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Abstract This paper introduces linkages as new drawing tool and shows that this tool is complete, i.e. , all
diagrams that can be described constructively can be drawn with linkages. This class includes the constraint
problems with distance constraints only. As an application, the authors show that the simplest constrained
graph which is beyond the scope of Owen and Hoffmann’s popular triangle decomposition methods can be
transformed to purely geometric constructive form. To solve the equations derived from linkage constructions,
a geometric method which is based on dynamic locus generation is proposed.
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1 Introduction

Automated geometry diagram construction or geometric constraint solving (GCS) is the central topic in
much of the current work of developing parametric CAD systems. It also has applications in mechanical engi-
neering» chemical molecular modeling, linkage design, computer vision and computer aided instruction™). There
are four main approaches to GCS; the graph analysis approach®~%, the rule-based approach?®~®, the numerical
computation approach™'), and the symbolic computation approach™ '), In practice, most people use a combi-
nation of these approaches to get the best result.

The graph analysis and the rule-based approaches are also called the geometric approach. In this approach,
a pre-treatment is carried ourt to transform the constraint problem into a constructive form that is easy to draw.
In most cases, this is equivalent to construct the diagram sequentially with ruler and compass. This can also be
understood as drawing the diagram with geometric tools. But with ruler and compass, we can only draw a small
portion of the diagrams. It is well known that using ruler and compass alone, we can describe diagrams whose
equation systems are a sequence of triangularized equations of degree less than or equal to two. In Ref.[14], a
new tool, conics, is added to enlarge the solving scope to diagrams that can be described by a sequence of trian-
gularized equations of degree less than or equal to four. In this paper, we will introduce linkages as new tools
and show that this tool is complete in certain sense, i.e. , any general constructive diagram can be drawn with
linkages sequentially. We also give an algorithm to find linkages in a constrained diagram. As an application, we
proved that all well- or under- constrained problems containing point-to-point distance constraints only can be

solved with linkages constructively.
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To solve the equations derived from linkage constructions, besides the often used numerical and symbolic
computation methods, we introduce a geometric method which uses the linkeges 1o generate loci and then finds
the intersection of these Inei by searching the points on the loci, This geometric method is based on dynamic
generation of geometric locus which is widely used in dynamie geomeiric software!1517)

Most of the results presented in this paper can be extended to 3D case.

As an application of the method introducsd in this paper, we show that the simplest constrained graph
which is beyond the scope of Ovwen and Hoffmann's triangle decomposition methods can be transformed to pure-
Iy geometric construetive form if linkages ere allowed #s construction tools. The linkages used in the construe-
tion are three kinds of four-bar linkages.

The rest of this paper is organized as follows. Section 2 will show the drawing seope of using linkeges as
construction tools. Section 3 will present the geometric method for solving eguations. In Section 4. we will

show how to solve the simplest constrained graph.

2 Construction with Linkeges

Most of the geometric approaches to GCS is to transiorm a constrained problem into constructive form with
ruler and compass., We generalize thie concept as follows, A geometsic diagram can be drawn consteuctively or
in constructive form if the peometric obiects in it can be Listed m an order

(o209 ¢ FURNIEN ¢ 3 I8
such thet each O, can be determined by (Qy,. .. ,0i)) with a set of peomerric constraints. Since all geometric
objects can be treated as functions of pointe. we may assume without loss of generality that the geameiric ob-
jects are points. The zlgebraic sguations for a diagram in constructive form is naturaily divided into blacks, In
2D} ease, the algebraic equations are as follows.
Lol oo sttasy ) ==0
Fialttnr. o sz 2 =0
fj!.l{“l'-*- AR SRt L ) . 1
EEFLC TP T S i
Freltine e stimytra. .. st p =0
Since the varizbles ere introduced nne by cne or two by two. we may triangularize Eg, {2. 1) easily, say, using
resultant computation. Let the triangularized equations be
2oty se oo ptty ity ) =0

F 2 €7 Y- S 5 T+

L‘,(ul [P STy Lt
It is well known that using ruler and compass alore. we can describe diagrams whuse equation systems are
of the form Eq. (2. 2) and degree(s.)<22. In Ref. {141, a new tool, conics, is added 1o gnlarge the scope to solve
equation systems of form Eq, (2. 2) and deyree(s,}<24. A natural question is. can we add more tools such that
the diagrams can be drawn with these tools covering all diagrams in constructive form. The answer is positive,
By a linkage, we mean a mechanismn with one degree of freedom and consisting of links with fixed longths
and Totation joins. One cxample is the following four-bar linkage ABCD-P (Fig. 17, The locus of the four-bar
linkage in the figare Is generated as follows: with points 4, B fixed and C rotating on a circle, point P will gen-

erate the locus,
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A diagram can be drawn with linkages constructively if the points in

the diagram can be listed in an order
(P.Pss.i. o Po)

such that each point P: is introduced by three basic constructions using the
points already drawn P,,... ,.P._,.

(1) POINT(P). taking a free point P in the plane.

{2) ON(P.L) . taking a semi-free point P on the locus L of a linkage.

(3) INTER(P,L,.L,): taking the intersection P of L, and I, which

are the loci of two linkages.

Theorem 2. 1. A diagram is in constructive form iff it can be drawn
with linkages. Fig.1 The four-bar linkage and

Proof. It is readily seen that the locus of a linkage is an algebraic 5 [
curve. Therefore., we need only to show that any disgram in constructive form can be constructed with link-
ages. This is valid because of a famous result of Kempe™® which states that we may design a linkage to draw
any given algebraic curve f{x,yY=0. In Ref. [18], we improved and implemented Kempe’s result and showed
that the complexity of the Kempe linkage is O(n') where » is the degree of f. O

Since linkages could be very complicated, it seems that rule-based approaches are more appropriate to
ransform a constraint system into constructive form. For a rule-based system, like the global propagation
method deseribed in Ref. [67, we may add the following algorithm to find a linkage.

Algorithm 2. 2. Suppose that we need to construct point Py, We will find a linkage containing P,. A point
is said to be known if it has already been constructed.

§1 If there is a known point & such that | P.@| is known, then P, is on & circle. The algorithm terminates.
Otherwise, let Sq=1{F,} and go to 52.

82 Let S, be the set of points such that ¥ P&€.5,,3 Q€ S;, s.t. |PQ| is known. I §,is an empty set,the
elgorithm terminates without finding a linkage.

53 Let d be the number of distance constraints between pairs of points in §;J.S, but not including pairs of

two known points, » be the number of unknown points in §; JS.

v S4 If d=2n—1, then the points in S, U5, consist of a linkage. The al-
gorithm terminates.

S5 1f d>>%n—1, then there is an over-constrained sub-diagram. The
algorithm terminates without finding a linkage. Otherwise, i.e, , d<U2n—
1, let 8,=38,1J5¢and go to 82.

Erample 2. 3. In Fig. 2, the lengths of the nine segments are

known. Try to draw the diagram.

We may first draw triangle ABC. Next, we will determine point P.

Since |CP| is known, P is on a circle. Using the above algorithm we can
Fig. 2 Pvint P is the intersection find that point P is on a four-bar linkage ABUV-P. Then P is the intersec-

of two loci tion of a eircle and the locus of the four-bar linkage ASUV-P.
3 Evaluation of Construction Sequences of Linkages

Given a construction sequence (C,C;,...,C,), by introducing coordinates properly, we may obtain an
equation system Eq. (2. 1). Now we will show how to solve this equation system. Basically, we need 1o solve

two algebraic equations.
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j(ul,...,um.r,y)iﬂ. (3.1
FEC/PETINN VN S B Et ()
Please notice that in certain cases, the equations f and g are the equations of the loci [or some linkages, which
are not explicitly given.

If the linkage is complex, then it 15 difficult to find the equation of its locus, In this casc, we may use the
locus intersection method to find the solutions of Eq. (3. 1). Suppose that we need to find the intersection of two
loci L, and L,. The locus intersection method has two main steps.

Generate Locus. Locus generation is a basic function of dynamic geometry!®, It works as follows.

{1} Find a driving point which will move freely on a circle, In Fig. 1, a driving point could be .

(2‘) Starting from this driving point, {ind a sequence of constructione with line and circle to construct the
whole Iinkage,

(3} For each position of the driving point, we may compute the coordinates of the points in the linkage. In
particular, the coordinates of the locus point.

(4) Reprating e preceding stepr we have a set of coordinates of the locus point, We may use lines or Bezi-
er curves to connect two neighboring points to form a continuous lacus.

Find Intersection. After the two loci L) and L, are generated. we search them to find two points P, € L, and
P,C L, such that |P,P; | has minimal value. Notice that there might be more than one solution.

In practice, this method is quite efficient, becanse to generate the locus we need only to solve linear and
quadratic equations which have closed form solutionst?3, i
We first use an example to illustrate the method presented in the preceding section.

Ezxample 3.1. As shown in Fig. 3, the lengths of the nine segments are known. Try to draw the diagram.
We may first draw points E,B. Now point D is the in-
tersection of a circle and the locus of a linkage EBFCA. Let
F be the driving point. The construction sequence for the
linkage is as follows .
ON(F.CIR(E, |EF]})
INTER(C,CIR(E, | BC|),CIR(F, [FC|}
INTER(A,CIR(E, [EA]),CIR(C, [CA D
INTER(D,CIR(A. |AD| ), CIR(F, |FD|))
where CIR (B, | BC|) represents the circle with center B and

Fig. 3 A constrained problem with six points 4 . . .
g P POITES " adius | BC|. With the above construction sequence, we

may generate the locus for point D2 when point ¥ moves on CIR(E, |EF|}. Fig. 3 is actually generated in this
way by a software named Geometry ExpertU7,

Both Examples 2. 3 and 3. | contain point-to-point distance only. Tt is not difficult 10 cheek that they are the
two smallest possible constraint problems of this kind that can not be solved by ruler and eompass construction,
We will show that all constraint problems of this kind can be solved by linkages constructively.

Theorem 3. 2. All well- or under- constrained problems containing point-to-point distance constraints only
can be solved with linkages constructively.

Proof. We need only consider well-constrained protlems since under-consirained problems may become
well-constrained problems by adding appropriate number of point-to-point distance constraints. We assume that
the problem contains » points. Then it must have 2r—3 constraints. Let us assume that 1 A8] is known. We
first draw A,B. Let [ be a point such that AC is known. We will construct puint C. Since AC is known, it is

already on a circle. If BC is also known, we may construct C as the intersection of two circles, Repeat the above

© B
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process until we cannot go further. Let 8 be the set of points constructed in this way. 7 be the sct of the re-
maining points, and £= 8|, t=|T'. Then £+t=n.

There must be points PET and Q€ § such that | PQ/! is known. We will construct P which is already on a
circle since |PQ| is known. The number of constraints not used n S iz 2(n—%). Since |PQ} is also used, we
have 2(n— %) — 1 constraints left, For the point set T to form a linkage, we need 2t —1=2(n—k)>— 1 con-
straints. Then by Algorithm 2. 2, T forms a linkage, and P is the intersection of & circle and the lacus of this

linkage. The remaining points can be treated similarly. (]
4 A Smallest Triconnected Constrained Graph

Hoffmann and Owen’s triangle decompnsition method is one of the most popular methods of GC8. Con-

341 As it is pointed ocut in

strained graphs that can be solved by these methods are non-triconnnected graphs
Ref. [2], the simplest constrained graph that cannot be solved with these methads is the following graph. The
vertices of the graph could be a point or a line. The edges represent geometric constraints

Pair of vertices Geometric constraint represented by the edge

Point /Point Distance between two points 1 2
Line/Line Angle formed by the two lines V
Point/Line Coincidence or dislance from point to line

Since each vertex of the constrained graph in Fig. 4 could be a pcint or a
line, we may introduce a notation to represent the graph: (V\V,V,, V., V.V
where V, could be P or L. If V,=P, then the i-th position in Fig. 4 is 2 point. A
I V;=L, then the i-th pesition in Fig. 4 is a line, With this notation, Fig. 4 4 E
represents 13 types of constrained graphs.

g, 1l i
Theorem 4. 1. All the 13 problems can be solved with linkages construe- Fig. 4 Smallest triconnected

tively, graph

Table 1 gives the information on how 1o solve the 13 problems.

In Table I, P/L. means the type of point-kine constraint; Type means whether the problem is well-. over-
or under-constrained; R/C means whether the problem can be drawn with ruler and compass; Locus one (two}
means the most complicated loci or linkages needed in the construction.

Some of the cases have been considered. For instance, cases 8 and 8” are solved in Ref. [3] with G6bner ba-
sis method. We will show that all of the thirteen cases can be solved constructively if linkages are allowed as
drawing tools.

Of the thirteen cases, five use linkages. Case 1 is Example 2, 3. Case 2 is similar to case 1. Cases 3°, 6’
and 8’ need two new types of linkages.

An [/-four-bar linkage consists of two fixed lines u,v and & triangle PABE with fixed shape such that A€«
and B€ v, The locus is generated by point F (Fig. 5(a)). This linkage is denoted by (uwvAH,F).

An le-four-bar linkage consists of a fixed line /. a fixed circle ¢ and a triangle PAB with fixed shape such
that A€ { and B€ ¢, The locus is generated by peint P (Fig. 5(b)). This linkage is denoted by (ucAB.P).

By the definition of linkages, a peint cannot move ¢n a line. This problem can be solved with the famous
Peaucelier linkage which may generate a straight line (Fig. 5Cc)).

Figure 6(a) is the geometric diagram for case 3°. We may first draw «vP. Since distance (8 »u) and distance

{Cyv} are known, B and C move on two lines and we have an ll-linkage (avBC.A). Now A is the intersection
of circle CIR{P,|PA|) and the locus of the ll-four-bar linkage (uvBC,A).

© [
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Table 1 Thirteen triconnected constraint graphs

Prablem P/L Type R/C Locus one Locus two
1 (PPP.PFP) Any Well No circle four-bar
2 (PPP.PPL) Any Well No line {our-bar
3 (PPP.PLL> Coincidence Well Yes circle circle
3 (PPP.PLL? Distance Welt No line li-four-bar
4 (PPP,LLL) Over
5 (PPL.,PPL} Any Well Yes circle cirele
[ (PPL,LPP) Coincidence Under “Yes line circle
6’ (PPL.LPP} Distance Well No line le-four-har
7 (PPL.PLL) Any Well Yes  line circle
(PPL,LLP) Coincidence Under Yes line circle
g {FPPL.,LLF} Disiance Well No line 1-four-bar
9 (PPL.LLL) Over
10 (PLL,PLL> Over
11 {PLL,LLP) Any Well Yes line circle
12 (PLL,LLL) Over
13 (LLL.LLL) QOver

(ad (b} (c?

Fig.5 Two new four-bar linkages

(a) (b) (e

Fig. 6 Three constaint problems which need four-bar linkages

Cases & and 8 need special explanation. Figure 6(c) is the geometry diagram for case 8'. We first draw
the diagram FPuv. Next, we will draw line {. Since distance (I, P) is known, { is tangent to a circle, Then we
may generate the locus of &, Note that AB/ is a rigid body and points A and B move on two lines. Then we may
use an li-four-bar linkage to simulate the movement of the rigid body ABI, and to generate the locus of /. The
position of / can be deterimined as the intersection of the two loci of lines. Case 6" can be treated similarly.

Cases 4, 9, 10, 12, 13 are over-constrained, because there are conflicting constraints. However, if these
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constraints in them are compatible, all of the constrained systems are under-constrained system and can be
drawn with ruler and compass easily.

Cases 5. 7 and 11 can be drawn with ruler and compass. They can be solved with the Global Propagation
method in Ref. [6].

» To solve case 5 (Fig. 7(a)), we first draw PQu. Since ABv and PQu are rigid bodies, we know the angle
formed by lines AR and PQ. Now the problem is transformed into the following one: “draw a quadrilateral if we
know the lengths of its four sides and the angle formed by a pair of oppesite sides”, which has been solved in
Ref. [6].

+ To solve case 6 (Fig. 7(h)}, we first draw wvP. Next. we will draw point A. Since |PA| is known, A
is on a circle ¢. Similar to case 5, we know the angle between lines AB and ». Since distance(B,v) is known, B
ison a line /,. Since |AB| and the direction of line AB are known and B moves on line /;, by transformation B
~+A,A must move on another line 7,. A is the intersection of ¢ and Z;. For details about this kind of transforma-
tion, see Ref. [6].

» To solve case 11 (Fig. 7(c)), we first draw weP. Next, we will draw line ». Since distance |nP ] is
known, = is tangent to a circle. Since / (n.m) and / (m,u) are known, we know the direction of n. Now » is

a line with known direction and tangent to & known circle, and thus can be determined.

(a) (b> (c)

Fig. 7 Three problems which can be solved with ruler and compass
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