1000-9825/2001/12¢10>1434-13 (c:2001 Journal of Software ¥ # % 8 Vol. 12, No. 10

A Time-Slicing Optimization Framework of Computation
Partitioning for Data-Parallel Languages’

YU Hua-shan, HU Chang-jun, HUANG Qi-jun, DING Wen-kui, XU Zhuo-qun

(Department of Computer Science and Technology, Beijing University, Beijing 100871, China)
E-mail; yuhs@ailab. pku. edu. cn

http://www. pku. edu. cn

Received June 28, 2000; accepted March 1, 2001

Abstract ; Computation partitionings (CP) for the data-parallel statements in a program have a dramatic
impact on its performance. Although the problem has been widely studied, previous approaches focus on
improving spatial locality of the chosen CP. A time-slicing optimization framework is presented, which integrates
many important optimization strategies, to select optimal CPs for parallel loop constructs. In the framework, a
CP is represented by a directed graph, which not only represents a mapping of the operations in a parallel state-
ment into processors, but also specifies the dependency constraints for operations in different processors. This
approach is to evaluate the efficiency of each CP choice and to find the one with the best overall execution time.
The evaluation method synthesizes the four aspects of load balance, operation-independence between processors,
spatial locality and temporal locality for each CP, The framework has been implemented in a HPF compiler
p-lIPF for FORALL construct. Experimental results show that the framework is of generality with desired
speedups for a wide variety of data-parallel applications. With a very little modification, it can also be applied to
many other kinds of data-parallel statement.

Key words: data parallelism implementation; cluster parallel computing; computation partitioning; data depen-

dency analysis; data reuse analysis; load-balancing: communication optimization

Data-parallel programming languages provide a simple, portable, abstract programming model applicable to
parallel computation”*. Programmers can simply specify the computing parallelism in a single-threaded program
with its data-distribution directives and parallel statements. The task of computation decomposing is largely left to
the language compilers. The compiler is also responsible for optimizing the overall performance of the program’s
execution. It is a challenge to partition computation for data-parallel loop constructs. such as FORALL construct
in HPI'!, which usually contains multiple statements with masked and different iteration spaces. Figure 1 illus-
trates the complexity of data-parallel loop constructs by a FORALL construct with masked iteration space. The

loop bady contzins 3 statements, s, 5;and 5;- Statement s, assigns to variable (] with a value of function fun(),

+ Supported by the National High Technology Development 863 Program of China under Grant No. 863-306-ZT01-02-3 (B®
863 MBI R R AD
YU Hua-shan was born 1971. He is a Ph.D. student. Ilis research interests arc parallel compiling, parallel programming
environment and parallel computer architecture. HU Chang-jun was born in 1963. He is a Ph. 1. student. His research interests
are datla engineering., parallel computing and software integration. HUANG Qi-jun was born in 1973. He is a Ph. D. student. His
research interests are paralle| compiling and parallel algorithms. DING Wen-kui was born in 1346. Hc is an associate professor.
His research interests are system software and parallel computing. XU Zhuo-qun was born in 1937. He is a professor and doctoral

supervisor. His current research areas include parallel computing. geography information system and artificial intelligence.

© HIEERES AT hip:/ www. jos. org. cn

2HL F . AR THEFTETHEN St FRLHA 1435

which can be a quite complex computation, and s; itself is also a data-parallel loop statement, introducing a new
nested and masked iteration space. In terms of data dependency hetween statements . obviously there exist a num-
ber of instances in the iteration space between instances of s, and 5,, and between instances of s, and s;.

Most parallel compilers te datel*~®) primarily use owner-computes Integer a(5,5), 6(6}, c{5)

rule®] to partition computation for parallel statements. It specifies that a -
FORALL (i=1,5, [{]. NE. 0}

51 bLi]=fun ()
52 clé]=bli+7]
(e. g. » integer set framework in dHPF®! and affine mapping framework s: FORALL j=1.5, 6[;1>2) ali.j]=6
END FORALL
Fig. 1

computation is executed by the owner of the value being computed.

According to this rule, as well as other variants used in some compilers

i SUIFY-), a computation partitioning (CP) for a statement is a speci-
fication of which processor (s} must execute each dynamic instance of the
statement. And a CP is typically expressed in terms of the processor(s) that own a particular set of data elements.
For example, let stmz be a statement enclosed in a loop nest with index vector 7 and A be an array variable, the CP
ON_HOME (A{f(i))), specifies that the dynamic instance of stmt in iteration ¢ will be executed by the processor
(s) that own array element(s) ACF(i)). The affine mapping framework further restricts all statements in a loop to
have the same CP. The integer set framework permits each statement in a program to have its own CP, and
extends a CP to be the union of one or more ON_HOME terms: U {ON_HOME (A,{f:{:)>}}. The fundamental

disadvantage of the ON_HOME term (and its union) is that it cannot express the operation dependency in a state-
ment as illustrated by Fig. 1, hence limits its generality and the optimizing strategies it supports.

Previous research has focused on compilation strategies to minimize the amount of remote data accesses and
improve spatial locality in each partition'®%, but paid little attention to the temporal locality!® of data accesses
and synchronization overhead incurred by operation dependency in the statements. This paper presents a time-
slicing optimization framework for regular data-parallel applications on message-passing systems. In the frame-
work, a CP fur a statement is presented as a directed graph, the CP not only decomposes the computation into
several partitions and assigns each partition to a node, but also specilies explicitly the dependency between parti-
tions by its directed edges. The framework provides a formal method to partition computation for data-parallel loop
constructs, and find an optimum over a set of possible CPs by evaluating the efficiency of each CP choice. For each
possible CP, the evaluatrion concerns not only of its spatial locality, but also of the temporal aspects of its parallel
execution over the iteration space. The model has been implementad in a data parallel compiler p.. HPF for
FORALL construct. Wirh little technical modification, this implementation can also be used in other data-parallel
languages and other major loop constructs such as INDEPENDENT DX construct.,

In Section 1, we introduce the definitions of several notations, and give the representation of CP in the time-
slicing optimization framework, In Section 2. we first present a formal description to outline the design of the
framework, then we discuss its optimization strategies to construct an optimal CP. We describe an implementation
of the framework and illustratc its performance evaluation with experimental results of two benchmarks in Section

3. Section 4 concludes with a summary,
1 The Definitions

In this section, we define vur notations of parallel statements, its dependency and parallelism, and illustrate
these concepts with corresponding examples. Figure 2 shows a parallel-statemenr fragment used in this section. In
the example, the FORALL construct contains 4 assignments {(component statements) s;, 53453 and 5. The s;,
which is contained in a component FORALL statement, has a different iteration space against others. There is a
declaration of a group p of 4 processors, and data distribution of integer arrays a,b,c and & over the processor

group.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

1436 Journal of Software HAFE 2001,12(10)

Integer al(100, [00), &(100, 100} « CD-Graph
Integer ¢{100,1003, ¢(102,100,100) A CD-Graph (Computation Dependency Graph) is a directed graph (&,

Processor p{4) .
Distribute (* ,block) onto p:a.b ¥ that defines the computation dependency in a parallel loop construct (like

Distribute c{block, *) onta # FORALL construct), where

Disteibuted ¢+ ,block. x) onto p (1) & is the set of nodes. Each component-statement in the loop body

FORALL (i—1:59, j—1:106) is represented as a node. Actually, a node represents all instances over its

51 alisjl=fun (i,) iteration space of the same statement.
sg L jl=alisjl+cli+ 1] (2) ¥ is a set of directed edges in the CD-Graph . Every edge in ¥
FORALL (&=1:9%)

53 dlivjk]=ali k] * bk, f]) A
c[ivil=6CG+12 D +ali+1.5] An edge 5;—+s; labeled with a specifies ;

belongs to one of two edge-types, labeled with @ and f respectively.

3
F;ND FORALL a. statement s, is lexically hefore statement 5,3
Fig. 2 An HPF cxample b. 5, and s, have a common iteration space;

¢. for any two instances i, of s, and 7, of 5., if a data is referred by one instance and updated by the other
instance, then i;—1,.

An edge s-—s; labeled with 3 specifies:

a. slatement s is lexically belore statement sy

b. there are such two instances 7, of 5, and 7, of 5,, where 7;75,, that a data is referred by one instance and
updated by ancther instance.

Figure 3 is the CD-Graph for the HPF example.

. LIC DD

An LIC (Loop-Independent Component} is a sub-set of & in the corresponding B B g
CD-(GGraph, where twa of any node 7, and 1 canfirm the followings . @ @

(1) statements in v and v; have a common iteration space;

) . Fig. 3 CD-graph of the

{2) il v is reachable from v, in the CD-Graph by path I, all edges in the path { HpF program in Fig 2
are labeled with e.

There are five possible LICs in the example in Fig. 2: {s;,5:}. {51} {s2}5 {s:}s {5},

- ISP

An ISP (Iteration Space Partitioning) is a mapping from an iteration space to processors, and the mapping is
speeificd by onc data reference description within the related statement (or statements). An ISP(A,(f,{i)] speci-
fies that iteration ¢ is mapped to the processor(s) that own the array element(s) A;(fi(i)), where A;(f, (1)) is a

data-references in iteration space 7. Figure 4 shows two [SPs for the iteration space defined by the outer FORALL

construct in Fig. 2, the first is defined by ISP{a[s,7]} and the second is specified by ISP (c[i+1.;1).

f T SRR (o ISPt

Fig.4 Two ISPs Fig. 5 A PD graph for the example in Fig, 2

When there is a m-dimension affine mapping @) for ISPLA{(fi ()}, such that the owner(s) of A:(fe (i })
and A {(fi(G,)) are different if and only if G,)& PU,), we say ISPLA(fi()) is a m-dimension ISP, and m is its

rank. All iterations mapped to processor proc by ISP (A: (f, (i)} are represented as LocSpace (proc,

© il

EBKAIITIN httpi/ www. jos. org. en

80 F . ARATFTHBENTETH RS b F LB 1437

ISPAS: GO,

« PD-Groph

A PD-Graph {Partition Dependency Graph) is a directed graph (&,¢) for a parallei loop construct, where

(1) & is the set of nodes. Each node consists of a LIC and an ISP, The (ISF, LIC) specifies an mapping of
each instance 1 of s in LIC to processor (s) [SF'{;). LICs in different nodes are disjoint, and every component
statement in the loop constrnet must have a corresponding LIC in the PD-Graph.

(2) ¢is a set of directed edges in the PD-Graph. An edge (ISP;, LIC,)— (ISP, LIC:) belongs to ¢ if and
only if there ire at least ome statement s, in [SP, and one statement s, in ISP, such that 5;,—~s;is an edge in the
corresponding CD-Greph.

Fach PI:-Graph is associated with a cost, which ic the amount of weights of ite nodes and edges. Figure 5

shows a PD-Graph for the example in Fig. 2, but all weights are omitred.
2 A Time-Slicing Optimization Framework for Data-Parallel Compilation

In general, the efficiency of a parallel program in a message-passing system is affected by

» communtcation for non-local accesses (i.¢. send and receive messages)

In the SPMD codes, explicit messages are required when remotce data is read/written. The cost of communica-
tion is determined by message number, message size and communication patterns. A statement’s CP is communica-
tion-free if and only if each partition accesses only local data.

» load-balance

A CP for a statement partitions its iteration space to several sub-spaces. When the sub-spacss on all available
processors are disjoint and the sizes of the sub-spaces arz equal to each other, computation of the statement is
evenly distributed. The CP is considered load-balanced if it evenly distributes the computation into available
processors.

» the number of guards executed on each processor

Guards are such conditions introduced into the SPMD) codes, that they are executed on each processor to
determine which statement instances it must execute in each iteration. The number of guards and their positions in
the SPMD codes are indications of the overhead for determining the local iteration-spaces,

+ the number of executed synchronization barriers

A synchronization barrier is such an evenr introduced into the SPMD codes, that two or more processors
belonging to some group are blocked until all members of the group have been blocked. For a statement containing
multiple components, if two of its gperations op, and op; are assigned by the chosen CP 1o different processors, and
op; depends on ep,, a blocking barrier is required to synchtonize op, and op.. The frequency of synchronization
determines the overhead of synchronization barriers,

2.1 Overview of the time-slicing optimization framework

The time-slicing optimization framework is based on the concept of PD-Graph. For a parallel statement, the
PD-Graph divides its component instances into several sets, corresponding to nodes in the PD-Graph. Each node
specifies a space partitioning lor the computation of one component {or a series of multiple components), while
each partition can be executed independently and concurrently on different processors. And each directed-edge
expresses a data dependency constraint between two connecled component-statemnents, All edges in the PD-Graph
specily a time partitioning (or a dependency relationship between pariitions in different nodes), e. g., an edge
(188,. LIC,>—~¢ISP,. LIC.), specifics that instances in LIC, must execute before those in LIC;. According to this

CP representation, the paraltlel execution of the statement is divided into several time slices, and each time slice

© HIEERES AT hip:/ www. jos. org. cn

1438 Journal of Software #48-F 4/ 2001,12(10)

contains one or more PD-Graph nodes that are not reachable to cach other. Partitions in the same time slice
execute concurrently if they are assigned to differcnt processors. In particular, for u data parallel loop construct
vontaining multiple statements, ¢, and ¢; are two of its componeni-statements , G= (&, ¢ is one of its PD-Graphs,
e € LIC, A ISP, LLIC,) €54 and ¢, € LIC, A (18P, LIC,) € &, if (ISP,,LIC,) and {ISP,,LIC;) are not reachable
1o cach other in G, G specifies that ¢, and ¢; can be executed concurrently. Furthermore, this concurrency sacrifices
no locality if data accessed by ¢, and ¢, is located in disjoint sub-groups of processors, hence improves the perfor-
mance of the statement’s parallel execution.

For a data-parallel loop construct . more than one PD-Graph can be constructed from its CP-Graph. The prob-
tem of partitioning computation for a parallel statement is to select an opiimal PD-Graph from all of its pussible
IPD-CGraphs. Note that the cost of a PD-Graph is the sum of the weights associated with its nodes and edges. The
weight associated with edge (ISP, LIC,) — (ISP, L1C;) is an estimation of the overhead to synchronize the
instances in LIC, and LIC,. For each node (ISP,LIC) in the PD-Graph, it specifies a space partitioning for
instances in LIC, and its weight, which is a trade-off between the communication cost, load balance and guard
overhead required by the computation in (1SP.LIC), evaluates the efficiency of the space partitioning. The cost of
a PD-Graph is a synthetic evaluation of its communication overhead, load-halance. guard and synchronization over-
head discussed above. Therefore, the PD-Graph with the minimal cost can be expected to have the bhest perfor-
mance , and the problem of partitioning computation for a data-parallel sratement can he stated as selecting a PD-
Graph that has the minimal cost over all of its PD-Graphs. The mechanism used in the time-slicing optimization
framework can be stated farmally as that. for each data-parallel loop construct, it performs the following two
steps:

1. construct the set of possible PD-Graphs from the parallel statement’s CD-Graph;

2. evaluate the vost of cacl PD-graph in the sct and choose the one with the minimal cost.

In Step 2, several important strategies are performed to improve the performance of each PD-Graph. These
strategics arc introduced in Scetions 2.2, 2. 3 and 2. 4 respectively.

In principle, any data-reference in the iteration space i can define an ISP for ¢, and & node in the CD-Graph can
choose any valid ISP (the ISP defined by a data-reference in its iteration space) to specify its space partilioning.
Furthermore. given an ISP for each node in the C1-Graph, the set of combinations (ISP, L.IC} is still nondermin-
istic, and hence the PD-Graph is not decided. Thereflore. the set of possible FD-Graphs for a parallel statement
can be very large, and the problem of searching an oprimal CP over these set is NP-complete, To improve the effi-
ciency of selecting an optimal CP for a parallel statement, the following heuristics are important ;

1. maximizing ISP rank for each iteration space

Load-balance is an imporiant indicator of the performance for space partition. I1SPs with the maximal rank
likely map the iteration space to more processors than others can do, and hence they likely distribute the computa-
tion in a LIC more even. Therefore, in the optimal PID-Graph, the ISP for each LIC must have the maximal rank.

2. minimizing the number of nodes in a PD-Graph

LIC number in a PI-Graph is one key to improve temporal locality and reduce guard overhead. (Given an ISP
for each node in the CP-Graph, the PD-Graph with the minimal cost must have the minimal number of LICs.

3. eliminating P1)-Graphs with cycles

Far each data-parallel loap construct. we can construct # PD-Graph containing no cycles directly from its CI)-
Graph by assigning each component-statement an 1SP. Obviously this PD-Graph is more optimal than any ather
PI-Graph that contains one or more eycles, since any cycle in a PD-Graph means that instances i; and 7 of 5 are
transitively dependent, where s is one of nodes in the cycle. Therefore, eliminating PD-Graphs with cycles den't

affect the result of computation partitioning.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

fEL FARFHBEHFETHEN SO ARALEY 1439

With these three heuristics, the search scope for the optimal PD-Graph is greatly reduced while the optimal
PD-Giraph is not missed. In the time-slicing optimization framework. every possible PD-Graph is constructed and
evaluated by the following steps.

(1) Selecting an ISP with the maximal rank for each node in the CD-Graph.

(2) Creating nodes for a PD-Graph; constructing a minimal number of combinations (ISP, LIC), where LICs
are created by its definition from the CD-Graph, and the associated 1SP choices, such that the nodes in each LIC
have a common ISP.

{3} Determining edges in the PD-Graph: if edge 5,—s, belongs to the CD-Graph and 5, € LIC,; #L1C;2 s,

adding the edge (ISP, LIC,)->(ISP;, LIC;) to PD-Graph, where ISP, is the space partition for LIC, and ISP, is
the space partition for LIC,.

(4) Assigning weight for each node (ISP, LIC)

(5) Assigning weight for each edge.

In each possible PD-Graph G=(=",¢, for node v€ =, the framework performs communication analysis and
optimization, and determines its communication overhead.

2.2 Evaluating the cost of PD-graph

Now we start to introduce a heuristic method to evaluate the weights for a PD-Graph.

For each node v— (ISP, LIC) in the PD-Graph, ISP decomposes the set of index vectors in i, which is the
common iteration space for statements in LIC. The node specifies a space partitioning for the computaticn in LIC,
and communications are required when non-local data is accessed. ITts weight, evaluated by the following Eq. (1)-—
Eq. (4}, is a trade-off between load-balance, communication cost and guard overhead. Eq. (1) says that weight
(v} is the sum of Eq. (2) and Eq. (3). Eg. (2) computes the minimal communication cost of this partitioning.
Eq. (3) synthesizes the effect of its lcad-balance and guard overhead on each processor. Lsize({) in Eq. (4) is an
indicator of load-halance of the space partitioning. Since the computational complexity of LIC on processor proc is
decided by the number of iterations in LocSpace (proc, ISP, the smaller the Lsize(s} is, the less the computational
complexity of LIC on each processor, and the better the load-balance. Due to the diversities of network architec-
tures and memory architectures, the four quantities of twins Weems Werd and Wi in the equations may be different in

different parallel systems.

weight (v} =cost_comm{v)+cost_ctri () 1)
cost—comm (v) 10 X name o+ ZJ %€ X Weam 22
come.
cost _otri (1) = wi + W X Lsize(d) (3)
Lsize (7)) = Max { | LocSpace(proc, ISP) i } 1)
proc€ F
where,
v the ser of communications required by non-local references in v
5 the set of processors
ini average cost of initializing one communication
Weon: average cost to move one unit of data between processors by the communication com € 4"
Wige average cost to compute local iteration space
Wen average control cost of one iteration

Lsize(i} the maximal size of local iteration spaces on each processor
num the number of communications in "
S2E the amount of data moved between processors by the communication com € _,

For each edge, its weight represents the number of synchronization barriers required to synchronize the

© hIEREY

SEAFIEII httped/ www. jos. org. cn

i440 Journal of Software HH4FH 2001.12(10}

dependent computetions in the connected node pair. There are two kinds of edges: edges belonging to non-cyciic
paths. and edges belonging to cyeles. For the first kind, edge o = (ISP, LIC,) — (18P;, L.IC., } indicates a
dependency constraint: there is at least one instance in LIC, that must be cxecuted after some instances in LIC,. A
synchronization barrier. which blocks the execution of any instance in [.IC, before all instances in L1C, have been
executed, 18 enough to synchronize the dependent computations. Thercfore, we assign a weight 1 1o the edge ey In
contrast, for the second kind of edges. a cycle I'= (18P, L.1C,)= (ISP,, LIC,)=~ .. = (ISF,, LIC,;)—~(ISP,,LIC,}
indivates: there is a dependency segquence of statements &€ LIC,,5: € L1C;,. . . 5 € L1 and 555 - € LIC,, such that
iteration-dependent synchranizations between consecutive statements are required. The number @(n) of synchro-
nizations required by computations in I depends on the number of iteraticons in these 18Ps. We usually assign a
maximum of iteration number to each edge as its weight.

Fullowings are two important lemmas derived from the definition of edges in a PD-Graph. They are the basis
of the time-slicing optimization framework for choosing optimal CP. The first lemma says that PD-Graphs
containing no cycles preserve the parallelism in the responding parallel sratement. And the second ensures that a1
least one of such PD-Graphs can be constructed with the five steps in Section 2. 1 far each parallel statement.
Therefore, given a statement’s CI-Graph. we can construct some PD-Graphs without cyeles, and each of them
decomposes the statement’s operation into several sets ol concurrent cperations. When load-balance is considercd
and apprapriate optimization strategies are exploited to reduce communication and loop-control overhead, some of
them decompose the statement’s computation in a way that can achieve desired performance. With the weight
definition of edges in a PD-Graph, the lemma 2 further confirms that the PD-(Graph with the minimal cost contains
no cycles.

Lemma L. If the computation for a statement is partitioned by a PD-Graph containing no cycles, then
partitions containing instances of the same assignment statement are independent.

Proof. Assuming computation in partition p; and p, are dependent, gibelongs to (ISP, . LIC,) and p; belongs
to {ISP,,LIC,). Therefere in the PD-(Graph, there is a path {rom (ISP,,LIC) to (ISP;,LIC,). Since there is no
cycle in the PD-Gragh, (ISP, ,LIC,; and (ISP,,LIC. > are different. hence assigninent statement contained in LIC,
and LIC, are different. It (s impossible for p, and #, to contain instances for rhe same assignment statement. [}

Lemma 2. Fach data-parallel statemen: has at least one PI»Graph that contains no cycles.,

Proof. This lemma can be proved by constructing a PD-Graph that containing no cycle. First we construet
the statement™s CD-Graph G, — (=7, ¥). Let PD-Graph ¢, ={%,¢), where

(1) &={SP{AFG),1s}); sES and A(F (1)) is the left-hand side variable of 5)}

(2) g= {USPLA (G Yo b D= USPLA, (Fo (i), {53) 2 =5, E W)

Any cycle in the G, mezns that instances ¢, and ¢; of 5 are dependent, where 5 is one of nades ir the cycie. []
2.3 Strategies to improve the performance of parallel statements

As mentioned at the beginning of this section, for a parallel program. its efficiency mainly depends on
locality, load balance. guards and synchronization barriers of the parallel codes. The time-slicing optimization
framework exploits the following strategies to address these four challenges respectively

13 Improving locality

[.ocality is improved by permitting each statement select its awn 1SP independently and remote data reusc
among different statements. For each statement, the time-slicing optimization framework supports a broad class of
ISP choices, and in fact some of these choices have the optimal spatial locality. Each statement selects its space
partitioning mdependently to minimize the accessed remote data. And the time-slicing optimization framework
improves tetporal locality by grouping all component statements into several LICs where all statements have same

ISP, thus remote data can be reused when it is accessed by more than one statements n the same LIC.

© HIEERES AT hip:/ www. jos. org. cn

EEL F. ~ARTFHBFAFETTEY S FRILBAR 1441

2) Improving load-balance

The time-slicing framework improves load-balance by constraining that only the 1SPs with the maximal rank
can be chosen by component-statements in the responding iteration space. The ISPs with the maxzimal rank is likely
10 map the iteration space to the most number of processors, and hence likely to divide the pardllel operations in a
statement more even amoag 3 multiple processor system.

3) Reducing Guards

Given an ISP [or each node in the CD-Graph, the framework tries to reduce guards in the SPML} codes by
minimizing the nodes in each PI)-Graph. A PD-Graph nade (ISP, LIC) decamposes its operations into several
partitions such that in cach partition. all statements in the LIC lisve a commmun local iteration space and can share
a common loop-control. Therefore in the SPMID) codes, redundant guards in the same partition can be deleted by

lanp fusiont ™

» and the necessary guards are minimized when the PD-Graph has the minimal aumber of nodes.

4) Minimizing Synchronization Barriers

The strategies exploited to minimize synchronization barriers in the SPMD codes is the PD Graph weight
measuring methods discussed in Section 2, 2. The edge-weight measuring method ensures that the chosen CP
contains ne eyeles, and this in turs make it possible to mave any synchronization out of the local loops of a parallel
statement. The node-weight measuring method ensures that, give\n an ISP for each node in the CID-Graph, the PD-
CGraph with the minimal cost has the minimal number of nodes. Since all dependency is partition-ta-partitian in a
PD-Graph containing no cycles, the sumber uf necessary synchronization barriers is determined by the edges in the
PD-Graph. Therefore, the PD-CGraph with the minimal cost is likely to require fewer synchronization barriers in
the SPMD codes.
2.4 Improving communication performance within a chosen CP

Communication overhead for a parallel statement depends on the amount of data moved between processors
and the communication strategy in SPMD codes. Reduzing communication overhead is crucial on distributed-
memary machines. And many sirategies have heen designed in two principle categories: (1) strategies to improve
spatiel locality of accessed data on each processor by CP selection, and (2) strategies to reduce the amount of data
maved between pracessors and to improve communication efficiency in SPMD codes. In this section, we discuss the
strategies 1o reduce the amount of time consumed by inter-processor data exchange. Given a PD-Graph, our model
expleits the following optimization strategies, which have been implemented in our p_HPF compiler;

1} Message vectorization

Message vectorization moves communication out of loops thus replacing element-wise messages with fewer but
larger messages. In the generated code, statements in a LIC share one common loop nest, and the loop body is
loop-independent, it is straightforward to vectorize the element-wise communication over the local loop range.

2} Message coulescing

Message coalescing combines messages for maltiple non-local references to the same or different variables, in
order to reduce the roral numher of messages and to eliminate redundant communication.” Sinec all statements in a
LIC share one common lood nest in the generated code and the loop body is loop-independent. in each partition,
redundant communicetion can be eliminared when two non-local references are one of the following cases:

* both are reading or updating the same non-local location

« firs1 updating a non-local jocation, then rezding the same location

In each partition of a LIC. when the data accessed by two non-local references locates in the same processor
and hoth are reading references or updating references, then messages for the two references can be combined.
Especially when data referred by both references belongs to the same array . the benelit s very significant.

3) Minimizing checks of buffer access via array redisturibution

© HIEERES AT hip:/ www. jos. org. cn

1442 Journal of Software #HAEFI 2001.12010)

Access chocks are rerquired when the same reference may access local data from an array or non-local data from
a separate buffer on different loop irerations. By redisiributing the array acccssed by the reference, all data
referred by the reference is local during iteratring. In compilers that don™ support redistribution, this can be
achieved by copying Incal and non-local data inte & commen buffer,

4) Overlap areas for shift communication

For a non-local reference. if unly = range of boundaries of array section need to be communicated between
neighboring processors, extra boundary area is added to the sections. When non-local data is read tn a LIC, non-
local data is written inwo the extra boundary before cxecuting loop nest for the LI, When non-local data is
updated, the new value is stored locally during iterating, at the end of each loop nest for LI1Cs, the new value is
written back 10 the neighboring processors vie shift communieation. Therefore, non-local data and local data can
be accessed uniformly.

5} FExploiting collective communiceation

Exploiting collective communication is essential for achieving good speedup in important cases such as
reductions .« broadeasts and array redistribution, and it also may provide significant benefits for patterns such as
12

shift communication'?-. Within these four optimization strategies above. when the problem is regular, only

collective communication is considered in our implementation.

3 Implementation and Performance Evaluation

The time-slicing framework has been implemented iz a HPF compiler p_HFF 10 support FORALL construct.
This section will first describe the implementation bricfly. In the second part of this section, we will use two
benchmarks to itlustrate performance and effectivenzss o the implementation.

3. [Implementation of the time-siicing optimization framework

Figure 6is the framework of p HPF, which composes of a preprocessor, an analyzer, a parallelizing frame-
work. a set of CP consrructors, # set of optimizing tools, a communication analyzer , a generator and an unparsor,
For each HPF program, the preprocessor performs an analysis of syntax and semantics, then translates the
program to an AST {Abstract Syntax Tree) with Sage 4+ +0%. The analyzer’s task is to get the imformation
necessary to parallelize the HPF program and optimize its execution from the AST, such as the shape of the
ohjective processors. data distribution and its references. dependency constrainis, the iteralion space of each
parallel statement, and interfaces of each procedure and its instances. With all these necessary informarion, the
parallelizing framework then decomposes the computation into each processor. optimizes the execution of the
partitioning . and specilies the necessary communication and synchronization between the processors. The genera-
tor implements the result of the parallelizing framework by introducing necessary guards, communication and
synchronization statements into the AST, translating the HPF statements in the AST into Fortran 77 statements,
Finally, the unparsor translates the result SPMD from the form of AST inta the code of Foctran?7+MPI.

As discussed above, the parallelizing framework is the key component of the p_HPF. With the information
collected by the analyzer, it (1) uses the CP constructors to construct at least one CP for each paralle] statement,
selects one optimal CP wher, more than one CP is available; (2} uses the communication analyzer ta detect the non
focal references of the chosen CP; (3) uses the optimizing tools to minimize the overhead of guards, communica-
tion and synchronization. The parallelizing framework uses the time-slicing optimization {framework to parallelize
FORALIL constructs and uses the owner-computes rule to parallelize FORALL statements respectively. Figure 7
illusirates the implementation of the time-slicing framewaork. Given a FORALL construet s. from the analyzer

component . the time-slicing framework can get the shape of the objective processors, dependency constraints in s,

© HIEERES AT hip:/ www. jos. org. cn

AL F AR TREHFETHE S G0 FEER 1443

p— —) { Ovtirnizing tools
[CP constructors WP&rallellznng Tramewark>" -

—{ Communication analyzer |

{Generator

i

AST

4
Unparsor

F77+ MPI
Fig. 6 The framework of p_ HPF

the iteration spaces defined by s. the distribution of each data referred by s computation and data references in cach
iteration space. With this information, the implementation first constructs a CD-Graph for 5. In Step 2, it uses the
heuristics discussed in Section 2. 1 to reduce the scope of the ISP for each iteraton space , hence to reduce the scope
of the optimal CP. Step 3 further reduces the scope of the optimal CP by decomposing the computation into some
partitions that have inherit dependency between each other. Then the implementation constructs all the possible
optimal PD-Graphs, performances optimization and evaluates the effectiveness respectively, and selects one
optimal PD-Graph as the CP for 5. Since the selected CP is a directed graph, it doesn’t exact the exact execution
order of cach partition, communication and communication, the implementation performs an ordering for each node
and edge in the chosen CP. For an edge v;—>v; in the chosen CP, 7, is assigned a time slice that is ahead of the slice
owning v, —*v,, which is ahead of that occupied by v, oo, To support the concurrency of statements in a parallel
loop construct and the overlap of communication and computation, there can be other time slices between those
occupied by v, v,—>v, and v,. In the phase of code generating » the generalor then translates the FOALL construct
into the SPMI} code of Fortran77+MPI. The computation in one node of the chosen CP is implemented by one
loop of Fortran77, guards for ecmputation decomposing among processors and comununication staterments for
nonlocal references. The generator also introduces one synchronizing statement for each edge in the chosen CP to
synchronize the execution of partitions in different processors. These statements are ordered according the time
slice assignment in the chosen CP.

Step 1. Construct a CD-Graph (47,9 for s
Step . For each iteration speee 7 defined by s, compute ite ISP set 9%,
a. H={ISPLAL S G VA (6) Y i a reference in i)
b. ' ={ISP[ISPC # A J ISP € &% and the rank uf ISP is less than that of ISP’}
¢ A — A S
Step 5. d={LIC LIC=%" and ¥ LIC,EPAY LIC; &P A LIC, 5 LIC,,
LIC] rl [.IC2= féj; 3 v16L1(31 A 3 TJZG LICz; m—*m@%;*vze W}
Step 4. Compute the CP choice set 7,
4. for each node in &, select an ISP from the ISP set of its iteration space computed in Step 2
b. using the algorithm discussed in Section 2. 1 to construct the PD-Graph G= (%> that for
each (ISP,LIC)€ <. LICCLIC* € &F
¢, using the communication analyzer to detect nonlocal reference in each (ISP,LIC) & &
d. using the strategies discussed in Sections 2. 3 and 2. £ to optimize the performance of G
e. using the Eq. (1) to evaluate the cffcetivencss of €
. r=ryic}
Step §. Select the PD-Graph G= (%, with the minimal cost from I" as the CP of s
Step 6. Divide the execution time of s into || + |¢| slices
Step 7. Assign a time slice for each node in the chosen PD-Graph
Step 8. Assign a time slice for each edge in the chosen PD-Graph
Fig. 7 Implementation of the time-slicing optimization framework

© HIERRESSAHIIFTR http:/ www. jos. org. cn

1444 Jowrnal of Sofrware HAHFR 2001,12010)

3.2 Performance evaluation

QOur evaluation was performed on a distributed memory Dawn 2000 with 32 nodes. Each node has a Motorola
PowerP(604e processor running AIX4. 2. 0. 0 at 300MHz, and has 256MB of main memory. The nodes are
communicating through Dawn’s MPICH. All results were collected under dedicated use of the last 16 nodes.
3.2.1 N-body '

Three parallel versions of N-body have been cxperimented for warious numbers of processnrs and problem
sizes. The first is band-coded with F77+4 MPI. The second is the HPF code from NPACK benchmark suit. The
third one is modified from thc second by replacing its continuous array-assignments with FORALL constructs,
SPMD code for the second version was generated with the owner-computes rule, and the third with our time-
slicing optimizatian frameworlk.

Table 1 shows the execution times and performance comparisan, The results show that, comparing with the
owner~compates rule, the rime-zlicing aptimizazion framework reduces execution time by nearly 25% in some
cases, The results also show that. the code generared with (e time-slicing optimization {ramework is able to
achieve speedups that are compatable with hand-coded parallel performance. Using this framewark, the cod.e
generated by p HPF for N-body is wilh in more than 3G% of the performance of sophisticated hand-coded
message-passing version of the codes, and the performance percentage can achieve as high as 59, 37% in some
CaSes.

Table 1 Timings and performance comparing {for N-bhody

. This) Tuls) P, Tois} P P
Problem size
PIOCCSSOf number=4
5 000 7.94 19. 37 40,99 25.83 30,74 10.20
7 000 22.01 37.91 58. 0§ 46, 87 46, 96 11.1C
9 000 36. 28 61. 16 59,384 77,82 46. 63 12,76
Processor number—=§
5 0o 4. 10 11. 44 35. B4 15. ?1,_\‘ 26. 96 2. 88
7 000 7.33 19. 84 36. 95 27.02 ~ 27518 9,82
9 000 11,04 31, 66 34, 93 41. 94 26. 34 8.59
Processor number=16
R 2.90 8,88 32. 64 11.73 24, 72 7.94
7 0e0 4. 67 15. 10 30, 93 18. G4 20, 00 .88
9 000 6. 38 21,47 2039 26,74 23. 86 5.86

Tt execution times for the F77 4+ MFPI version
'y execution times fer code generated with the time-slicing optimization framework
0 : execution times for code generated with the owner-computes rule
=150 X100
Po=(T+Ta) X100
Pup=Pu—Pu
3. 2.2 Gravitational wave extraction
A Fortran 77 code is developed by the Pittshurgh group as a benchmark for the problem of gravitational wave
extraction. The HPF version was ported from the serial code hy converting its parallel do-loors to FORALL
counstructs. We defined two kinds of logic parallel systems. The first composes of a two-dimension processor
matrix, and its data are distributed in the way of (# ,B,B). The second composes of a one-dimension processor
vector, and its data are distributed in the wzy of (# . B, #). SPMD code for the [IPF codes was generated with
aur time-slicing optimization framework.
Table 2 shows the execution times ol one time-step for different data layouts and different triplet of (m. n, n.).

The results show that the code generated with the time-slicing optirnization framework is good enough of achieving

© HIEERES AT hip:/ www. jos. org. cn

L F AR TFREFAE T IS AA AL 1445

speedups as high as 11. 7 for 16 processors for this Pittsburgh benchmark. The results also indicate that load-
halance and message size are important factors affecting the efficiency of the chosen CP, and hence substantiate the
measure method of CP's efficiency used in the framework. For the Pittsburgh benchmark, processor matrixes can
provide a better support for .oad-balancing partitioning than processor vectors, and corrcspondingly yields a better
performance.

Table 2 Timings of one time-step {or pittsburgh benchmark

Listribution code
T.(s5} N, {*.B,B> (%, B, %)
T, P Tp(s) e

Praoblem size

(, Moy 2ns}

4 15. 04 3. 58 17.96 3. 18
3ZK512K512 537,13] 5. 75 3. 84 11. 63 4. 91
16 €, 64 §. 62 .97 6. 37
4 9. g5 371 15.72 3.72
8X1024 %1024 58,40 8 8, 32 7.02 9.07 6.44

16 4, 94 11.77 6. 82 - _8.56

.

T,: sequential time in seconds: Ty parallel time in seconds

N, : processor number; P. spredup
4 Conclusions

This paper presents a computation-partitioning (CP) model to {ind the optimal CP for loop constructs, which
may contain multiple statements in the loop body and each compeonent may have its own iteration space. We show
that the problem of computation partitioning is to construct a directed graph with the minimal cost. For a given
lcop construct, the time-slicing optimization framewaork creates a broad class of CP choices. The model finds the
best one by evaluating the performance of each choice. We also introduce some heuristics to improve the efficiency
of searching the optimal CP.

The key advantage of the time-slicing optimization framework is that it tries to find a time-partition mapping
that yields maximal remporal locality on each processor and minimal synchronization fraquency hetween proces-
sors. Moregver, independent nodes that are not reachable to each other in the CP-Graph can he combined to form
a time slice. This combination vields the concurrency of component-statements enclosed in a parallel statement,
since all partitions in a time slice are parallel. In addition, the time-slicing framework simplify code generation
greatly by encompassing many previcusly proposed opiimizations, ineluding joop distribution. loop fusion. stare-
ment reordering, message vectorization, message coalescing, collective communication, overlap area for shift com-
munication and minimizing buffer access checks via data redistribution.

Although the time slicing optimization framework can select vptimal CPs [ur a wide variewy of data-paraliel ap-
plications , the design in this paper does not consider pipelines in applications such as FFT. In addition. some im-
portant opiimization strategics such as leop-splitting and dataflow-based overlappiug of cummunication and unrelar-
ed computation . are excluded out of the framework. Therefore, further work is still necessary to improve the per-

formance of the chosen CP.

References:

[1] High Performance Fortran Forum. High Performance Fortran Language Specification. Version 2. 0, 1997, http.//www.
crpe. rice, edu/HPFF /home. html

2] Adve. V.. Melior-Crummey, J. Advanced code generation for high performance Fortran. In: Languages., Compilation

Technigues and Run Time Systems for Scalable Parallel Systems, Chapter 18. Lecture Notes in Computer Science Series.

© HIEERES AT hip:/ www. jos. org. cn

1146 Journal of Software HAEFIH 2001,12(10)

Springer Verlag, 1997, http://www. cs. rice. edu/ ~dsysrem/techPapers. html

13] Lim, A.W., Chesng. G, 1., Lam, M. S, An affine partitioning algorithm to maximize paralielism and minimize communi-
cation. In; Proceedings of the 13th ACM SIGARCH International Conference cn Supertomputing. 1999, htrp://www.
acm. org/pubs/contents /proceedings fisca/ //

11] Gupta, M. » Midkiff. S. . Schonberg, E. o «2 «f. An HPF compiler for the IBM $P2. In, Proceedings of the 1395 ACM/
IEEE Supercomputing Conference, 1995. http://www. supercomp. org/sc85/proceedings,

[5] lozkus, Z., Meadows, L. . Nakamoto. 3., & al. Compiling Ligh performance foriran. In: Proceedings of the 7th SIAM
Conlerence on Parallel Processing {or Scientific Computing, CA: San Francisco, 1095, 704~709. http.,//www. siam. org/
meetings/archives

(6] Benkner, S., Chapman, B., Zima, H. Vienna Fortran 90. In; Proceedings of the 1992 Scalable High Performance Com-

puting Conference. Williamsburg. VA, 1952,
7] Harris, J., Biresak, J. . Boidue, M. R. . ez «/, Compiiing high perfarmance fortren for distribured-memory systems. Digi-
tal Teehnical Journal of Digital Equipment Corporation. 1895,7(3) .5~ 25.

[#] Hirznandanis 8.+ Kennedy, K., Tseng. C.-W. Preliminary expericnces with the Fortran D compiler. In. Proceedings of

the Supercomputing’93. Portland . OR, 1993. http.//www. scm. org/pubs/contents/proceedings /supercomputing

%] Rogers. A, Pingali. K. Process decomposition through iocality of reference. In: Proceedings of the SIGPLAN’89 Confer-

ence on Programming Language Design and Tmplementation, DPortland . OR, 1989, bttp; //www, sem. org/pubs /contents
procecdings
[10] Kennerk Hawick. High Performance Computing and Communications Glossary. Technical Report CRPC-TR94627, Center
lor Research on Patallel Compuration, Rice University, 1994,

{115 Gerald, Roth, Ken. Keanedy. Loop Fusion m High Periormance Foriran, Technical Reporr CRPC-TRY8745, Center for
Research on Parallel Compuration, Kice University., 199§,

"z Franvois, Bodin, Irisa, Peter. Beckman, Dennis, Gannon, et af. Sage——+: au Oblect-Orniented Tooikit and Class Library

far Builling Foriran and C+ + Restructaring Tools. 1954, hupy//www. extremc. indiana. edu/sage/docs. html.

— 1T HATHEFTESITEYN TN FA L ER
20 AKE, BAF. TXH, #s#
L g K i+33{m#3‘r-*‘#&*§_.4b)i 100871)

WE: ~ MRS VYREFTEDGH LN CPIN BB S T Ra A EbNAA. FEANSZE—NHLE
BT ENHE. REEAATOEEHEPE L RIRRAET RN NTELHEL 45T RREAS
WRM s F M EH T AR E R, A RN RATA A AT A SOt e R
R HHE M EZRAAN. &R THSEHEFALE B b BAZ e mAN. T — 24 BHLFEG,. 0 HH
AT EHHES RN EFRFANAR A REES R RIGF LRI NS BF 4
HREPHNE AT GARFAIE ABFTEAATNES LAY N ASRI,FTENE L. FEENMTEHR
A RERZREFRFPAF-ANTHERALOFTER AR FH SIS, 4 4 HPF % 8 p HPF
AR BRCREEATHFORALL MW LN SRS EA2W EHANANETHAAAL, R E MRS H
HEATFRAEHRET IR b Flot, REd itk GMBLTH TR EMRBHHEL S LN 5.
FEWA. BEAAEHAAAL LU HERERETRN A APH B HL

S HK S TP SCRHARINAD, A

© hEERE

PFUFEHT http:// www. jos. org. cn

