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Abstract: The paper introduces an algorithm for creating smooth spline surfaces over control triangular meshes
capable of outlining arbitrary free-form surfaces with or without boundary. The resulting surface has a degree 4
parametric polynomial representation and is represented as a network of tangent plane continuous triangular Bézier
patches. The approximation of resulting surface to mesh is controlled by a blend ratio; when the blend ratio is zero,
surfaces interpolate meshes. The algorithm is a local method, simple, efficient and fit for appearance design.
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Since a single B-spline patch can only represent surfaces of simple topological type (deformed planar regions,
cylinders, and torus), a surface of arbitrary topological type must be defined as a network of polynomials. Most
methods using piecewise polynomials to construct a surface from a mesh of points fall into one of two categories:

global or local. With a global algorithm, a large linear, irregularly sparse system of equations is solved to match
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data. This makes it more difficult to reason a priori about the shape of the resulting surface. The works on global

algorithm are seen in Refs.[1~3]. Local algorithms avoid solving large linear systems of equations and are more

geometric in nature. JPETERS gives a few properties of local algorithm in Ref.[4]. The works on local algorithm

are also referred to Refs.[5~8]. The present is a local algorithm modeling surfaces of arbitrary topological type by

smoothly approximating a control triangular mesh. The advantage of this technique is

®  Free-form modeling capability There are no restrictions on the number of triangles meeting at a mesh point.

®  Low-degree parametrization The surface is parametrized by degree 4 triangular Bézier patches.

®  Evaluation by averaging The coefficients of the parametrization in Bernstein-Bézier form can be obtained
by applying mask to the input mesh. Thus the algorithm is local and can be interpreted as a rule for cutting an
input polytope such that the limit polytope is the spline surface.

®  Convex hull property The surface lies locally and globally in the convex hull of the input mesh.

®  Taut interpolation of the control mesh for zero blend ratio Cut of zero depth result in a singular
parametrization at the mesh points analogous to singularities of a spline with repeated knots. The continuity of

the surface is reduced, but in return the edges of the input mesh are interpolated and the surface is taut.
1 The G' Continuous Conditions Between Two Adjacent Triangular Bézier Patches
1.1 Triangular patches

Triangular polynomial patches can be expressed in a Bernstein- Bézier form

no

o(u,v,w)= z G p——uv'w', u+v+w=1l, wuv,w20, (1.1)
i+j+k=n ’ l’]'k'
i,j,k20
where coefficients G, ;, € R’ . We use a shorthand notation for the coefficients: 7, =G, ,,,i=0,...n—=1S, =G, ,,

i=0,...,n. We call the coefficients controlling boundary curves except three vertices G, ,,G, oand G,,, edge

coefficients, all interior control vertices face coefficients, such as 7;,i=1,...,n—2. We shall consider a particular
cross-boundary derivative, namely,
[Dolu) = A-u)p, —@,) +u(@,-9,) -

Expressed in terms of Bernstein polynomials,

n-1 n-1

(D)) = n(1—u)Y (T, = S)B ™ (u) + nu (T, = S, B/ (w).

i=0 i=0

Simple algebra yields

n—i

[Dpl() =¥ ( .
i=0

T,+-T, = S)B (). (1.2)
n
Let us now consider a special case: assume the boundary curve with coefficients S,,i =0,...,n , is only of degree
n—1. This implies the existence of §i,i =0,..,n—1,with

S 4LS,, i=0,..n. (1.3)
n n

S. =

i

Invoking the degree elevation of Bernstein polynomial® and (1.3), we see that (1.2) is equivalent to

(D)) = n3 (T, - B (w) . (14)

i=0
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1.2 The G' continuous conditions between two adjacent triangular Bézier patches

Much research has been devoted to this subject, and many approaches to the construction of Bézier surfaces
that share tangent planes along their common boundary have been developed®'?. Let ¢ and ¢ be two adjacent

triangular patches of degree n, all of whose boundaries are degree n—1 and who share a common boundary cure / of

the form (see Fig.1)
F@=3 58 6=558"w
i=0 i=0
with the derivative
[DI(u) = (n - 1)’2(5,“ ~ 5B (u).
From (1.4) in section 2.1, we assume that ¢ possesses a cross-boundary derivative of the form

[D#Iw) =n> (R - 5)B" )

i=0

and @ possesses a cross-boundary derivative of the form

[D,0)u) = > (T, - 5B (u) .
i=0

R;
%
T, 2
P,
o
Ro L s/ Po P
SO T() VO - - V]
Fig.1 Coefficients for cross-boundary derivatives Fig.2 Corner points corresponding to AV, V[V,

The G' continuous condition [9] is equivalent to
u@)[D,g)(u) + () Drp)(w) + A@) DI (u) =0, p,a,A#0.
In order to arrive at a manageable G' construction, we specify that # and « must be constants while A must

be linear: A(u) = (1-u)A,+ud, . Since «a # 0, we can assume without loss of generality that o =1. This gives the
desired G' continuous condition

it PRy RS A Ty . B W
1 n n n-1

T =

, P8 -2 8, R =01 (1)
n n

2 Constructing the Spline

Constructing the spline surface begins with a user-defined control mesh denoted M. A control mesh is a
collection of vertices, edges, and triangular faces that can intuitively be thought of as a triangular surface that may,
or may not, be closed. The term valance is used to denote the number of triangles meeting at vertex.

The spline surface is constructed in the following stages:

Input: a control triangular mesh
1. create corner points

2. construct edge and vertex coefficients
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3. construct face coefficients
4. construct patches
Output: a network of triangular patches
The mesh M is passed to the first procedure that creates a set of corner points. The purpose of the first
procedure provides initial data for following procedure. We require constructing a triangular Bézier patch of degree
4 under each triangle on mesh , each boundary of whom is a Bézier curve of degree 3. After the first step, the set of
corner points is used to construct edge and vertex coefficients corresponding to each triangular patch in the second
step. Using the edge, vertex coefficients constructed in the second step and the valant value at each vertex to solve a
small linear system obtains face coefficients around each vertex. All of Beézier coefficients controlling each
triangular patch are constructed after three steps, a network of triangular Bézier patches of degree 4 is generated and

output. The details of each step are described in the next four sections.

2.1 Create corner points

. . 4 . 1 .
Let AVV\V, be one of triangles in mesh M, denote it’s barycenter by O, i.e. OZE(V0+I/1 +7,) . Points

P,i=0,1,2 are constructed by

P=(1-a), +%aVH+%aVM+%aO, 0<a<l, 2.1)

where all subscripts are taken modulo 3 ( see Fig.2 ). We call P,i=0,1,2 corner pointand « blend ratio or shape

parameter.

2.2 Construct edge and vertex coefficients

In the second step, 6 edge coefficients and 3 vertex coefficients are constructed corresponding to each
triangular patch to be constructed. The labeling scheme of these coefficients is illustrated in Fig.3. V; and V; in Fig.3
are two adjacent mesh points. Integer numbers n and m are the numbers of triangles meeting at V; and V),

respectively. {P,}/-) are corner points constructed in the first step, and {E,}/-) edge coefficients around ¥; to be
constructed. {P,};")' and {E,};") are similar concept. The vertex coefficients at ¥; and V; are denoted by v

and V'

| respectively.

Fig.3 Corner points and edge coefficients around two adjacent mesh vertices V; and V;

Suppose that V; corresponds to parameter =0 and ¥/ to w=1 along the common boundary

determined by V,E,E, and V. According to G' constraint (1.5), we have

Jj0>

© rhiEpk

http:/ www. jos. org. cn



834 Journal of Software #AFF I 2003,14(4)

~AE A+ u+2Vi=E,  +uE) (2.2)
and
AEqg+(+u—A)V/=E,  + pE, . (2.3)
Taking
Ay = —ZCOSE,Al = Zcosz—n,y =1. 2.4
m n

This is so that the condition at vertex takes the symmetric form that the sum of the derivatives along the edges
meeting there is zero. The discussion on different choice of A,,4, and u is referred to Ref.[11]. Substituting (2.4)

into (2.2) and (2.3), we obtain

2n. ., 2n 1 1
(I_COSW)V,/ +COS;E]-O :EEJ'M*1 +5Ej1 (25)
and
(I—COSZTT[)VI.I+ coszn—nE,.0 :%Emfl +%E,.l . (2.6)

In order to ensure that the spline surface is G', such constraint (2.5) or (2.6) must be satisfied between edge
coefficients and vertex coefficients of a pair of adjacent triangular patches surrounding any vertex. Then these
constraints at vertex ¥, are as follows:

i

(1 - cos 25y + co EE L S S 2.7)
n 2 2
where all subscripts are taken modulo n.
Above constraint (2.5) implies that all of edge coefficients surrounding ¥, must be co-planar. The following

theorem is the key to construct the coefficients that satisfy this requirement:

Theorem 2.1. Let P,...., P, , € R® be a set of points in general position. The set of points O, ,..., 0, , found by

(J ) tanﬁsin—zn(j_l)
n n

ZP (1+ f(cos—1—= ), (2.8)

satisfy

a- cosz—n)O + cosz—nQi = lQH +l
n n 2

2 O (2.9)

where O = Z , and are therefore co-planar.
] =0

Consult [6] for the proof of Theorem 2.1. The factor £ in equation (2.8) is a free parameter that may be set

N . . . 3 2 . . .
arbitrarily. Theorem 2.1 applies to the construction at hand by setting £ :E(l +cos—n) , and interpreting the points
n

’

as the corner points {P,} surrounding V;, the point O as vertex coefficient ¥/, and the points

i

Py,....P

n—1

Qps-»0,, as the edge coefficients {E,} surrounding V;. Under this interpretation we immediately obtain the

edge coefficients {E,} and vertex coefficient V; from {P,} and Theorem 2.1. Other edge coefficients and
vertex coefficients at other vertices can be obtained using similar technique.
2.3 Construct face coefficients

Suppose that ¥ is a vertex coefficient constructed in step 2 and the vertex coefficients adjacent to V, are

Vyse-sVi_i , tespectively. Denote the number of triangles meeting at V,,/=0,..,n—1 by n;, the edge coefficients

constructed in step two on each common boundary V, V/,[=0,..,n—1 by E, and E,, [=0,..,n—1(seceFig.4).
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Because we require that each triangular patch is a polynomial of degree 4, there exist three face coefficients
corresponding to each triangular patch. Denote the face coefficients next to V;' by F,, [=0,..,n—1( see Fig.4).
From constraint (1.5), in order to ensure two adjacent patches to be G', we require that the edge, face and vertex
coefficients must satisfy following constrain

2 2 2 2
(4—2c0s L — cosZD)E, +2c08 = E, + cos V! =2(F,+F,,), [=0,..n—1. (2.10)
n n, n n,

Set

1 2 2 2 2
S, =E((4—2005—n—cos—n)Eﬂ + 2cos—nE, +coS—T[V,-'), [=0,.,n-1.
n n

n n
Vl1—l an72
Fio '
) " E; Es
VOV E(] E 0 I/l 3 V}I \/
Fi " Fi
{ Fip
—_— ’
vy V2
Fig.4 The vertex coefficients adjacent to V;' and Fig.5 A close initial control triangular mesh

edge coefficients on each edge meeting at V;/

n-1

In order to obtain face coefficients {F}},_, , we need only solve such a small system of equations

AF =S, (2.11)
where
1 100 0 0 F, S,
0110 0 0 1?1 S,
A= , F=| + |, §=
00 00O 11 Fiua Si-2
1 000 0 1 Finei S

We verify easily that the rank of 4 is n if n is odd, otherwise is n—1. When # is even, the freedom of (2.11) is 1,

first we may take
E, :a00+(1—a)%(E,.0+Em,l), 0<a<l, (2.12)

where O, is the barycenter of triangle V;V.V,_, , then other face coefficients F,,/ =1,...,n —1 are given by (2.11). When
n is odd, all of face coefficients F;, is just determined by (2.11).
Remarks. If some ¥, lies on boundary of open mesh, thenn, in (2.10) is taken as double of the number of

triangles meeting at ¥, . The reason is found in Section 3.

2.4 Construct patches

After the third step is finished, all of the Bézier coefficients of each triangular patch are determined, we can
output the spline surface. However, the edge, face and vertex coefficients determined in previous three steps are

those around interior vertices. Those coefficients around boundary vertices of an open mesh are treated in Section 3.
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3 Treatment of Boundaries

3.1 Boundary vertex with 1-valant value

Let V7, be a 1-valant boundary vertex of mesh M. Let V; and V, be two vertices adjacent to V. Let Py be a
corner point corresponding to V. Two edge coefficients next to Vj are given by
Eyp=(+a)VVy+aV,-2aF, E,=1+a)V,+aV,-2ak, (3.1)
The vertex coefficient at V; is defined as ¥ =V} (interpolation) or
Vo =(1+3a)V,—aEy, —aEy —3aF, .
The face coefficient is determined by (2.12).

3.2 Boundary vertex with valant value more than 2
Let V' be a vertex on the boundary of M. Let k(k >1) be the number of triangles meeting at V. Let PA,,..., P,
be the corner points next to V' constructed in step 1, and let P, and P;; be the other two points next to V" determined
by (3.1). Anew n = 2k corner points {P,,..., P, ;} is given by
P =2wQ,+1-w)Q)-P,_,,,, [=k+2,..,n-1,
where
1 1 T .

1 1 1 2In 2in
=—F +=h, =—P +—=P,, u=—(+cos—+tan—sin—).
QO 2 0 2 1 Ql o) k 2 k+1 2( n n n )

Then we can construct edge coefficients {E,}/ and vertex coefficient V" using {B}/, by Theorem 2.1.

However, only {E,}f;0 are required. For face coefficients {F/}f:é , we first define £, by (2.12), then solve {F,}f‘:ll
using (2.11) step by step.

4 Conclusions

An algorithm has been presented for constructing a tangent plane smooth spline surface that approximates an
control triangular mesh of arbitrary topological type. The spline surface is a composite of quartic triangular Bézier
patches. The algorithm is simple, efficient and generates aesthetically pleasing shapes. We may obtain any
approximation to mesh by adjusting the value of blend ratio « . When « =0, surface interpolates the mesh.

The spline algorithm as presented was factored into 4 steps. Each of previous three steps was a construction
that involved taken weighted averages (affine combinations) of points. Therefore, the spline surface is affine
invariant (i.e., independent of any affine transformation applied to the control mesh). It is not clear that the
concatenation of the constructions leads to convex combinations in all cases, but according to examination, when

0 <a <£0.7, the resulting surface preserves convexity.

Fig.6 Interpolate meshina =0 Fig.7 Spline sueface ina = 0.5 Fig.8 An open control initial mesh
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Example. A close control mesh and spline surfaces generated are shown in Figs.5~7; the other open control

mesh and spline surfaces are shown in Figs.8~10.

Fig.9 Interpolate mesh ina =0 Fig.10 Spline surface ina = 0.5
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