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Abstract; In this paper, a kind of wee methed is proposed to investigate Ruos® extensions about the reason-
ing by cases in default logic, discuss deeply the computation of Roos® extensions and analyze the relationship be-
tween Roos’ extensions and Reite:’s extensions. The algorithm decomposing the smallest set of literals from a
set of clauses is presented to compute Roos’ extensions, The method is useful for computing Roos’ extensions
znd analyzing the complexity of reasoning by cases in default logic.
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Reiter’s Default Logict™ is one of the most popular formalism for describing nonmongctonic reasoning in artifi-
cial intelligence. One important defect of Reiter’s default logic is, however, inability to reason by cases. We con-

sider the following examples,

Example 1. let W=ieV p},D= {#”ﬁTY} Intuttively, the consequence ¥ shonld he deducihle. Bur, it is

impossible in Reiter’s default theory (D, W) because no default rules in ) are applicable. But we can derive ¥
through reasoning by cases.
Example 2.  Let W= hird, penguin \ astrich}

[ bird vexcep _bird jcan_ fly penguin excep_ penguin ,can_ fly penguin. excep_ penguni ,excep_bird

D= 1 can.. fly ! —can_fiy excep _bird

L] L]

ostrich 1 excep._osirich ,—can_ fly ostrich,—excep_osirich excep_bird

L]

—can . fly excep bird

I the default legic . the consequence “can fiy™ is only one deducible consequence. But it is not the result that

we hope to get, We convince that both “excep_bird” and “ —can_ flv” should be derivable through reasoning by

bird ,—excep_bird,can_ Ji
cases, Therefore, the rule = 2 Y

- .
can_Jiy e no longer applicable.

We note that through reasoning by cases a default rule will be applied in Example 1, and the application of a

default rule may be blocked in Example 2. These are intuitively more plausible.

To overcome the defect in Reiter’s defaul: logic, Roos'® modified the definition of Reiter’s extension, and dis-
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cussed the relationship between Reiter’s extensions anc Roos’ extensions.

Zhang™ investigated how to compute Roos’ extensions of a default theory in similar way to compute Reiter’s
extensions , and presented some similar results.

In this paper, we will introduce a kind of tree method to deal with Roos” extensions so that we can deeply dis-
cuss the computation of Roos’ extensions and anzlyze the relationship between the two kinds of extensions. In the
definition of Roos’ extensions, Roos considered mainly the deductive closure of a set of literals. We combine the
method about computing Reiter’s extensions with the idea of Roos to compute Raos’ extensions ., and presented zl-
gorithms about decomposing the smallest set of literals [rumn a set of clauses by introducing three algorithms about
resolution. The method is useful for computing Roos' extensions and analyzing the complexity of reasoning by cas-
es in defaulr logic.

1 DPreliminaries

We assume conventionally that all formulas and default theories are closed except for specification.

Definition 1. 1. [V (Reiter-extension)

Let A= (DD,W) be a default theory, For any set of formulas S, let I'(S) be the smallest set satisfyirg the fol-
lowing three conditions :

Dy wWerds)

(Dy) Th(I'(SY)=I(S)

if a:r@;v}-.;.‘?

(D3 ~€D, a&I'(8S), and =fs... :8.&S, then YET(S).

A set of formulas E is a Reiter-extension of the default theory (D, W) if and only if E=T(E).
Theorem 1. 2. ' Let E be a set of formulas, and let A= (N, W) he a default theory. Define E,=W and for i=>

@iy .. P
¥4

0y Ecoy=Th(EDJ {3’ “eD,a€E B ,..., 3. &E}. Then Eisa Reiter-exrension if and only if

E= U’og{.-{mEl -

Definition 1. 3. "*/(Roos-extension)

Let A= (D,W) be a default theory, For any set of formulas S, let I'(S)={Ty...+7.}), TET(S) if and only
if T is the smallest set satisfying the {oliowing three conditions:

(D' weT

'y Tis equal to the deductive closure of the set of literals that T contains, i.e. «€ T if and only if there

exists a subser of literals 7"C7T such that 7' F a.

[€2 %] i{MED.aETandﬂﬁl,...,ﬁm&Sqthen YeT.

A set of formulas 7" is a Roos-extension of the default theory (D,W) if and only if E€I'(E).

Notice that the difference of the two kinds of definitions about extension is the conditions (D;) and (D';). In
Definition 1.3, I'(S) will exactly consist uf une set T if the condition (D';) is replaced by the condition (I;) in
Definition 1. 1.

, P P,y
Remark 1.4. (1) Let W={aV =8} and D= {?. _"@5 ) —_‘5 , then for the default theory A= (D,W),
=

E=Th{{a V-}) is a Reiter-extension, and both E,=Th({a,8}) and E,=Th({~f3.8}) arc Rovs-extensions.
Clearly, ECE, and ESE,. Additionally, we note that the above default theory (D,W) is a normal default theory
and E,,E; are two different Roos-extensions. But £:|JE; is consistent, i. e. the arthogonality of Roos-extensions

is false in a normal defeult theory,

(2) Let W= and D = iiﬁc\!’:,‘gﬁg}, then the default thecory A = (D, W) has a Reiter-extension
a
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E=Th({aV f}>, but it has nt Roos-extensions.
(3) (Example 1 continued) The default theory A= (D,W) has a Reiter-extension E=Th({aV 8}) without
Y€ E, and the default theory (D.W) has two Roos cxtensions E, —Th({a,¥}) and E,=Th({8,7}) with Y€ E,
and Y€ E,.
(4) (Example 2 continued) E=Th{{bird,penguin\ ostrich.can_ fly}) is a Reiter-extension and
E\=Th({bird, penguin,can_ fIy}),
E,=Th({bird , penguin.—can— fly,excep _bird})
Ey=Th({bird sostrich,can- fly}),
E,=Th{bird sostrich y—can.. flyexcep_bird})
are Roos-extensions, and E,{JE; and E;|J K, are inconsistent.
Definition 1. 5. (Clausal default theory)

(1) A default d= { “—ﬂ—y—g— is called clauseal'if

(a) @ is a conjunction of clauses.
(b) each 8;(1={j=<Im) is the negation of a clause.
(2) A default theory A=(D,W) is clausal if W consists of clauses and every default in D is clausal.

From now on, a default theory A=(D,W) means that it is clausal.
2 Discussions about Roos-extension

In this section, we will present some basic definitions and notations, and investigate an characterization about
Roos-extension.

Definition 2. 1.7(1) Given a formula a, define SL(a)=1{L,,... L,}:LESL(a) is the smallest set of literals
satisfying the following conditions ,

(1. 1) L is consistent

(1. 2) LT Literals(a)

(.Y Lta
(where Literals(a) is a set of literals occurring in the formula a)

(2) Given a set of clauses S, define SL(S)={L,.... .L.}: LESL(S) is the smallest set of titerals satisfying
the following conditions ;

(1.1) L is consistent

(1. 2) L& Literals(a)

(1.3YLFS
When SL(8) has exactly one element L, we also write SL(S)=1.

Definition 2. 2,7% Let 4= (D, W) be 2 default theory and E a set of clauses. Define E,(A) € SL(W?Y and for

20, E;(Q)Y=TH{IIJ {]’ g"&hT’—&

I)'. let M’=Un:-_:|‘f:.".-E; a).
We note that for a different L at stage i (iZ20), we get a different £,,{4). Therefore, M =Uozi-.. E: (A) is

€D € E (D) and of,.. .. 1—fu& 1;} for some LESL(E,(A)). Final-

relevant to the choice of the different L at each stage.
Let (L, A)={M{,....M;}, MEB(E,A) if and only if M =Ugic. E(4).

Notations: Let D be a set of defaults and = * a default in D. Denote

n:,‘?1 Yeoe d

Y
Pre(8)=1{a} .Pre(D)=UscnPre(8).
Just(d)= {ﬂl beaw lﬁm IS JMSI(D)=UsEpJuSI(5)

Con(8)={¥} and Con(D)=Usc,Con(8).
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Definition 2. 3. ©° Let A= (D, W) be a default :heory, E a set of formulas and M" in ®(E,4). Define
GD(M A, E) = {M&r:;aem" and —B,.... .-qﬁ,..&E}.

In particular, GD(E,A,.E) is denoted by GD{E,a). )

We say that GD(M" ,A,E) is the set of default generators of M* with respect to the set of formulas E.

Theorem 2. 4.0 Let A= (D,W) be a default theory and E a set of formulas. Then £ is a Roos-extension of
(D,W) if and only if E€ {Th{(L)}reswiconune.an

Definition 2. 5. 0 Let A= (D,W) be a default theory and D' a subset of D. Define

D.(D' A L)= {a—ﬁ“y—'ﬂ"’Q D'|L+ a} for some LESL(W) and for iZ=0

D (D ALY = {Men | +al for some LE SLWUCon(D, (D' 4:L)))

As in Definition 2. 2, we get the different D;(D',4,L;) by taking the different L at stage i (=0). Therefore,
M=U i D (D' LA L) is relevant to the choice of L, at stage 7.

Let ACD' ,A)={M{,... . M{}. M€ A(D',A) if and only if M'=Ycic.. DD A, L).

Definition 2. 6. Let A= (D,W) be a default theory. For any set of formulas E, define inductively a tree
T.(E,4) as follows

(1) The root of T.(E,A) is labeled with ar empty set, denoted by Root (T, (E,A))=T.(E,A,0) and called the
G-level nodes of T".(E,A).

(23 Assume SL{W)={L,,...,L.}. Then for each ;. L;is a child node of T.(E,A,0), denoted by Children
(T A(EA,00)={L,y... L} =T.CE,A,1). The elements of T.(E.A,1) are called the 1-level nodes of T'.(£.,4).

(3) For any i = 1 and each L € T, (E, A, i), define E_, (A) = Th (L) U

{r MQD,L}—aand “Brirs ..ﬂ,e.,.e;-a} and SL(E1(A)={L'1y... L'}, Then for each jO1<js<

#')y L';is a child node of L, denoted by Children(L)={L',,... L', } and T.(E,4.i+1)=Urer .5, Children
(L). The elements of 7. (E,A.i4+1) are called the (4 1)-level nodes of 7. (E.4).

Definition 2. 7. Let A= (1),W) be a default theory and E a set of formulas, and let B be a branch from the
root to some leaf in T.(K,A). Define E,(E.A,/) as a node at i-th level on the branch 8.

Clearly, (1) For each branch B of T,.(E,A), B corresponds to a sequence of set of formulas:

EfEAN=, Ex(E, A1) ... JEx(E,Ai).. ..

where Ex(E Avi+1)YESLIE(E A for iz2].

(2) Each M’ in B(E,A) corresponds to a branch B of 7. (F,4). Conversely, a branch B of T.(E,4) can be
transformed into a M* in @(E,4) in Definition 2, 2.

Theorem 2.8. Let 4=(D,W) be a default theory and E a set of formulas. K is a Roos-extension of (D, W) if

< and only if there exists a branch B of T°.(E,A) such that
E=Uscic. Ez(E,A.i+1).
Proof. Since E is a Roos-extension if and only if E is in @(E,4).
Definition 2. 9.7 Let I be a set of defaults and L a set of literals, D' is L-compatible if there is no

EL&-}'—”—&ED' such that L F —f; for some i (1<\i<{n). D' is maximally L-compatible if there is no D", D CD",

such that D" is L-compatible.

Definition 2. 10. For a default theory A= (ID.W) and [)' a subset of D). Define inductively a tree Ty — (D' ,4)
as follows:

(1) The root of T, (D', A) is labeled with an empty set, denoted by Root (T3(D',4))=T,(D',A,0), and
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valled O-level node of T, (I)' ,4).

(2) Assume SL(W3={L,,...,L,}, Then for cack j, D), A, L)= {ﬁ“'},‘—"ﬁmED’ ;- ﬂ‘} is a child

node of T,(D +A,0), denoted by Children (T (D A0 = {0y (D' AL Yoo W D (DA LD =1(D 4,10,
The elements of T'(D,A,1) are called the 1-level nodes of 17,0, 4).
For any ;221 and each D"E T, (D', 4,0, let SLOV U Con(I¥))={L'\.... L'y }. Then for each j{I={j<n’),

define D4, (D', AL )= {MDED’ |45 F ﬂf} for L' ;€ SLW UCon (D" as a child node of D", and denote
Children (D" ={D; . (D VAL s oo D (5400 and To(D' 4.0 + 1) = I Children (D"). The ele-

e A
ments of T4 (D' A i+ 1) are called the (/4 1)-level nodes of T4 (D' . 4).
Definition 2.11. Let A=(D,W) be a default theory and 2" a subset of D), and let B be a branch from the root
to some leaf in T (I ,A). Define Dy{IY ,A.i) as a node at the i-level on the branch B.
Clearly. (1) For each branch B of T.{(I),A}, B corresponds to a sequence of set of defaults:
DD LA =2 D, VA L D (DY VA

5ﬁ—);—'geﬂ | IN a} for some LESLW UCon (Dp(D' A,

(2) For each branch B of T,(D',A), B correspunds to a sequence of set of literals
Le(D' LA GY, Ly(D' A Dy s Ly (D A7)

where Dp(D' ,4,i+1)= {

such that for i2=0
LulD A DESLOV UCon{ Dy (D", A.1))
ﬁl'ld

4 ]
DulD A+ = {Lm——" v B L 806 Fa}

(3) Similar to 7,(E,A) and @(E. A}, D* € ALLY ,A) corresponds to a hranch B of T,(IY .A). Conversely. a
branch B of T,(I),A) can be transformed into a £2° in AL, A) in Definitien 2. 5.

Therefore, it follows tha:

Theorem 2. 12. Let A= (I7,W) be a defzult theory. (L2, W) has a Roos-extension E il and only if there exists
a set of defaults D" <D such that T, (D" ,A) has a branch B satisfying the following conditions

(1) D" =U gy D5 (D" A1)

(2Y D* is Lp* -compatible, where Ly =Uzrco Ls(D7 A48
(3) For any a—w:ﬁl"y" "G"’GD*D" , either Ly ¥aor Ly F=f for some i (155 <Im).

3 The Computation of SL{(S)

In the last section, we note that in the computation of Roos-extensions SL{S) must be considered at each
stage. In this section we will discuss how to decompase a set of clauses S in order to get SL{§). We introduce
three resolutions about clauses as follows

Algorithm 3. 1. % Unit-Resolution

Input: A CNF formulas §= /€y 0r S={Crre. 50l

Qutput: Reduced CNF formulas to be equivalent to §,

Step 1. if S contains no unit clause then Stop and Return
else if S contains two cenflicting unit clanses (C,—/{ and C,=~I
then Stop and Return §=1{ }.
Step 2. Let {;={ be a unit clause cn literal {.
Step 3. Delete all clauses in S that contain /.
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Step 4. Delete all appearances of =/ in the remaining clauses, and go to Step 1.
Clearly, the complexity of the algorithm is O(n®), where » is the number of variables appearing in S.
Algorithm 3. 2. Bi-Resolution

Input: A CNF formulas §= Z\]C; or §={Cyr. .. Cu}.

Ourput; Reduced a collection of CNF, F, whose disjunction is equivalent to .

Step 1. Let F=1{S8z}, which Ss is Unit Resolution of S.

Step 2. if F contains no CNF S' in which there exist clauses C;, C, with same literals
then Stop and Return F.

Step 3. Let '€ F and 8" have at least two clauses containing a common literal .

Step 4. Let C'=IV Clas.. . .C"={V Ch, be all clauses containing literal / in §'.

(Notice that C*'={V Cl,... . C*=[V C?,, are nonempty. )

Step 5. 8, =(§" —{C'....,C*}y U} and §',=(S' —{C\. . ., C*} YU {Closvu v 1 Chyl.

Step 6. Delete 3’ from F.

Step 7. Apply Unit Resolution to §'; and 5’,, viclding 8", and S”;, respectively.

Step B. Add S”. and 5", to F and go 1o Step 2.

Algorithm 3. 3. Tri-Resolution
Input: A CNF formulas S= AC:;or S=1{C,,...,C.}.
f]
Output; Reduced a collection of CNF, F, whose disjunction is equivalent to §.

Step 1. Let F=(Sg}), which Sk is Unit Resolution of S.

Step 2. F is a collection of CNF by applying Bi-Resolution to CNF Sg.

Step 3. if F contains no CNF 8’ in which there exist clauses C',C’ with a pair of literals, / and —(,

then Stop and Return F.

Step 4. Let §' € F and clauses (' and C7in 8’ such that ('=1V C'....C' ==V Cl...

Step 5. S =" —{C,CDUULLS, =@ —={C,C'HURI and § = (8" —{C,C D U{CL.,Cll.

Step 5. Delete §' from F.

Step 7. Apply Unit Resolution to $',.8', and §';, yiclding S”., $"; and $”;, respectively.

Step 8. Apply Bi-Resolution to 8", S"; and 8", yielding ¥y, ¥;and F;, respectively.

Step 9. Add F,, F, and F;to F and go to Step 3.

We notc that applications of Unit Resolution. Bi-Resolution and Tri-Resolution have preference. The purpose
is to reduce complexity of computations and to ensure CNF as small as possible.

From the above algorithms, the following theorem and propositions are trivial.

Theorem 3. 4. Let S be a set of clauses. We have the following results.

(1) If Syis a set of clauses applying Unit Resclution to S, then Si contains no unit clauses that occur in other
clauses as a literal.

(2) If Fyis a eollection of CNF applying Bi-Resolution to S, then every CNF in Fg contains no different claus-
es C;and C; that have the same literals.

(3) If Fris a collection of CNF applying Tri-Resoclution to §. then every CNF in Fr contains no different
clauses C; and C; that have the same proposition variables.

Let S be a set of clauses, we can construct a collection Sgread (s) of CNF from S in Tri-Resolution by collect-
ing and adding literals in Unit-Resolution and Bi-Resolution. Spread (s) is called the spread of S.

Example 3.5. Assume S={a,(aVh),BVc),(bVdV-e).(6VeV fV g)}. then Spread (S)={a.b}.{a.

cvesdtalascme, (fV gd) by {a.c.d  (FV @)
Proposition 3. 6. Let S be a set of clauses. Spread(S? is the spread of S. Then for cach sct of clauses S in

Spread (S), Var(C;)(Var(C;) is an empty set for any different clauses C; and C;in §’.
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(where Vur(C) is the set of variables in the clause (7, )

Proposition 3.7. Let S’ be a consistent set of clauses. If Var(C,)Var((,) is an empty set for any clauses
Co Cin 8" (G 3), then

(1) A set of literals L is in SI{5") if and only if L contains exactly one literal of each clause in S'.

(2) |SL(SHY| —(1;[’ {C|s where {C] is the length of clause C.

Theorem 3. 8. Let S be a set of clauses and Spread(S) the spread of S, then the followings held .

(1) For any 8’ and $" in Spread (3), the symmetry difference L' and L” is nonempry lor any L' € SL(S') and
L'e8SL(8".

(2) For any §'€ Spread (§), the symmetry difference L' and L" is nonempty for any L/, LY€ §L(S™.

(3> SL(S)=U,\--gs,~m.ﬂ\-;SI,(S').

(4) |SLeSH = ( [] Ic])

S Um ad (57

a

Example 3. 9. (Ex.ample 3. 5 continued).

SLIS)—{Harbt dascsesdts{avesmes ) davcame g b lusesd s fls laserdag ).
4 Conclusions

We presented a kind of tree method to investigate the reasoning by cases in defauli logic and algorithms to
compure the smallest set of literals from a set of clauses. The algorithms can be applied o the computation of

Roos” extensions.
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