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Abstract, In this paper, a generzlized fuzzy CMAC (cerebellar model articulation controller) is presented,
the sufficient condition of the learning of the generalized fuzzy CMAC is derived, and finally the learning eon-
vergence of the generalized fuzzy CMAC to the least square error is proved. The resulis provide a mathemati-
cal foundation for the generalized fuzzy CMAC's wide applications.
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Two decades ago, Dr. Albus presented a unique neural network model called C.\’IAC (cerebellar model ar-
ticulation controller ', based on a model of the human memory and neuro rmuscular control system. A CMAC
network as a controller has the capability to learn an unknown nonlinear mapping by examples, and 10 reproduce
multiple outputs in response 1o multiple inputs. Because of its table look-up mechanism and its hash-code based
mapping structure, CMAC is able to cope with high-dimensional input /output applications without severely de-
teriorating their processing speed and performance. Recently. Dr. C.T. Chiang et ¢/, proved the learning of
CMAC can convergel®,

Fuzzy set theory was innially propused by L. A. Zadeh as a 1ol to model the imprecision thar is inherent in
human reasoning, especially when dealing with complexity. This theory has been used in widespread application
areas. One of the important applications is FLC (fuzay logic controller). FLC is easy to design, especially in
cases where the control laws are nonlinear and the system is complex.

As mentioned ahove, CMAC and FLC can been used as controllers. The advantages of CMAC over FLS
are as follows,

(1) Thers ave very efficient learning laws to zpdate the values of weights based on experience and exam-
ples.

(2) There is a random mapping mechanism to reduce the physical memory requirement for multiple inpu-
and high-resolution applications.

(3) There cxist efficient input encoding schemes for high-dimensional input vectors.

The advantages of FL.C over CMAC are as follows,

(1} It is possible to interpret the implication of weight values using linguistic labels.

* Projeet is supported by the British Royal Society, WANG Shi-tong was born in 1564, He is the head and professor of De-
partment of Computer Scivnce at the Eastchina Shipbuilding Institute. His research interests include griificiai intelligence, fuzzy
systems, neural networks, etc. Baldwin, J.F. is the head and professor of Advanced Computer Research Center of Bristol U-

niversity. Martin, T.P. is the reader of Advanced Compuier Research Center of Bristol University.
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(2) The membership functions and the firing strengths contain additional information as to how close the
input vector is to each linguistic variable. Therefore, the number of input space partitions may be smaller to
achieve the same generalization and cutput smuothness.

(3} The fuzzy rules can take a variety of forms while only numeric values can be associared with CMAC as-
soctative memory locations.

{4) There are many approaches to construct a fuzzy control knowledge base. using expert’s experience and
knowledge.

Fuzzy CMAC combines the advantages of both CMAC and FLC, and is obtaining greater attention and be-

ing used in applications. The architecture of often-used fuzzy CMACs is shown in Fig. 1.
v

Defuzzifiration

(it
Nh-—-1
~g /
5 Nh
¥ od !
Tuzzy strength Associative memory
Fuzzy encoding Fuzzy inference cell (vector)

Fig. 1 Architecrure of often-used fuzzy CMAC

As shown in Fig. 1, fuzzy CMAC inherits the preferred features of arbitrary function-approximation, learn-
ing and parallel processing from the original CMAC neural network, and the capability of acquiring and incorpo-
tating human knowledge into a system and the capability of processing information based on fuzzy inference rules
from fuzzy logic. The combiration of neural network and fuzzy logic yields an advanced intelligent system archi-
tecture.

At the input stage, the fuzzy CMAC uses the fuzzification method of FLC as its input encoding scheme.
Fuzzy rules can be assigned to each associative memory cell. These rules may not necessarily have a crisp conse-
quent part, The cutput generation uses a centreid defuzzification approach which sums up the weighted cutputs
of the activated rules based on the firing strengths é. The overall mapping function of a fuzzy CMAC can be for-
malized as

ar
E b,u,
) =2 — (n

20
=

whete r=[or—1,7—2,...,2—N]" is the input vector; v, p=1,2,... s M, are weights of the network:; M=

N i—1
i f N=1; M= 2 G- Emm%ﬁ'] for N>1, i=1,2,... N, and m, is the number of knot points (see
Fig. 13 on the ith input dimension. j=1,2... .m0, &, =, (c—1) % pt p Cx—2) % ... % oy ;n(x— N, where ji
(including the following similar representations) denotes j,.

Faor most fuzzy CMACs, an often-used learning rule of weights is based on least square error and BP-learn-
ing rule. Thus, an important problem occurs; Can such learning rule converge? Up to date, although there are
many successful applications, only cne paper deals with the theoretical approximation problem for fuzzy CMAC
with a special fuzzy membership function™. The learning convergence problems are as vet to be solved. This

paper firstly generalizes the above fuzey CMAC, then answers this problem. Our analysis results show that gen-
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eralized fuzzy CMACs have the feature of learning convergence. This conclusion is very important, and it pro-

vides the solid mathematical foundation for wide epplications.

1 Generalized Fuzzy CMAC and Its Learning Rule

In this section. we will describe the generalized fuzzy CMAC and its learning rule.

Definition 1. By an &-operation we mean a continuous function f3:[0,1]* (0,1]—=[0,1] that satisfies the
following four properties:

(1) f1.€0,0)=Ff:(0,1)=/432(1,0)=0, fe(1,1D=1,

(2) fila,b)=f1(b,a) for all a and b,

(3) fula.b)<<==afor all a and 4.

(1) if a>0 and 50 then fila.b6)>>0,

Obvicusly, fiis an extension of triangular norm 7.

Definition 2. Suppose g, (x —i) is a fuzzy membership function, we define the generalized fuzzy basis

function &,(z) as

b (x) = fa Qi n {x 1) (falpy o Ca—2) (fon s o Felpymrjpmr o — (N—10) s i 6 (x— NI I DD

I3
Remark 1. There are N * Em, fuzzy membership functions in fuzzy encoding, as shown in Fig. 1. For
=1
il
Fig. 1, we can get Nh= Em; generalized fuzzy basis functions, i.e, p=1,2,...,Nh.
=1

Remark 2. The generalized fuzzy basis function here is quite different from the often used fuzzy basis func-
tion, just like
N
,uq_jg(.r*i)/sz
Pl
For generalized fuzzy basis functions, it is very easy to prove the following theorem.
Theorem 1. &-operation is the extension of triangle T norm; a generalized fuzzy basis function is a bounded

fuzzy basis function.
Let af = [as.11@010. -+ 1,30 ] denote a selection vector of generalized fuzzy basis functions which has M.

Formula (1) can be represented as:

y,=aTB (I_-)V/ 2 =a,.:b;

by {x,) J 0 0 Ty 2
0 by(x,) 0 0 vy i
=Lai10ds2s- - 12580 ] /Zas,,b,
.o - Ve - [P i=1
4] o] 0 by (x,) Ui
where
b () 0 0 0 N
0 &(x) 0 o Ty
B(x,)= y =
0 ¢ 0 bup(z,) e

We call Eq. (2) a generalized fuzzy CMAC. It is obvious that the fuzay CMAC shown in Fig. 1 is a special
case of a generalized fuzzy CMAC. Generalized fuzzy CMAC represents a family of fuzzy CMAC.

Nh
Remark 3. It should be pointed out that we can not define aj,,-b,-/ Ea,,,b,— as a basis funcrion or its variant.
d=1

This is because a,, is a component of selection vector which is not deterministic with the execution of fuzzy
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CMAC. This sufficiently shows that the generalized fuzzy CMAC is not a simple fuzzy generalization of CMAC,
and that we must view it as a new model to be investigated.

Suppose Y, is the actual output corresponding to input x,, we choose the least square error function:

E=(Y,—y)"/2 (3)
then the learning rule of the generalized fuzzy CMAC is as follows.,
b
Am=~'a/M*gTEk=— /M*EE;% af/M % (Y, — aw(r))# (1)
2anbix)
f=1
where w(z,) = [t wes. .. -me.:th(#”; a/M is the learning rate: M is defined in the above section.

E a:.lbi (x.r)
i=1

2 Condition of Learning Convergence of Generalized Fuzzy CMAC

In this section, we will prove that a generalized fuzzy CMAC with the ahove learning rule can converge to a
limit eycle, Suppose a set of N, training data is repeatedly presented to the learning rule of a generalized fuzzy
CMAC, v{’ is used to indicate the vector of weights before the sth sample is presented in the 7th iteration of
learning. 1f the number of elements in the weight vector v is less than the number of training samplas, generally

GFD How-

speaking, during the training the vectar v will change between one sample and the next, i, e, v 5!
ever, we will prove that v{” will eventually equal v*? if i approaches infinity. This shows that the vector will
repeat after a cycle of training.
With the above learning rule, we can rewrite it as follows:
v =y 4 A
@10, (2, y)

aey,202( 1) il

=¥t a/M o« (Y, —a D)) /Ea,_lb (o)
5>

o—1.naln (T 1)

=y ta/M( Y, T B )/za, b (%) ) BGx_)a I/Ea,vl,b (2.1

=t a/ M Blrodac,/ Daws bz (Yo —aTiBlas, W)/ Za- 1B (21))

By using the above Eq. (§), we can calculate the difference in vector v, between two consecutive iterations i
and i +1 as follows;
D o gD ) o D L AR IAD — (082, — Ay )
Ni

=DvZ +u/M = [B(-Iz—l)as—l/Ealfl-rba(-r;*l)](Y’*‘-iaf:{)B(‘I“ )"-"H))/‘_m’ 16y (20—
/M + [ Bz, /Ea, b () | (¥ — a3 B o 1)v,"1)/2 @umribilz,1) (5)

=Dy, e/ B [ Bl 2B | Shars b)) ]« =y

=1
’ ¢ Ik 2
=‘\I—a,/M* B(_rl l)ahla(T)B(.Isvl)/[ Ea,_],,b,(.rj_l)) ]) * Dy,
1=1
We define Dvi’ = Iwv§] and anv.—a, while s—=1. We also define

N&
Ea)=1—a/M* B(a- 80580 [ Dlabia-)) ()
=1
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With these notations , the proof of convergence of generalized fuzzy CMAC to a limit cycle is 1o show that D ¥
will become a null vector for all 5 when / approaches infinity.
In terms of Eqs. {(6) and (7), we have
Dy =B E _s..E\Ey. . .E)DV " V=(E,_E._;...E\Ey... EYIN® (8)
Let
G=E._,E._;...E Ex. .. E, {9)
thus, Eq. (8) becomes
D= (G, Dv,” (16)
Theorem 2, The matrix Es has the following propertiés.
(1) Es is a symmetric matrix.
(2) Let e; be the elements of the mairix E.. then

jl if the 7th element of ¢, is ©

MA

4= i X
ll—a/ﬂr!* by ® b (x,) % EF.-(.Z';)/ ( Ea,,,b,.(x,) } ? if the 7th element of @, is 1

=1
1 if the ith or jth element of @, is 0

&=

Nh
’ —a/Mxb(x) % b(z) « b.-(.r,)/}: Za‘,,b,(x,)}z if the ith and jth element of @, are 1 and i %
i=i

Preaf. This theorem ean he directly obtained fram the definition of E..

In terms of the above analysis, we may represent E, as

i ... 4 Q 0 0 0 PP ¥
0 .. e, 0O L. e, O ... e, 0 ... O
4] 1 0 0 0
E= 0 € o] €4 0 [ 0 0
4] 4] 1 0
0 e, 0 s gm0 e B 0
Le ... 0 .9 % U 0 L. 1.

Theorem 3. Let S, be a set indicating the positions of those non-zero e;; elements in E,. If a is positive and

less than
M
2M[ ( Ea,,,-bl- (x,) ‘| Z:I/ 21),-(1;) * b (x,)
=1 tiEs,

for any matrix M, whose elements are #,, the norm of row vector / of M, » E, will nor be greater than that of

row vector ¢ of M.
Proof. Let =M, E.and 8,={p,q,. .. ,r’ be a set indicaring the positions of those non-zero ¢;;elemeats
in E,. The subsctipt s denotes that §, is the set for E, and x,. For simplicity, we use & to denote b,(z,3 in ihe fol-

lowing proof. With the above definitions, the norm can be calculated as follows.
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Nh
|rowiof @l = Eq., * gii = (i pp Mgyt o Frniee )it liptpg T migege o oo 1 micer )t |
-1
Wa '

Cmipeytmigee - oo tmaen )+ 2 m,m,J

i=1.j€5

= (miyarM | Ea,,b @) )P D bty ) (g =M D b2 ) T mbib,)

= = Ies,
M Nk
(m,,—a/'M/( Ea,,,—b,-(x,)] Zm,;b, ) + E m.,m,,
i=1 tes, =145

= Em,;m,;*Za/M/ Ea, NES )) (maybyt gl +. . +meb) Em.fb:"'

lEé
NE Nk
(arM/( Dlachi(ed)) Gubstbibt ..o Nmdi) 20 mim
i=i 1€8, FELIE S,

Nk VE
-_Em,,ﬂ.i,+[(a/M/[ Sabiled) )P D bk —2a/M [ | Y‘a L) (Y mat)
= i=1

lES €8,

Since ( Zm,gbl} 220. if

fGS!
I:( a/M’,"( Ena!.‘b,(zg)] ) Zb;bz—Zﬂ’/M/( Sab(z)) 21<{)
[ ies, i=1
then
Nk
|| row i of @ | %X gm,,mg
To make

h Nh
[(arna/( St ) ub 2 Babiar) <o
i=1 €5, i=1

we must have

N
0<e2M[[ { Dbz * 1/ Dbila) wbilzd (1D
i=1 I‘ESt
Theorem 4. If ¢ satisfies
0<<a<min 2M | ( Sanbtz 1]/ 2 @bz for all i=2€ {1.2,... \N. )y az
i1 1655

then the norm of row i of M « G, will not be greater than that of row ¢ of M.

Theorem 5. If
o-ZazM[ ( ia,‘.b.(xx)} 1/ > bt
i=1 i'ES’

end the norm of row vector ¢ of M - E, equals that ow 7 of M, then

[ Smat) =

=x3
Thecrems 4 and 5 can be easily derived from Theorem 3.

Theorem 6. Tf
b
< a< min ZM[( Za,.,-bi(x,)) 2]/2&!;(1,)[);(.:,) for all t=11€ {1,2,... N,
i=1 €8

then limy... | any row of G! || is bounded and equals lim,... | the same row of G!G, || .

Proof. In terms of Theorem 3,

©|v[
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|t any row of Gi, | == || any row of G*E..., | =
| any row of (G*E.—.)E.—; |l ... = || any row of (G!E._,»... , E. JE. || = ! any row of G'G. |
From the above derivation, we can know that the norm of any row in G}, when k increases, will never in-

crease and is bounded. Since the norm must be positive or zero, we can further obtain.

(13)

limi—.. || any row of G | =im~.. || any row of G'G, |

Theorem 7. I

Nk
o<tae<cmin2M[ ( D anbiiz) )" ]/ D bit@on ) for ali i=n€ (1.2... N,
i=1

feon
as % approaches infinity, the limit of G} E; equals the limit of G! for j=1,2,... .N,and G converges to a null or
constant matrix.
Proof. In terms of Theorem 6§, we have
limge.. || any row of G! | =lims... | any row of GIE._, ||

=liMs—c || 20y row of (GIE,_)E,—; || ... =limj... || any row of (GEE,_,... E.L)E, |

=limy .. || any row of G*G, ||
We will use the above equalities to prove thar when & approaches infinity, GE,_, =G* . G*E._ F_.=G .. .. , etc.
Let us first examine the explicit expression for G*E,_,

g L gue(

GE_ = | ga(k) e g (B L gan(R) | X

H

,\'uw;(k) BN . ... gmm(k)
1 a .. ... 0 K ¢} 0 0]
0 ..., € 0 vee Pan 4] e Bpe 4] 0
0 1 0 0
4] €, o] g 0 Eur 4] 3
0 0 1 0 0
¢ €5 0 B ] e, 0
L0 . & 0 ... ¢ ... ... 0 ... ... 1
The 7th row can be expressed as:
[gu (k) o (k) ’E,‘g(k\)c. .. ,(g;,(k)ep¢+g,q[k}e,ﬁ,+. . +g.,(k)e,,,) e .g.,—(k) P ] {14

In terms of Theorem 2, ipth element of Eq. (14) can be expressed as

NA Mh
gD 1=a/M/( et (2)) w6 ) —aM/ (| Yabi@)) w20 gulhIbi(ai )b, (5
=1 -1

ICSauditp
;o ,
=aq (B —a/M[{ Dlanbitacd ) = b, [ 2 ga )b (1)
im1 €5
(15)
where Si=1{p.q,... »r} indicates the positions of non-zero ¢,; elements for E,_,.
We have known that lime... | row { of G:E._, || =lirtsee | row ¢ of GF || . In terms of Theorem 5, we must

© hIERES
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have limp—. g,'g,,(k)b,u,_l)fe. Consequentiy, the prh element of row 7 of GIE,_, equals g;, (%) when % ap-
proaches infinity. We can give similar proofs for the gth element, rth element, ..., etc, in the ith row. In oth-
er words, row i will remain unchanged. Similarly, we can also prove other rows will remain unchanged for
G*E,_;. Thus, the limit of G!E,_, will equal the limit of G! as & approaches infinity,
Continuing this procedure, we will prove:
GE_.E...,=GE,_,

GG, =G
when % approaches infinity.
We know that iime..G! exists and equals a null or constant matriz. This completes the procf of this theo-
rem.
Theorem 8. I[
0<a<min2M[( sza,'lb,(rs)) 2]/ }_}bl(r!Jb;(x;) for all f=12€11,2,, ...}
=3

then limy...GtB(x;)a; will equal zero, j=1,2,... ,N..

Proof. According to Theorems 5 and 7, if lims...g] is the ith row of lim....Gi . then
]ima_-ml’;:g,-;(k)b:(x;)= A for j=1,2+... WN, (167
where §; indicates che posttions of non-zerg e, elements for E;.
In terms of Eq. (18) s we have

limi e GLB (2 ), = [l 0 20, (06 () i D 20 (008,20 it > pt)b () | =20

1€5; 1eR; 1€8)
for i=1,2,...,N,. Thus, G!Dv}® will become null zs & approaches infinity, Hence, this theorem holds.

With Theorems 28§, we instantly obtain the following important theorem zbout the condition of the con-
vergence of generalized fuzay CMAC.

Theorem 9. If
N
0<<a<<min 2M[ { 3 abi(2)) 1/ D020 (2) for all =€ {12, . LN
=1 T oEesn
hen ihe learning of geoeralized fuszy CMAC will converge 1o a limit cycle.

3 Proof of the Learning Convergence to Least Square Error

In this section, with the following Theorem 10, we will prove that the earning of a generalized fuzzy
CMAC will eventually converge to least squars error,

Theorem 10. The learning of generalized fuzzy CMAC resulis in 2 least square error if the number of itera-
lions approzches infinity and the learning rate approaches zero.

Prosf. In terms of Eq. (6), we can derive the weight as follows;

V= Dy e Dy Dy L = 2 D
k=0

In terms of Eq. (10), we can further obrain;
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(H»l) sz(Av n)+Av;:3_)1+ +AV >+AV(1)+ +Av(1) )+v}ﬂ,‘-

‘ NE
= 2 Gla/M = [Blxa) 3 u“ bz v (Y—af Blaw® [ Dabia)) ...+
=

=]

. N
B(xm)am/za.\., b (zp,) # { YN,‘GMB(JTA;)VW)/ Zam.;&f (I.V:)) +

=1

B('.rl)al/Zal,;b,(xl) - Ylwa,B(.r})v‘”/Ea“b.(:rl)] S
=l =1
Ni Nh
Bla, )8, ) 21 (@) % { Yo —al, Bla pvis [ Sa i) |+
i—1 f=]
Nk N
ool M x [Bla)a ] Dab e« (¥—alBOR ) Pavs ) +
i=1 2

NA Nk
Bl 08, /3 a6, G ¢ [ Vi —alB G v [ Y e b)) ]
i=] i=1
! Nk
= 2iGl/M » [ Blaay, [ D enb )+, +
+, i=1
Nh

Nh
BlrwdanY ) Slanbilan)) = Blzdaal Bl w ) Yebe) i 4.0+

i=1

Nh
Bz, Do.a Bla W0/ Y a btz )+

i=1

M
R(x)aal Br)w" /{ Ea,.b (x))" +B(:rN,)aN,a,\B(1N)v‘°’/( Sawbi(aw) | 2] Hvi0 4 D@
i=]

an
Furthermore, for j=1,2,...,5—1, we have
Blxjaal B, W= Blx)aal Blxz;) b+ avil)
= B )aal Ry b+ 4P b @+ AP 4,
In terms of Eg. {4), we have
Mh
Blrpael Bla, W =B (z)0al Bz, v\ + Bz )aa] Bz;) % a/M * [al’,"i 2‘11.1.(’:(11) *
(Vi—aTv®)=—. .. +a;. l/Za,_l o) % (Y —al i) ]
i=]
Obviously, the above farmula can be expressed as:
Bir)ael Blx, ' =B(xr)aai Bla,wi® +2Z;% a (18)
where Z;is bounded.
Similarly, we have
B(x)a.al Bladvi® =Bz, )mal B vi® +Z, * a a9

where Z;1s boundcd.

Suppose
Nh
[B(x,)a]/\ﬁa“b (x)), B(xz)az/‘i“az bilrsdoe o BCre) [ D anb Crond ]
=1 =1

Y=[Y11Y2-. .. lYH;] X )

then: we can further simplify Eq. (172 intn

PFUFEHT  http:// www. jos. org. cn
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: L
pit= nga/M* [ATY—B(xl)u1u¥'B(xl)v§”’/[ ; (al,,b.(xllj L+

Nh Ns
Bawdomal B v [ 2anb o) | —a 22, |+ +0@
i=1 =1
i'\
- ; Gla/M * [A"F — A% Av® —0(a) | +v® +-0(a)

[immlim b+ =limoglimin., { > Gra/M # [ATY — ATAr{® —0(a) ] +¥" +O(@) }

=t (200
=1iMpeo | (F—G) e/ M % [ATY — ATAV —O(a) ]+ v +0(a) )
In terms of the definitions of G, and E,, we have
MR
G.=ErEvey. . EEn.... Es=—a/M » BCx. Da. \al Bl ) [ Dl bia ) v
-
Nk 9
U—a/Mx Blx)aal B [ Da.bix))
i1
. o ) an
=1 a/M~ LB(x,_l)a,_]a,‘_,B(_r;_!)/( Mo bizo)) Ho+
i=1
My -
B(-Iy.q)ama:{uB (IN;)/( Ea‘\u.xba () J ] +0(a*a)
i=1
—I—a/M % ATA+OCu % )
Substituting Ey. (21) inw (20) resules in
lintteeolimy e v ™" —litngep { [/ M * ATA— O (ax o) u/M = [ATY — AT AW — G J1 0™
22y

=lim, o {[ATA—O(e)]™" * _ATY — AT A" —O (a2 ]} ™

— I:ATA]—lAry_[ATA]_ATAvgo)_f_viu: — [ATA]—1AIY
Eq. (22) shows that the final learning result of generalized fuzey CMAC equals the one obtained by having
v—[ATA]'ATY, which gives the least square error. Thus, the most important theorem in this paper has been

proved,

4 Conclusion

In this paper, we generalize the fuzzy CMAU. and then present 2 generalized fuzzy CMAC, which repre-
sents a family of fuzzy CMAC. After defining the learning rule based on BP rule, we prove that the learning of
new generalized fuzzy CMAC converges to the least squere error if the number of iterations approaches infinity
and the learning rate approaches €.

Further research work is required in order to speed up this convergence. How can we revise the learning
rule su that the generalized fuzzy CMAC can linearly converge 1o rhe least square error. This work is in

progress.
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