ISSN1000-53825 Journal of Software %% 4 2% 2000,11¢(3) ;285292

Formalization and Verification of Pointers in the Temporal
Logic Language XYZ/E Programs’

LI Guang-yuan'** TANG Zhi-song’

'(Leb. for Computer Science Institute of Software The Chincse Academny of Sciences Beijing 160080)
*(Institute of Computer Science Guizhou University Guiyang 550025)

E-mail: ligy@ox.i0s. ac. cn

Abstract Pointer is an important data type in most programming languages. It can make programs more ef-
ficient and more elegant. Unfortunately, this important concept is always netarious for its timelessness. Until
now. no proper way to formalize it in temporal logic language has been found. XYZ/E is 2 temporal logic sys-
tem as well as a programming language. [t can represent almost every kind of significant [eatures in conven-
tional imperative Janguages. This paper is devoted to the representation of pointer in language XYZ/E and the
verification of XYZ/SE programs with pointers.

Key words Temporal logic, formal semantics, program verification, dynamic semantics, pointer.

Pointer is an important data type in most programming languages. It can make programs more efficient and
more elegant. Unfortunately, this important conecept is always notorious for its timelessness. Until now, no
proper way to formalize it in temporal logic language has been found. As a result, many important conventional
programming features are beyond the reach of formalization. One of the well known problems of this kind s the
problem of dynamic binding of the communicating processes (as shown in telecommunication).

XYZ system is a programming support system with the goal to enhance reliability and productivity of soft-
ware developmentl'], It consists of a temporal logic language XYZ/E to serve as its kernel and a group of CASE
tools based on XYZ/E, One of the advantages of XYZ/E is that both high level and low level specifications
{i.e. the static semantics vs. the dynamic rscmantics) can be represented in the same framework. Uwing to this
special characteristic of XYZ/E, the pointers can be represented and verified in a formal way in XYZ. So far as
we lnow, until now no other system can deal with this problem more effectively, We believe that it would have
strong impact in formal-based programming.

XYZ/SE is a structured version of XYZ/E, and is selected as the object language of the verificasion 1ools in
XY Z system. A set of Hoare-style rules for verification of XYZ/SE programs was given in Refs. [2,3]. A veri-
fication ool XYZ/VERI based on these rules has been implemented®, To verify an XYZ/SE prugram, ihe user
provides the program, the pre-condition, the post-condition and the loop-invariance of the program as input and

the verification systemn XYZ/VER] produces verification conditions which guaraniee the parrial correctness

* This research is supported by the National ‘Ninth-Five’ Sci-Tech Key Project of China(* A, A" EXREEHE R XEH
it &1, No. 98-780-01-07-01), LI Guang-yuan was horn in 1962, He is a Ph. I. student at the Institute of Software, the Chinese
Academy of Sciences. He received the M. Sc. degree in mathematics from Guizhou University in 1990, His research interests
are temporal logic, formal methods. medel checking and real-time systems. TANG Zhi-song was born in 1923, He is a profes-
scr, a doctoral supervisor and an academician. His current research areas include temporel iogic language, software engineer-
ing, CASE tools and software a-chitcoture.

Munuscript received 19%8-03-27, accepted 1998-11-01.

© HIEERES AT hip:/ www. jos. org. cn

— 286 — Journal of Software A FH 2000,11(3

(safety property) of the program.

But the rules given in Refs. [2,3] only work for XYZ/SE programs without pointers. In this paper, we
modify these rules so as to fit the verification of XYZ/SE programs with pointers.

The rest of this paper is organized as follows. Section 1 describes the representation of pointers in temporal
logic language XYZ/E. Seclion 2 presents the verification rules for XYZ/SFE programs with pointers. Section 3
presents Two examples to show how to verity an XYZ/SE program with pointers, Section 4 contains the conclu-

sion and future work,
1 Representation of Pointers in XYZ/E

in XYZ/E. pointer is a temporal variable that contains the name of another variahle. I one varigble con-
tains the name of another variable, then the first variable is said to point to the second. The base type of a
pointer variable is defined to be the type of variables the pointer can point to.

We use 8 to denote the name of the variable = It can be cansidered as a string constant in XYZ/E pro-
grams. For example, &abe is the name of the variable abe. It can be {dentified with string constant “abc” in
XYZ/E programs.

In XYZ/E, the cguation w=&ur indicates thar pointer variable v points to variable z at present time, and
$Ov=8&z indicat:ss that pointer » points to = at next time. The equation $O # v=e¢ can be used to indicate that
the value of expression e will be assigned to the variable pointed to by pointer v at next time. ln fact, here equa-
tion $0 * p=e is used as an abhreviated form of the temporal logic formula (v=2uz— $ Oz, =2) / (v=8&x,—
$O0x=e)A... Alv=8z,—~$Ox.=¢), where £+ Z33...5 1, are all variables whose type is the base type of
the pointer variable 7,

_In XYZ/E. you can have a pointer pointing to another pointer that points to the target value. But to simpli-
fy our discussion, this paper does not allow the expressions of the form * * ¢ to occur in XYZ/E programs.

We use two forms of conditional elements {c.e, } in XYZ/E programs. They are

LB=[AR=F0(v g5 . stpt={e,ve24... e} A $OLE=], {1.1]
and
LB=!, AR=> 30 +v=¢e A §OLB=, [1.2])
Here R is a first order logic formula withour temporal operators. and e;se;,. .. ve, are expressions.
In XYZ/E programs, conditional element [1.2] is used as an abbreviated form of the program black #({, .
;) consisting of the conditional elements of the form {1.1]. In fact,
iyl ==
LB=1I4 Nuy==8&x A... Nu, =8z, A R[ty/ %t 0., 2/ *u,]
2GO0LB =0, A ($O*v="e)lry/ *urs...rau/*ul;
LE=0L Nuy=8&xp Ao A = 8o A Rlzy/ % tiv. . v xm/ %)
=2GOLBE=16, A(3O0vv=2eda/ #ttys... 20/ %10, 13

LB =] A u =&.1r,,,,l Aeeo A, = &LI,M"
A R{.r,,,[/ LT ’Irm-r"/ ¥ 2,]
=RO0LB =L A (300 = e)[.r],,l/*ul.... v f % 2,]
1,

where u;1uz5.. . yu, are all pointer variables oceurring in conditional element [1. 2], and z;,22:- . . 52;a, are all

variables pointed to by pointer #;. and R[_ful/ * 2y.. .. .1,,*"/ % 2,] is used to indicate the result of substituting

ERCSAFIFICT http:/ www. jos, org. cn

FrA 5.0t ATRETXYZ/E PR4OBILETERE — 287 —

simultaneously xy ,-.. +xq for all occurrences of * uy,... . * 1, respectively in formula R. Obviously, the pro-
gram block 6/, ,2;) is composed of the conditional elements of the form [1.1]). So conditional element [1. 27 is

the abbreviated form of a program block consisting of the conditional elements of the form [1.17].
2 Verification of XYZ/SE Programs with Pointers

An XYZ/SE program is an XYZ/E program constructed from conditional elements. simple case blocks,
loop blocks. and sequential compositions,

An XYZ/SE program block has an entry label and an exit label. These two labels uniquely determine the
program block. Generally, we use 5(/;.7,) to represent the program block with entry lahel , and exit label /.

(1) A conditional element is of the form

LB=5,= %00, ,v5s... vn)=C(e1:¢2+... 52,0 N $OLB=I,
or
TLB=LAR>$O0rv=¢A $OLB=];
(2} A simple case block is of the form
[LB—=1 AC=>SOLB — iy;LB =i, A~ C=$0LB = I,;
I BTSN
(3> A loop blozk is of the form
[LB=LANC=$O0LB=I;LE=1, A ~C=>$OLB={;; #(:.0,)]
(4) A sequential composition is of the form
LB o8 1b6(i5.050]

Before giving the verification rules for programs wirh pointers, we first give a fact that will be used in the
presentation of these verification rules.

Fact 1. Every formula @ in an XYZ/SE program can be replaced without changing the function of the pro-
gram by a formula @' containing no expressions of the form %z,

In fact,

Q =y =8axy Ao At =8a, = Q[z/*uise . sxn/ *u,)
Ay = By Ao A= by > Qg r a2/ v u,])

A Gy =B Aoy A sy = &2 = Q21 / ¥y s Tan /¥,]

where w4, .. 21, are all pointer variables oceurring in formula @, and x4+ Zjs vor s Tim, 8T€ all variables
pointed to by pointer #;in the program. Obviously, Q' contains no expressions of the form * v and is equivalent
to Q.

In the rest of this section, for any first order formula @ withour temporal operators, we use @' to denote
the formula obtained from @ as described above.

Now we begin 10 present the verification rules for XYZ/SE programs with pointers. In the following rules,
R,R;, R, and R, are first order formulas without tempora! operators.

Conditional element:

) FLBUD ALEB=0 A (RLefuiser/vas. - . seafu, 1Y =>RALB=1, [2.1.1°
where 6(1,,) is LB=6,= SO0, v1s. - st = (e v8as. - 2e,0 A $OLB=1, and “/A" 1s Kroger’s ainext
operatort'l,

UAD v 6D ALB=U4 A (v =&y — (Rle/3 D) AL

2.1.2
A {ov=8y, = (Rle/5.D)=RALB =, [1

© hER

S AFIFSCET http:/ www. jos. org. cn

— 288 — Journal of Software ¥ 4#Fi 2000,11(3)

where 8(1,,8) is LE=LAR=>$0» v=e A\ §OLBE=1[;and y,,¥;s.. . »yn are all variables pointed to by pointer v
in the program that block £(/,:/;) oceurs in.

Simple case block:
FLIBUs) ALB=E AR AC = RNALB=1,

FOJBUL W) ALB={, AR A ~C' = R,ALB=1, (2. 2]
|)Y ALB=L AR =R, ANLB=,
where &, .00 is 2 [LB=1, AC=>S OQLB=1,; I.B=IL A ~C=>SOLB={:: 63,02 &0 40]
Loop block ;
FIBU W YN LB=L, A\ARAC' =RALB=, [2.3]

LI O ALEB=1, AR (RA~CIANLB=I,
where 6U,,0,) is * [LBE=LAC>$OLE=1; LB=L A ~C=>3$O0LB=1ly; b{l;,0,)], R is a loop-invariant of
loop black b/, ,4,).)
Sequential composition:
F [Jd) ACLB=IDAR=>RALB=I,

FLIEU.0) ALLB=1) AR=>R,ALB=1, “2.4]
FLIBC Loy ACLB=0) AR =R, AL =1, -2

where 6/, .00 is [b(11,0,) s B, 001

Rule for procedure call is the same as that in Ref. [3]. The only restriction on procedure call is that pointer

variable can not be used as an input or output parameter of a procedure. So we omit the verilication rule for pro-

cedure call here.

3 Examples

Example 1. The following procedure exchanges the values of two variables x and y.

{e=HzxAy= Hy}

% PROC f(%IOP/x INT; %IOF/y,INT) — = [

G LOCTt INT 301, 02: POINTINT)Y ;
T STM[
LB =3TART= $0(pl,p2) = (dax &y) A §OLE = {];
LB=11>$%$0c — = pl A $0OLB = {2;
LE=12=%0x 1= »p2 A SOLB=1{3;
LR={3=>%0=%p2 =¢t A $OLB = RETURN
]

]

lr=FvAy=Hax}

In the above program , &.x and &y are the names of variables z and y. They are two constants in the proce-
dure f, and satisfy the properties: &r==&r, &y=&y, and &r¥&y. The terms #r and #y that oceur in the
pre-condition and the post-condition are used here to denote the initial values of variables x and .

Now we verify the partial correctness of procedure f.

(1) F[)h U3.RETURNYNLB=I3

ANp2=8ar>U=ByAy=H2 DA (pl=Rp—(r=#yAt=H)>=8yAry=81
ANLB=RETURN
by rule [2.1.2].
2y F[Jp UM ANLB=I2
Apl=8a A p2=8ar>=HyAy=H=))

FWFFEHT http:/ www. jos. org. cn

FrAF - HAZHGT XYZ/E PH4GHEAILATLRE

— 28% —

Apl=8x A p2=8p>(v=HyAt=Hz))

Apl=8yAp2=8a—r(=HyAx=H2))

Apl=&yAp2=8y>(x=HyAt=Hx))

= (p2=8a>G=HyAy=%x)

Ap2=&y>(z="yAt=RrNDALB=I3
by rule [2. 1. 2] and simplifying.

(3) LB UL.2) ALB=11

ANpl=3u A p2=8u—={a=RyAy=H#H2))
ANpl1=8x Ap2=0py>(yv=8yAz=Hz))
Apl =&y A p2=8u—(y=HyvAz=H#z))
A pl=8uw A p2=8u—{x=HyAy="Hzx))
2 (pl=Ca A p2=&a+G=HyAy=Hx))
Apl=fa A p2=8y—~(y=H yAt=12))
Apl=8y A p2=8a—=(=HyAz=Hzx))
Alpt=8y A p2=Rp— (=" yAt=Hz)IALB=I2
by rule [2. 1. 1] and simplifying.

(4> FL16 (START.I1)ANLB=START

ANEa=bar AN&y=8arax=HyAry=82D)

AEa=8r Ay=8y—(y=HyAz=Hz)

AGa=Ry Aly=Rua—(y=HyAz=Hz)

AQa=8y A&y =&y (z=HyAy=%x))

= (pl=Rua A pl=fa—=(x=ByAy=Hx))

Apl=taAp2=ty—=(y=Hyhax=HH2z))

Alpl=8y A p2=8a—(y=HyAa=Hzx))

A pl=&y A p2=8y>(r=Hy A y= #z)IALB=/1
by rule [2.1.1].

(8) +@e=bxNdy=bx =Ty Ay=Hx))

A Gr=8aA&y=8y=(y=Hyhz=Hz)}

A Rue=yAly=8u—>(y=HyAa;=1x))

ARy Aly=8p—(c=RyAy=Hx)=(yv=HyAx=Hx)
by simplifying.

(6) t[Je(START AV ANLB=START A (y=HyAx=1Hz)
= (pl=8a A p2=8xr{z=HyAy=Hz))

Apl=8x A p2=8y=(y=HyAz=H2)}

A(pl=Cy A p2=8ax=(y=TyAx—Tx))

Alpl=8yApe=Ruy—= (=8 y Ay=H2DALE=1
by (4> and (5).

(7} F[JB(START 12) ALB=START A (y= y A o=t 2)
(Pl =&x A p2=8r>(t=HyAy=Hzx))
Apl=fa A p2=8x—(y=HyAt=HH2x))

Apl=ty A p2=Ra—>G=HyAz=Hz))
AN(p1=8vAp2=Ray—(x=HyAt=12)YANLB={2
by (6), (3) and rule [2. 4.

© RS

http:// www. jos. org. cn

— 290 — Journal of Software

Lk i 8

2000,11(3)

(8) FLW(START I3)ALB=START A (y=#yAx=#1)
= (p2=burU="#yAy=Hz))
Ap2=&y>lx=TyAs=Hz)IALB=I3

by (73, (2) and rule [2.4].
(8) +[JB(START .RETURN)
MLB=8START A (y=H#yAz=82
S (x=HyAy=8IVALB=RETURN
by (8), (1) and rule [2.47.
Example 2. Verify the partial correctness of procedure ¢.
{la—&|>h)
% PROC g(%I0F fa INTy S%l0P(b:INT)= =
B LOCTp POINTUNTY s
ST M
JLLB=S8TART A (a<<b)=>$ OLE=11;
LB=START A~ {(a<t)=>$ OLR =12,
LB=!1=§$O0p=—8bLA $COLR=I3;
LB=12>$0p=8a A $OLB=13
3
LB=13=%0x% p=» p+1 A $OLB=RETURN
]
]
a—bl=>h+1}

The verification process runs as follows

(1) F[J6US,RETURNY ALE=(3
Np=Fe(|at1—5.24—1)}
ACp=Ed—la— G120 =R+1D)
= (la—b[Zh+1I)ALB=RETURN.

by rule [2.1.20.

(D) FLBCIIDALE=1A(la =51 221>k 11)
={p=ba-(lat1-E]>h+1))

A (p=Rb—r(la— G+ | >E+INALB=I3
by rule [2.1.1] and simphifying.

(30 r[UIIDALR=I2A(la-1~b| >R +1)
=(p=ka>la+1—8]>A+1))
Ap=&bé+la— G+ 1=+ 1IALB=15

by rule {2.1.17] and simplifying.

4y FTBULED ALB=I A (a<b)—=(|la—(b+1) | >A+1))
A~ el lat1—b| >k +137 A a<8)
= (p=fa+lat+1—b!>a+1)}
Alp=8s=a— G+ =T INALB=0

by (2).
(5) | [J6 U2ADALB=02A(G@<h)>Ca -5+ 121 >4+12)
A~ (e —=(|at+1-b|R+1D A~ (a<t)

© hEE

http:/ www. jos. org. cn

Fra ¥ . wFERiET XYZ/E T 44688 X LT RiE

— 291 —

= (p=Ra—+(la+1—8I>k+1)) ‘
Ap=b—>(la— (B+1) >R +1)IALB=13
by (3).

(6) F[p(START 3)NLB=START

Ala<<t)={|la— G+ 1) |>h+1))

A~ (@<= la+1—b|>h+10

=2 (p=8u—>(la—1—8{>r+1D)

Ap=8t>(|a—(b+1)|>>A+1))ALB=I3
by (4), (5) and rule [2. 2].

(7 r[16 (START,RETURN)ALB=START
A(la<<<d)=(ja— G+ | >R+1D)
A(~Ca<lby=(la+1—=b>r+10)
=(la—b|>h+1YALB=RETURN

by (1), (6) and rule [2.4].
(8 F(a<p)+(la— G+ [=h+10

A~ @<y~ (|a+1—-b|>r+1=a—b|>=h}

by simplifying.

(8) F[Jb (START,RETURNYALB=START A (|a—b!>>h)

=(|la=b|=h+1IALB=RETURN
by (7Y and (8).

4 Conclusion

This paper has discussed the representation of pointers in temporal logic language XYZ/E, and has present-

ed the rules to verify XYZ/SE programs with pointers. It turns out that XYZ/E is a suitable language for repre-

senting such dynamic mechanism as pointers.

In the future work, we plan to remove some restrictions on the application of pointers in XYZ/SE programs

(for example, pointers can not be used as input or output parameter of procedures). We also plan to develop

some methods or strategies to simplify the process of program verification.

Acknowledgment 1i Guang-yuan would like to thank Dr. Zhao Chen and Dr. Shen Wu-wei for their many

helps during the time he stays in the Institute of Sofrware, the Chinese Academy of Sciences.

References

| Tang C 8. A temporal logic oriented toward software engineering

vl Advanced Sofiware Reseurch, 1984,1(1):1~29

an introduction to XYZ system (1). Chinese Journal

2 Xic Hongliang, Geng Jic, Tang C 8. A structured temporal logic language: XYZ/SE. Journal of Computer Science and

Technology, 1991,6(1):1~10

3 Zhang Wenhui. Verification of XYZ/SE programs. Chinese Journal of Advanced Software Research, 1995,2(4):364~373

4 Kroger F. Temporal Logic of Programs. Berlin; Springer-Verlag, 1987

© il

AT

http:// www. jos. org. cn

— 202 — Journal of Sofrware BAFH 2000,11(3)

BB E XYZ/E figst R R AR T S RIE
AV R

NTEHMERRHERFTEANSFUFTRTEE 5 100080
HMKEIFENMIEM R #IE 550025)

WH HHL - FEETHBLY EAHARRELA T o UL E TR SR RS ERGRL. 54
ERFEREETFRLI S ENBRXLLREXYZ/ERE—~ S ATRA RO~ BARHET, DL H
FEGAETFLENTHELRME. AL LR ENFTRET XYZ/E A0 H XA FHRMEUALE
A XYZ/SE 24 + 3547 85 B4 BT 8.

FEE wAESH.AABEL. BARE.DAEL Y.

FTRESES TP

© PEEREBAAEEISUR hip:/ www. jos. org. cn

