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Abstract: The convexity of curves and surfaces is an important property in the field of Computer Aided
Geometric Design (CAGD). This paper tries to tackle the positive and convex problem of polynomials. Convexity
can be solved by positivity. An algorithm for the positivity of polynomials is developed by extending the classic
Sturm theorem. Hence, a necessary and sufficient condition for the positivity of polynomials of arbitrary degree is
presented in this paper. A practical algorithm to express this condition in terms of the coefficients of the
polynomialsis also given.
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Convexity of polynomials is often considered in the designing of the curved surfaces of products such as
air-crafts, ships and cars. It is well known that the convexity of a polynomial over an interval is equivalent to the
positivity of its second order derivative over the same interval. By considering the positivity of the second. order
derivative of polynomials, Ref.[9] presented a sufficient condition for the convexity of Bernstein polynomials over
triangles. Further, Ref.[10] provided an improved convex condition. Suppose the degree of a Bernstein polynomial
is n, theimproved convex condition is sufficient and necessary when n<3. However, it is still an open question
when n >4, where only the sufficient condition is available to verify the convexity.

Given apolynomial f(x),xe (e, 8) . Its positivity and convexity are defined as following.

Definition 1.1 (Positivity). f(x) is positive over an interval (¢, 8) if for any xe (a, 8), f(x)>0.

Definition 1.2 (Strict positivity). f(x) is positive over an interval (e, ) if for any xe (a, ), f(x)>0.

Definition 1.3 (Convexity). f(x) is convex over an interval (¢, p) if for any x;,x, € (e, ), the following
formula holds

f[X1+X2j§ f(X1)+f(X2) (1)
2 2

For a polynomial f(x), formula (1) is equivalent to the positivity of its second derivative
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%ZQ foral xe(a,p). ?

So the positivity of a polynomial is considered in this paper instead of the convexity of a polynomials. It is obvious
that a polynomial f(x) is positive over an interval [e, ] if and only if

(1) f(x) has no roots or has the only roots with even multiplicities within the interval; and

(2) f(xp)>0for some x,<la,p].

The technique of Sturm Theorem is a conventional way to verify whether a polynomial has no roots over an
interval. However, Sturm theorem cannot verify whether a polynomial has roots with even multiplicities over an
interval. In this paper, a necessary and sufficient condition is given to verify whether a polynomial has roots with
even multiplicities over an interval. A recursive algorithm to verify the positivity of a polynomial is also provided.

The paper is organized as follows. In Section 1, the technique of standard sequence is further exploited.
Conventionally, for a polynomial f(x), a standard sequence is considered to verify whether it has roots over an
interval. Here, the last term of a standard sequence, i.e., the greatest common divisor of the two polynomials f(x)
and f'(x), is considered as the starting polynomial for another standard sequence. In this way, an extended standard
sequence is presented. Consequently, a necessary and sufficient condition (NASC) for the positivity of a polynomial
over an interval is obtained. In Section 2, a practical algorithm is given to express the coefficients of the standard
seguences in terms of the coefficients of a polynomial. In Section 3, some examples are given to demonstrate the
algorithm. Section 4 concludes the paper.

1 A Necessary and Sufficient Condition for the Positivity of Polynomials

Given a degree n polynomial with real coefficients

f0=Yax , xe(-omx). 3
Using the modified Euclidean algorithm, we dg‘?ne the standard sequence for f(x):
fo()=1(x), f,(x)="F"(x), (4)
and forming the remaining polynomials f,;(x) recursively, dividing f,_(x) by f;(x),
fa(0=009f09-Cufn(®), 1=12.m=1, f,,(0=0n(NFu(9, fra(x)=0, ©)

where deg f;(x) > deg f,,; , and the constant c,,; >0 are positive but otherwise arbitrary. The final polynomial fu(x)
is the greatest common divisor (GCD) of f(x) and f '(x).

Lemma 1.1 (Sturm’s theorem). Let f(x) be a polynomial of positive degree n with coefficientsin areal
closed field R and let fo(x)= f(x), f,(X)=f'(X),..., f,(x) be the standard sequence (1.2) for f(x). Assume
[a,p] is an interval such that f(a), f(B)=0. Then the number of distinct roots of f(x) in (a,f) is
v, (f)—v,(f), where v, (f) denotesthe number of variationsin sign of sequence f, (), f;(@),.., f,(a) -

A proof of Lemma 1.1 isfound in Ref.[1].

So the polynomial  f(X) hasno roots over theinterval (e, B) if andonly if v, (f)-v,(f)=0.Inthiscase,

f(xX)>0 foral xe(a,pB).Itissad f(x) isstrictly positive over («,f) . However, if f(x) has roots within
(a, B) , Sturm theorem fails to verify whether f(x) >0 over thisinterval.

This drawback is overcome by further exploiting the standard sequence as following.
If deg f,,(x)>1, let f'(x):=f,(X). We can also get the standard sequence f,(x), f(X),..., f: (x) for
f.,(9) = £1(x), namely,

fo ()= F1(x), 7 (%)= (F7 (),
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fLO)=g" () Fr (-l fla(9, i=12..,m-1, (6)
fma (%) =y () F (9, F1,0 () =0,
where deg f,'(x) > deg f,',(X) , and the constants ¢, > 0 are positive but otherwise arbitrary.
Generally, if deg f " (x)>1, let
f ) =f (9,
then we can get the standard sequence f5(x), f,(X) ... fys () for £() = ft(x).
Itisobviousthat f'(x) istheGCDof f'*(x) and (f'**(x)),and
f700=(f)(x) . @)
We denote f °(x) == f(x) . Then the main theorem is presented here.

Theorem 1.2. A NASC for the positivity of polynomials). Assume f (), f(8)=0, meK (x) =constant, then
f(X)>0, xe(a,p) or f(x)<0, xe(a,p),if andonly if

V, (F2)=v, (F2) = v, (f2) —v, (2, OL[%} ®)

where [%J denotes the maximum integer which is less than or equal to % . O

To prove Theorem 1.2, we introduce some lemmas.

Lemma 1.3. Assume X, is a root of f(x) with multiplicity n,. Then xo is a root of f'(x) with multiplicity
no—i,(i<ny), or is not a root of f(x),(n, <i), where f'(x)=f* is the fina polynomia of the standard

sequence for '™,
Proof. Suppose f(X)=(X-X,)"Q,(X),Q,(X,) =0 Since
f1(x) = f,(x) istheGCD of f(x) and f'(x),

f2(x)=f; (x) istheGCDof f'(x) and f'(x),

f'()=f 2 (x) istheGCDof f'*(x) and (f'*(x) .
If i<n,,weget

FA) = (x=%)"°"Q (¥, Q. (%) # 0,

F200 = (x=%)"Q,(x),Q,(%,) # 0,

100 = (x=%)"Q (¥,Q (%) #0.
Hence, Xo is aroot of fi(x) with multiplicity no—i.
If n,<i,then f'(x) hasnorootx,.

Lemma 1.4. Assume [, f] is an interval such that f(«), f(8)=0. Then f(x) does not change sign in
[a, ] if and only if the multiplicity of any root of f(x) in [a,8] isevenor f(x) hasnorootin [a,pf].
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Lemma 1.5. Assume [a,f] isaninterval suchthat f(a), f(8)=0. Then
va(f)—vﬁ,(f):va(fl)—vﬂ(fl), (9)
if the multiplicity of any root of f(x) in [, ] is even, where f'(x)=f,_(X) is the final polynomial of the
standard sequence for f(x).

Proof. Let Xx;,j=12..1 are al of the distinct roots of polynomial f(x) in [a,B],n; are the
corresponding multiplicities. Since n; areall even, weget n; >2.

Letf(x)=1I_[(x—xj)”lQo(x),QO(xj);tO.Since f1(x) = f,(x) isaGCDof f(x) and f'(x),we have

j=1
1) =[] (x=x)""Q(x),Qi(x;) %0, n, ~1>1.
j=1

It follows that xj,j=l,2,...,l are also roots of f*(x). It implies that the number of distinct roots of
f1(x) = f,,(X) in [a B] isequal tothat of f(x).From Lemma 1.1 we know that (9) holds.
Proof of Theorem 1.2.

First we prove the necessity. Suppose f(X)>0,xe[a,f],0or f(X)<0,xele,f].

(@ If f(x) hasnorootin [a,f],then f'(x) have no root in[e,]. From Lemma 1.1, we know that (6)
holds.

(b) If f(x) hasrootsin [«,f], by Lemma 1.4 we know, the multiplicity of any root of f(X) in [a,f] is
even. From Lemma 1.3 we know either f?(x) havenorootin [a,f], or the multiplicities of any root of f % (x)
in [a, 4] areeven, i=01,..,[%]. By Lemma 15 we obtain that (8) holds.

Secondly, we prove the sufficiency. Suppose (8) holds.

@ If f(x) has no root in [a,f], then from f(a), f(f)=0 we get f(X)>0, xe[a,f], Or
f(X)<0,xela,f] .

(b) If f(X) hasrootin [a,/], we can prove that the multiplicity of any root of f(x) in [a,8] must be
even. Otherwise, assume x, €[, 5] isarootof f(x) with multiplicity 2n,+1, n,>0 isaninteger.

From Lemma 1.3 we know that x, isasimpleroot of f2% andisnot aroot of f2%*. It follows that
vﬂ(fz”")—vﬂ(f2"’)21+v/,(f2"“’*1)—vﬁ(f2“°*1),

which contradicts to (8). The contradiction implies that the multiplicity of any root of f(x) in [«,f] iseven. By
Lemma 1.4 we know that f(x) doesnot changesignin [«, 5] .

Corollary 1.6. Assume f(a), f(8)#0.Then f(x) doesnotchangesignforal xele,p] if andonly if for

some K,,2K, < K, f *1(x) does not change signin [«, 4], and
v, (F2)=v,(f2)=v, (7)) -v (%), i=0L..K, 1. (10)

Proof. First we prove the necessity. Suppose f (x) > 0,x e[a, B] or f(X) <0,xe[a, B] . From Theorem 1.2 we
know that (8) holds. Since (10) is part of (8), we get (10) holds. By Lemma 2.4 we know that the multiplicity of any
root of f(X)iseven. From Lemma 1.3 we obtain either f 1(x) hasno root in [«, 5], or the multiplicity of any root

of f21(x) in [a,p] iseven. Using Lemma 1.4 again, we obtain that f 2**(x) does not change signin [a, ] .
Secondly, we prove the sufficiency. Suppose f % (x) does not change sign and (10) holds.

Since f # does not change sign, by the same process of the proof of Theorem 1.2 the following holds
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)G (1) =0 (1) v (7)o <51 (1)

From (10) and (11) we know that (8) holds. It followsthat f (x) > 0,xe[e, 8], 0r f(X) <0, xe[e, B] .
From Lemma 1.1 it is obvious that
Proposition 1.7. Suppose f (), f (5) > 0(< 0) . Then f (X) > 0(< 0), xe[e, B] if andonly if v, (f)-v,(f)=0.
Remarks: Theorem 1.2, Corollary 1.6 and Proposition 1.7 can practically be used to justify whether a

polynomial is non-negative at any interval. In the next four sections of this paper, the author gives some
applications.

2 A Practical Algorithm to Expressthe NASCsfor the Positivity of Polynomials

Theorem 1.2 has given the necessary and sufficient conditions for the positivity of polynomials. Using it, we
can justify the positivity of polynomials of any degree in arbitrary intervals.

However, for polynomials of higher degree, even using a computer program, the conditionsin Theorem 1.2 are
difficult to verify, since those conditions are not expressed in terms of the coefficients of the polynomials.

From Theorem 1.2, we know if the coefficients of the standard sequences (4) to (6) can be expressed in terms
of the coefficients of polynomial (3), then the NASC for the positivity of polynomial (3) can be expressed in terms
of the coefficients of polynomial (3).

The following is an algorithm to express the coefficients of the standard sequences (4), (5) and (6) in terms of
the coefficients of polynomials (3).

Suppose
f(x):Zn:ajxj, a,#0, (12)
then -
f,(X) :?Z;‘}al,jxj , (13)

where a =(j +1)aj ,j=01..,n-1.
We calculate the coefficients of f;(x),i =2,...,m, recursively.

Let degree f,,(X) =L, degree f,(x)=L+P, P2>1,then

fi(x)= ai,uPXHP * ai,L+P—lXL+P71 +.. 80, (14)
fla(¥)= ai+l,LXL st ai+l,L—1XL_1 Tt &0, (15)
where a,, ., and a,, #0.
We want to get the coefficient of polynomial f;,,(x) .
We denote matrices
Qg &g 0 Aagp
A= CTE ai+1,l._—P+1 ’ (16)
AL (P+1)x(P+1)
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8i1-pa1 0 Gp
I R , (17)
&aa 0 &uap &upa v 8o (P+DxL
where we denote &, ; =0, if j <0,
Cr = (@ p B paren B ) ey (18)
Dy =@, 1,8, 50n@g) - (19)

Then we have
Proposition 2.1. (An algorithm to calculate the standard sequence). If f,(x) and f,,;(X) arepolynomials
in (14) and (15), then the polynomial

_ L1 Le2
fla(X) =815 0X "+, X " et 0,

where the coefficients of f,,,(X) ae (A, 1,80 2+ @is00) =CA;B,,—D; and 8.5, ]=0L...,L-1 may
be zeros.
Proof. From the definition (16)—(19) of matrices A,;,B,;,C,, and D,, we can obtain that

XL+P XP fi+1(x)

e e | @0
B f.2(X)
1 f,(x)

Since a,,, #0, matrix A, hasconverse Aj.

H I P+1 OP+11 HH H .
Matrix ’ multiplies (21) in the left, we obtain that
(P+2)x(P+2)

-CAL
XP fi+1(X)
x-P :
. Xfi+ (X)
A+1 Bi+1 XL—l = f 1(X) . (21)
0L,P+1 Di _Ci Af:-lBHl 5 i XP
1 () - f (OCAY
1
Hence,
XL—l XP
(D -CABL)| i [=H(0-fL(NCAY © | (22)
1 1
XP
We denote polynomia ¢,,(x):=C/ A%l : |, then
1
XL{L
(D -CAIBL) | |=fi(0-0.()f.(x). (23)
1
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By definition (5), we know that

L-1

fi+2(X) = (Ci 1llBi+1 - Di)

3 Examples

In this section, two examples are provided to demonstrate the algorithm presented in this paper.
Example 1.

f(x)=> ax =0289+2.305x+5.113x* — 2.458x° — 18.854x" —8.32x" +16.68x° +8.4x" +X°.
i=0
By the algorithm in Proposition 2.1, we obtain the scaled coefficients of the standard sequence for the

polynomial f(x) as following.

% b & g a4 a8 & B X

fy 289 2305 511 -2458 -18854 -832 1668 84 1

f0 23056 10226 -7.373 -75418 -416 10008 588 8

f2 00135 -0675 -4.802 -8363 397 16256 3548 02

10 2221 -14408 24123 123% 47503 10.327 0.15

fl 2221 -14408 24123 123% 47503 10.327

f! 14408 48247 37.176 190013 51634 0t

f1 -043 2649 21315 30001 0.5

fy 12200 61043 76304

fZ 12209 61043 76.304 0.2 0.4 0.6 0.8 1
2 6L043 152607 _ . : .

2 0 Fig.1 A nonnegative polynomial f(x) in[0,1]

It is easy to verify that V,(f°)-V,(f% = V,(f)-V,(f})=1. By Theorem 2.2 we know that f(x) is
nonnegative in [0,1] (see Fig.1).
Example 2.

n <
f(x) =Y ax =0297-2566x+5.522x> — 0.397x° —5.53x" +5.879x° +5.574x° + 0.93x” + x°.

i=0
The following is the scaled coefficients of the standard sequence for the polynomial f(x).

& Cl & & CH & 2 & &

fQ 279 2566 5522 0397 553 5879 5574 093 1
fl0 -2566 11.044 1191 -22126 29.393 -33444 651 8 0.5
fJ -0334 2406 -4124 -0570 3193 -2690 1488

0 —2139 21073 —46.383 -8073 12547 12689 >
£ 1035 -6568 21808 -2222 -8255 03
f0 0993 -1208 36969 -22993 0.2
f -0366 1784 -1.233 o

0 0102 -0085
f 0102 -0.085
fl -0.085

0.2 0.4 0.6 0.8 1

Fig.2 f(x) polynomial changessignin [0,1]
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It is easy to verify that V,(f°)-V,(f°) =2= V,(f})-V,(f')=0. Hence by Theorem 1.2, we know that B,,(X)
changes signin [0,1] (see Fig.2).

4 Conclusions

Convexity is an important property of polynomials, and it is often required in CAGD. It is well known that the
convexity of a polynomial is equivalent to the positivity of its second derivative. By using Sturm theorem, one can
verify whether a polynomial is strictly positive over an interval, i.e., whether a polynomial has roots over interval.
However, Sturm theorem fails to verify whether a polynomial is positive over an interval, i.e., whether it has roots
with even multiplicities.

By extending the concept of standard sequence, in this paper, a necessary and sufficient condition is presented
to check whether a polynomial has roots with even multiplicities. A practical algorithm to express the condition in
terms of the coefficients of the polynomial is also given.
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