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Abstract ; It is proved that given any nontecursive r. e. degres a. there exist r.e. degrees e<Za and d&M
such that a<dUc. Therefore, there is no minimal r.e. degree in every nonzero [a]ER/M, the guotient up-
per semilattice of the recursively enumerable degrees modulo the cappable r.e. degrees. i.e., given any non-
csppable r.e. degree a there is an r.e. degree c<Za such that [e]=[a].
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Anr.e. degree ais cappable if ais a half of 2 minimal pair; otherwise, a is noncappable. Let M denote the
class of all the cappable 1. e. degrees together with ¢; let NC=R—M denote the class of all the noncappable r.
e. degrees.

Anmlos-Spies, Jockusch, Shore and Soarel proved that M is an ideal in R. Thus we have a guotient of the
r.e. degrees R modulo the cappable degrees M, denoted by R/M. Elements in R/M are denoted by [a], the e-
quivalence class of a€ R, i.e. » [a]J=¢bER:b~a}, where ~ is an equivalence relation defined in R such that a
~ b iff

3 ej.e.EMalje,=b Ue,).

Given any [al),[b]ER/M. [a]=<[b] if there is an 1.e, degree ¢ &M such that a<<bUc. [a]<[b] if [a]=<[b]
and [b]=f [a]. Let [a]V [b] denote the least upper bound of (a7 and [b]. It is easy to prove that R/M is an
upper semilattice, and [a]V [b]="[alJb]. Schwarz!* proved the downward density theorem ir R/M.
(Jockusch-¥ commented that the downward density theorem in R/M follows directly from the Robinson’s split-
ting theorem and the fact that NC=LCu, the set of all the r.e. degrees which cup to 0' by a low r. e. degree. )
In this paper we shall prove that given any nonrecursive r.e. degree a there exist r.e. degrees e<{a and dE€EM
such that a<d Ue. Therefore, there is no minimel r.e. degree in every nonzero [a]€ R/M, i.e., given any r.
e. degree a such that [a]7[ 0], there is zn r. e. degree ¢<Ca such that [a]=[c].

Our notation is standard with a minor change, a reference is Soare'*). A number z is unused af stuge s+1if
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275 is greater than any number mentioned so far in the construction. If the oracle is a join of two sets, we as-
sume that the use is compnted on the two sets separately, i, e. » F(APB [ (P + 1000 =TA X1 +1E
Bl (¥tx)+1):x), where Y(2) is the use of F(ADB :2). All use functions are assumed to be increasing in argu-

ment and nondecreasing in the stages.

1 Main Theorem and Us Requirements

Theorem 1. 1. Given any nonrecursive r.e. degree a there exist r.e. degrees e<’a and dEM such that a<C
dUec.
Corollary 1.2, For any [a]€ R/M with [0]=<[a_ there is no minimal r.e. degree in [a .
The proof of Theorem 1. 1. Given any nonrecursive r.e. set A, we shall recursively construct sets C,.D) and
o recursive functional I such that C<I;A; DEM; and A=I(CED) . nemely, the construction will satisfy for
every ¢ the fcllowing requirements,
K AFED(C)
G EHEm—W.
Aede = et = fLtotal =<0
where E is an auxiliary set to guarantee that DEM by satislying 5, and .+, for ell e€ o,

To deline I', let ¥{n) denote the nse of I {C.EDN, 12} at the end of stage 5. We shall satisfy the following

a.n

conditions ; for all » and s,

neE A, —A—Y.(n3EC.,—Co (1.2)

nl Y sY o (n)y V<<V nt+ 1) (1.3

L)< )= (CPRD) KD+ DECED) [ () +1);5 (1.4
Yo =lim. Y. (n) ¥ . (1.5

Condition (1.2} guarantees that (7=<1 4 Conditions (1. 21~(1, 5} guamntee that ASGOPD. Since Y<K
D by (1.4} and (1.5}, for each », if s is such that (CDDI[ (. w) | 1= O (¥{n) +1) then n€ A iff
ne A by (1.2) and (1. 4).

We attack the positive requirement 2, by a regular diagonal argument. That is, we attempt to find an =
such that x € W, and enumerate 1 in E.

The basic module for the negative requirement ., is to guarantee that once t¢}li(a)x={e)[z we pre-
serve ar least one side of these computations. Suppose that at some later stage (25, we enumerate some element
into 1) and destroy the [)-side computations, i.e. . te}?[z7={e}P[r, then we preserve the E-side computations
until some stage £ >+ when the D-side computations restore, i.e. » e} [z={e}[x(=1{e}5[ ). Only after
stage ' shall we allow the F-side to change. I we succeed in doing so and {¢}°={e}* =, then we can prove
that /.<0: 8. At any stage s-+1, we define the length of agreement as follows .,

ey =max{r: ¥ y<Zx({etD(y={elH(3 )0
A stage ¢ is e-expansionary if /¥ (e s) 2> (e,t) for every 1<Cs. When (e, s} reaches a new value then elements

can be emumerated in D or £, but not both.

For a single requirement &F.. ar any stage s+ 1. we define the length of agreement und restraint function:
Fleysy=max{n ¥ y<alA,G)=¢, ([Cis3)) ),
rT e s)=max{ulC e, 2,30 2507 (ey50 5.
We assign to Z.a witness z. At any stage s+1, if
r*(e,s)>7.(2), (1.%)

then we attempt to ennmerate 7, () in I}, and move ¥,(z) to an unused number.
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While the strategies for requirements in isclation are very simple, there are obviously several conflicts be-
tween them. The main conflict between the stretegies is as follows. To ensure that A=I'{CHD) and C<r A,
at any stage s+ 1, if n€ (A, —A,) for some », we have to enumerate ¥,(») in Cy,. But this action will be re-
strained by some 7% (¢,s). This means that ~*{¢.s) may be destroved, since ¥ (n)<r7(e,s}. One way to cope
with this is to enumerate ¥,{n) in D if ¥.(n)<r%(e.s), but a minimal pair strategy may be destroved.

In the next section we shall define the priority tree and use the tree method to overeome the conflict.

2" Priority Tree and the Basic Module

The prinrity tree T=w"". We define an n}der <, on T as follows. for any «. SET,
< f—aC AV 18a, 83 a.hE wla<blir " aliakr™ BT A).

A node o is odd if |2| is odd; otherwise. o is even. We assign .4, to aif {a —e; F. 10 aif |a| =2e—1;
and assign &, to e if |a|=2¢. We say that a is a strategy for the requirements assigned to it.

We define a sequence 8. of nodes accessible at stage s+1 as follows. let

[Ca.s)=1"(]al.s).

A stage 5 1s an a-stage if #©4, or s=0. A stage s is ¢-expansionary if s=0 o7 s s an a-stage and /{a,s)>max
{{Caytd i pTska=} .

Now we define 6.(») by inducticn on #n for n<Js, Suppose that a=48.{n. Thenr 6, (n3=0if s is an a-expan-
sionary stage, and 8:(=) — 1 the greatest a-expansionary stage <5, otherwisc. The true path 8 is defined by
8=lim, inf &, .
the leftmost path on which every node is visited infinitely cften. The true path & exists, simply because for any
t, if @ a is accessible at some stage s+1 then ¢~ b for any #>>q is accessible at any stage :+12>5+ 1 only if

there is an a-expansionary stage between s-+1 and £4+1.

During the construction some node & T will be initialized at certain stages. We say that a & T is imittalized
at stage s-+1 if every parameter associated with « is set to be undefined.
2,1 The #,-module

To satisfy &7,, let « be a strategy for %,. At any a-stage s, if there is no witness of a then set z.(;+1) to
be the least unused number; otherwise, let 2,(s5} be the wirtness of & at stage s+ 1, and if r"(e.5)>>7.(z.(5))

then enumerate 7,(z.(s)) in D, and move 7,{z,{s)) to an unused number.

3  Construction

A strategy a for &%, requiires atteation at stage s+ 1 if =8,, and Yz (s »% (e,5). A strate a for 52,
g E gy

requires attention at stage s+ 1 if £ (W, , =2, o4, and
J (€W, fr>max {#<ls.8,<a)). (3.1

Stage s+1: The construction will proceed by performing the following steps.

Step 1. Let ¥._,(5) be the least vnused number.

Step 2. For every odd «=34,, if there (s no witness of & then let z.(s+ 1) bhe the least unusec number.

Step 3. Find the least o such that @ reguires attention at stage s+ 1. I there is no such @ then go to Srep 4;
otherwise, we say that a receives attention at stage s+ 1.

Substep 3. 1. If ¢ is a strategy for “Z, then let & be least such that (3, 1) holds, enumerate r in E, initialize
zvery D« and go 1o Step 4.

Substep 3. 2. If @ is a strategy for 2, then enumecrate ¥,{z,(s)) in 2. move ¥,(n) for all » with s=2nz2z.

(s). maintaining their arder. to the least unused numbers, initialize every @ e and go to Step 4.
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Step 4. For any n<<s, i n€ (A.,;— A.) then enumerate 7,(n) into C and move ¥(m) for all m with SEmiz
n to the least unused numbers,
Step 5. Initialize every 2=,8..

This ends the description of the construction.

4 Verification

let d=lin, inf &,
be the true path. We prove Lemmas 4. 1-~4. 3 by induetion on 8. Given any a_¢&. assume that Lemmas 4.1
~~4. 3 hold for every o Za.

Lemma 4. 1. If @8 is a strategy for @, then &, is satisfied eventually. and requires attention only finitely
often.

Proof. Let s, be the least o-stage such that no 8<C e receives attention after stage si» =z =lim, z.(s) v ==z,
() and A, [ Ce+11=AT (2.4 1),

For the sake of a contradicrian, assume that &, is not satisfied. Then A=@,(C) znd 7 (¢,s) tends to infin-
ity. Hence, o requires attention at infinitely many a-stages s to enumerate ¥.(z.) in D and move ¥, (z.) to an un-
used number. We now show that A< 7. To recursively decide whether n€ A for any given n€ w, find an a-
stage s2sysuch that 1% (e, ) a0 and 7,(z.) 20 (Crevn ), then n€ A iff n€ A, Ctherwise. if n€ {A-—A,) then
@ () =B.(Cm)=A(n)=A,(r). a contradiction, since by the chaice of 5,, CJ7.(z)=C¥(z.). Hence, A
is recursive, a contradietion to the assumption that A Is not recursive.

Therelore, &7, is satisfied, Lot p= p(A{p)> =P, (Cs p3). Then, if there is an a-stage s2xs; such that #(e,
sy=poand @,.(Cupd b then r#(e.s)=lim, 77 (2,s), since if ¥.{z)>+" (e45) then &, (Cisp) =@ (Cip)s if 7,
(2<% (e,5) then Y. () >r%(e,s) . and €., (C.:p)=8.{C:p). If there is no such e-stage s then (e ,s)=
lim, »®(e,5) for any a-stage s2=s, with /% (e,s)=p. Hence, a requires attention only finitely often.

Lemma 4. 2. 1f o/_5 is a straregy for &2, then 2, is satisfied.

Proof.  Let s, be the least stage such that no §<C,a receives attention after stage s;. Assume that 2, is not
satisfied, i e., W.[1 E=¢. 1f there is no x such that €W, then &2, is satisfied, a contradiction; otherwise,
let +>1; he a number such that £ & W., then at the least a-stage s32s, such that x EW._,, o receives attention, x
is enumerated in E at Substep 2. 1 of stage s+ 1, and &2, is satisfied at s+1. A contradiction, Therefore, &2, is
satisfied.

Lemma 4. 3. If oZ8 is a strategy for 7, then %% is satisfied.

Proof.  Let so be the least a-stage such that no §<C.a receives attention after stage sq.

Assume that £, is rotal. To recursively compute f,{z) for any given x, find an a-expansionary stage s=#sc
such that /{a,s)>x, then

Flor=letB{cri={etf(x} =p.
We prove by induction on ¢ that for all ==« either

{e}fslxy=p, cr 4. 1)
{etf(z)=p. 4.2
Let s=2,<£,<. .. be the a-expansionary stages, then both (4. 1) and (4. 2) hold for ¢, since ¢, =s. Fix any »
and assume by induction that botk (4.1) and (4, 2) hold for #<(z,. Now at stage ¢,+1, at most one element en-
ters D or E. so at most one of the computations (4. 1) and (4. 2) for £=1, is destroyed. Now for any ¢ with £

1<Cr. 1. at stage ¢+ 1, there are two cases:

a) If there is a 73 such that 7,(ze(z)) is enumerated in I? at ++1 then we must have that
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Y et > max{u<td.<I B0,
By the choice of 5;,82,0" 1, and fS0,. Since ™ 054, and a” 15,6, we have thar 8, <J,8. Thus ¥, (z5(£2) >
25(2) > 1.

(b) ¥ some r is enumerated into E at stage 1+ 1 by some fthen o 1,8, A8 and s> max{u<t:4,
<18} Since a” 058, <4,y 8, <LB 0 278

By (2) and (b) we know that no element <3z, is cnumerated into either E or I} at the stage ¢+ 1 such that ¢,
<1<ty As the use of {e}f:-',, (z) and {e}f:, {x) is less than ¢, we know that the computation (4. 7} or (4. 20
which is not injured at stage ¢, +1 will be preserved until the next #-expansionary stage £..,. Thus we know that
both (4. 1) and (4. 2) hold at stage £,+;+1.

Lemma 4. 4. C<;A. Ry Lemma 4.1, we have that (T</:A.

Proof. By the eonstruction, for every n, ¥ (n) is enumerated in C at stage s+ 1 if and only if Af (e41)5%
A, [ te+1). Hence, (1.2) is satisfied, and C<CyA, since 7.(n) >n.

Lemma 4.5. A= (CDD.

Proaf. By the definition of ¥,(n), (1.3) is satisfied.

Fix any a. By Lemmz 4.1, there exist a strategy aC”¢ and an e-stage s, such that « is not initialized after s,,
zo= iz, (5) =2, (5) >n and Asol—(n—%l):.{lf (n+1). Then lim¥,(7) =7, (), since ¥.(n) movcs at any stage ¢
~+1225+1 only if there is a strategy #<la such that j§ receives attention at stage t+1or A (a+1DZ A, [ (nt+
1). Hence, (1.5) is satisfied. _

Since 7,(n) moves at any stage £+1 only if 7, (n) is enumerated in D or 7, hence, {1. 4) is satisfied.

This ends the proof of the theorem.
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