in a singular 

parametrization at the mesh points analogous to singularities of a spline with repeated knots. The continuity of 
the surface is reduced, but in return the edges of the input mesh are interpolated and the surface is taut. 

1   The G1 Continuous Conditions Between Two Adjacent Triangular Bézier Patches 

1.1   Triangular patches 

Triangular polynomial patches can be expressed in a Bernstein- Bézier form 
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Invoking the degree elevation of Bernstein polynomial[9] and (1.3), we see that (1.2) is equivalent to  
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1.2   The G1 continuous conditions between two adjacent triangular Bézier patches 

Much research has been devoted to this subject, and many approaches to the construction of Bézier surfaces 
that share tangent planes along their common boundary have been developed[9,10]. Let φ  and ϕ  be two adjacent 

triangular patches of degree n, all of whose boundaries are degree n−1 and who share a common boundary cure Γ of 
the form (see Fig.1) 
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From (1.4) in section 2.1, we assume that φ  possesses a cross-boundary derivative of the form 
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and ϕ  possesses a cross-boundary derivative of the form 
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Fig.1  Coefficients for cross-boundary derivatives     Fig.2  Corner points corresponding to  210 VVV∆

 
The G1 continuous condition [9] is equivalent to 
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In order to arrive at a manageable G1 construction, we specify that µ  and α  must be constants while λ  must 
be linear: 10)1()( λλλ uuu +−= . Since 0≠α , we can assume without loss of generality that 1=α . This gives the 

desired G1 continuous condition 
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2   Constructing the Spline 

Constructing the spline surface begins with a user-defined control mesh denoted M. A control mesh is a 
collection of vertices, edges, and triangular faces that can intuitively be thought of as a triangular surface that may, 
or may not, be closed. The term valance is used to denote the number of triangles meeting at vertex. 
    The spline surface is constructed in the following stages: 

Input: a control triangular mesh 
1.  create corner points 
2.  construct edge and vertex coefficients 
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3.  construct face coefficients 
4.  construct patches 

Output: a network of triangular patches 
The mesh M is passed to the first procedure that creates a set of corner points. The purpose of the first 

procedure provides initial data for following procedure. We require constructing a triangular Bèzier patch of degree 
4 under each triangle on mesh , each boundary of whom is a Bèzier curve of degree 3. After the first step, the set of 
corner points is used to construct edge and vertex coefficients corresponding to each triangular patch in the second 
step. Using the edge, vertex coefficients constructed in the second step and the valant value at each vertex to solve a 
small linear system obtains face coefficients around each vertex. All of Bèzier coefficients controlling each 
triangular patch are constructed after three steps, a network of triangular Bèzier patches of degree 4 is generated and 
output. The details of each step are described in the next four sections. 

2.1   Create corner points 

Let  be one of triangles in mesh M, denote it’s barycenter by O, i.e. 210 VVV∆ )(
3
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where all subscripts are taken modulo 3 ( see Fig.2 ). We call 2,1,0, =iPi  corner point and α  blend ratio or shape 

parameter. 

2.2   Construct edge and vertex coefficients 

In the second step, 6 edge coefficients and 3 vertex coefficients are constructed corresponding to each 
triangular patch to be constructed. The labeling scheme of these coefficients is illustrated in Fig.3. Vi and Vj in Fig.3 
are two adjacent mesh points. Integer numbers n and m are the numbers of triangles meeting at Vi and Vj, 
respectively.  are corner points constructed in the first step, and  edge coefficients around V1
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Fig.3  Corner points and edge coefficients around two adjacent mesh vertices Vi and Vj 

Suppose that V  corresponds to parameter j′ 0=u  and iV ′  to 1=u  along the common boundary 

determined by  and V0, ij EV ′ 0 ,j E i′ . According to G1 constraint (1.5), we have 
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and 
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Taking  
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This is so that the condition at vertex takes the symmetric form that the sum of the derivatives along the edges 
meeting there is zero. The discussion on different choice of 10,λλ and µ  is referred to Ref.[11]. Substituting (2.4) 

into (2.2) and (2.3), we obtain 
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In order to ensure that the spline surface is G1, such constraint (2.5) or (2.6) must be satisfied between edge 
coefficients and vertex coefficients of a pair of adjacent triangular patches surrounding any vertex. Then these 
constraints at vertex  are as follows: iV ′
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where all subscripts are taken modulo n. 
Above constraint (2.5) implies that all of edge coefficients surrounding iV ′  must be co-planar. The following 

theorem is the key to construct the coefficients that satisfy this requirement: 

Theorem 2.1. Let be a set of points in general position. The set of points Q found by 3
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Consult [6] for the proof of Theorem 2.1. The factor β  in equation (2.8) is a free parameter that may be set 

arbitrarily. Theorem 2.1 applies to the construction at hand by setting )π2cos1(
2
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 as the corner points {  surrounding 10 ,..., −nPP }ilP iV ′ , the point O as vertex coefficient V , and the points 
 as the edge coefficients  surrounding V
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10 ,..., −nQQ }ilE{ i′ . Under this interpretation we immediately obtain the 
edge coefficients  and vertex coefficient V  from  and Theorem 2.1. Other edge coefficients and 
vertex coefficients at other vertices can be obtained using similar technique. 
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2.3   Construct face coefficients 

Suppose that  is a vertex coefficient constructed in step 2 and the vertex coefficients adjacent to  are 

, respectively. Denote the number of triangles meeting at 
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constructed in step two on each common boundary  by  and , ( see Fig.4 ). 1,...,0, −=′′ nlVV il 1,...,0 −= nl
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Because we require that each triangular patch is a polynomial of degree 4, there exist three face coefficients 
corresponding to each triangular patch. Denote the face coefficients next to iV ′  by , ( see Fig.4). 

From constraint (1.5), in order to ensure two adjacent patches to be G
ilF 1,...,0 −= nl
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is n if n is odd, otherwise is 1−n . When n is even, the freedom of (2.11) is 1, 
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e V , then other face coefficients10 −niVV 1,...,1, −= nlFil are given by (2.11). When 
is just determined by (2.11). 
 boundary of open mesh, then in (2.10) is taken as double of the number of 
 is found in Section 3. 

ln

, all of the Bézier coefficients of each triangular patch are determined, we can 
, the edge, face and vertex coefficients determined in previous three steps are 
 coefficients around boundary vertices of an open mesh are treated in Section 3. 
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3   Treatment of Boundaries 

3.1   Boundary vertex with 1-valant value 

Let V0 be a 1-valant boundary vertex of mesh M. Let V1 and V2 be two vertices adjacent to V0. Let P0 be a 
corner point corresponding to V0. Two edge coefficients next to V0 are given by 
 .2)1(,2)1( 0200101000 PVVEPVVE αααααα −++=−++=  (3.1) 
The vertex coefficient at V0 is defined as 0V ′ =V0 (interpolation) or 
 0010000 3)31( PEEVV αααα −−−+=′ . 

The face coefficient is determined by (2.12). 

3.2   Boundary vertex with valant value more than 2 

Let V be a vertex on the boundary of M. Let  be the number of triangles meeting at V . Let  

be the corner points next to V constructed in step 1, and let P

)1( ≥kk kPP ,...,1

0 and Pk+1 be the other two points next to V determined 
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Then we can construct edge coefficients {  and vertex coefficient V′ using {  by Theorem 2.1. 

However, only  are required. For face coefficients , we first define  by (2.12), then solve {  
using (2.11) step by step. 
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4   Conclusions 

An algorithm has been presented for constructing a tangent plane smooth spline surface that approximates an 
control triangular mesh of arbitrary topological type. The spline surface is a composite of quartic triangular Bézier 
patches. The algorithm is simple, efficient and generates aesthetically pleasing shapes. We may obtain any 
approximation to mesh by adjusting the value of blend ratio α . When 0=α , surface interpolates the mesh. 
    The spline algorithm as presented was factored into 4 steps. Each of previous three steps was a construction 
that involved taken weighted averages (affine combinations) of points. Therefore, the spline surface is affine 
invariant (i.e., independent of any affine transformation applied to the control mesh). It is not clear that the 
concatenation of the constructions leads to convex combinations in all cases, but according to examination, when 

7.00 ≤≤ α , the resulting surface preserves convexity. 
 

                   
Fig.6  Interpolate mesh in 0=α    Fig.7  Spline sueface in 5.0=α     Fig.8  An open control initial mesh 

  



 冯仁忠 等:在任意拓扑三角形网格上的光滑样条曲面 837 

Example.  A close control mesh and spline surfaces generated are shown in Figs.5~7; the other open control 
mesh and spline surfaces are shown in Figs.8~10. 

          
 Fig.9  Interpolate mesh in 0=α  Fig.10  Spline surface in 5.0=α  
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