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Abstract It is shown that there exists a diamond of high computably enumerable degrees preserving the
greatest element 1.
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We say that a set AC wis a computably enumerable (c. €. ) set, if there is an algorithm to enumerate the ele-

" introduced the notion of relative computability between sets. For any sets A, BSw, we say

ments of it. Turing
that A is computable in B (or (Turing) reducible to B), if there is an aigorithm to decide for any x € w, whether
z€ A when answers are given to all questions of the form “ Is y& B7”. We write A<t B to indicate A is com-
putable in B, and A=1B if A<t B and B<r A. The equivalence class of A under =r1s the (Turing) degree of
A and is written as degr(A) =2, A degree ais called computabiy enumerable {c.e. ) if it contains a c. e. set. The
c.e sets and the corresponding degrees are central to computability theory. Post'®noted that there is a greatest
¢.e. degree, written by §', and asked whether there is a c.e. degree gther than 0 (the least degree) and 0.
Friedberg™ and independently Muchnikm answered the Post’s problem affirmatively. Further, Sacks®:
showed that every nonzero c. e. degree can be (nontrivially) written as the least upper bound of two c. e.
degrees, and Sacks™ proved the density theorem of ¢. e. degrees. Shoenfield™ then conjectured ; for any finite
partial orderings P_@, with the least element 0 and the greatest element 1, any embedding of P into ¥ (the
set of all c. e. degrees) can be extended to an embedding of € into the same ¥". By this conjecture, there are no
incomparable c. e. degrees a.b such that a Ab (the greatest lower bound of a,b) exists. However, this was re-
futed by Lachlan™ and independently Yates®!. there exists a minimal pair of c.e. degrees, that is, there are in-
comparable c.e. degrees a,b such that aAb =0. Lachlan'™ also showed that hoth a and b can be chosen to be
high. Cooper™® showed that every high c. e. degree bounds a minimal pair, and Lachlan'? showed the Lachlan

Mz.az]

nonbounding theorem that not every ¢, e. degree bounds a minimal pair. Recently, Li proved the relative

nonbounding theorem for halves of minimal pairs (i.e. , cappables degrees).

A minimal pair yields an embedding of four-element Boolean algebra which is called diamond into &
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preserving the least element 0. Lachlan™ showed that there are no ¢, e, degrees a and b such that 0<Ca<(/, aV
b=10", and aAb=0. And Lachlan observed that for any incomparable c. e. degrees aand b, if aVb=90', thena
Ab (f it does exist) is not low. And Lachlan'® and Robinson['*! suggested that perhaps c. e, degrees @ and b

-1*) and simultaneously by

with aVb=0' can never have an infimum. This was refuted oy Shoenfield and Soare
Lachlan™. Indeed, Lachlan* showed that every nonzero c.c. degree is the top of a diamond in c.e. degrees.
And Slaman™" showed that the diamond lattice is dense in c.e. degrees.

Ambos-Spies™® showed that for any c.e. degrees a,b (i=0,1), if 8,V a,=0' and b, Vb, is low, then there
are no c.e. degrees o by such that a, Ae;s{hy, i=0,1. And again by this result for any c.e. degrees a and b,if
0<Ca<{0’ and aVb=0" then a Ab (i it exists} is not low. Fejer!™ showed that for any low c. e. degree d, there
exist c. e. degrees a, @y, a, such that d<C a<lay, a,<<0', a, Va, =0 and a, A a,=a. By analysing the Lachlan
nonsplitting theorem (l.achlan™7), Harringtoni®! noted that there exists an incomplete ¢. e, degree a such that
for any c.e. degrees X.¥, if X,y& [a,0), then 0'5=xV y while the a is called a Harrington nonsplitting base.
Further, Cooper and Li'® showed that there exists a Low,; Harrington nonsplitting base. On the other hand, Yi
showed that there is a ¢. e. degree a7=0' such that for any c.e. degree x€ [a,0'), O splits over x.

Y. liang and Z. fiang asked (private communication): s there a diamond of high ¢. e. degrees preserving
the greatest element 12 In this paper., we give the answer.

Theorem ™ (High Diamond Theorem™ ). There exists a diamond of high c. e. degrees preserving 1, that is,
there exist c. e. degrees a, @y, &, such that a is high, a<ag<(', a,Va,=0" and a, 1a,=a.

In relation to this, Cooper and Li¥ have shown that there is no low; c.e. degree which is the botrom of a
diamond of c. e. degrees with top 0, and that there is a lowsc. e. degree which is the bottom of a diamond of
c.e. degrees with top ¢'.

We organise the paper as follows. In section 1, we formulate the theurem by requirements and describe the
basic modules for satisfying the requirements. In section 2. we describe the strategies based on the basic mod-
ules. In section 3, we arrange the strategies on nodes ol a priority tree. In section 4, we describe the full con-
struction. And in section 5. we verify that the construction satisfies all of the requirements.

Our notation and terminology are standard and generally follow Soarc®). During the course of a construe-
tion, notations such as 4;, @, are used to denote the current approximation to these objects. The notations A;,,.
®.[s] denote the approximation to these ohjects which exist at the end of stage s. And the notation such as @[z,
5] denotes the approximation of g which exists at the end of substage ¢ of stage 5. The notation [f,5] denntes a
state of substage ¢ of stage s, we define [#,5]<<[¢',5' 1 if either s<7s' or s=35' and 1<C1". The use function for a
partial computable (p.c. ) functional is the greatest number in its “oracle” which is actually used in the compu-
tation, For a p.c. functional, say A, which is not built by us, then for any r and 5. if ®@(x)[s]* . then define
@ads]=--1. And for a p.c. functional, say @, which is huilt by us, then for any  and 5, if A{z)[sT4, de-
fine 1(a)[s]=wm. During the course of a construction., we say that y is fresh if v is the least number which is

greater than any numher mentionad so far.
I The Requirements and the Basic Modules

1.1 The requirements

Tao prave the theorem. we construct c. e. sets A, Ajand A, to satisfy the {ollowing requirements

# This result is alsn deduced from the above result of Yi and a claim of Downey and Shere that for any incomparable c. e.
degrees a,b, :here are c. e. degrees ¢,d such that a<’c<<aV h, b<"d<(a ¥ h. and ¢ A d exists.
#+ P, Zheng and A. L1 have noted that @ here can be replaced by an arbitraily given high c. e. degree.
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A A, A=A, A =g, total =g, <7 A;

. A= Jl
where e€ w, i=0,1,J is a fixed c.e. set such that for any ¢€ w, both (a) and (b) below hold ;

(2) £€ K'-—>J7 is finite;

(b) & K'—»Jl5| = o],
K is a fixed creative set, and {(@., ¥, ¥!) |e C w/| is an effective enumeration of all triples (@, %°, %) such that
every member of the triple is a p.c. {unctional. Clearly, meeting the requirements is sufficient to prove the the-
orem. For a p. c. functional, say @, which is not built by our construction, the use function ¢ will satisiy the
following two properties

W Hplat+ 134 + then @lad(s] 4 and ¢l s]<gle+13[s"s

Giy If @) sy » then x<Ce (x)[s]<s.
1.2 The ZZ-module

To satisty %, we will build a p.c. functional §2CA,,4,). We first describe the properties of the use fune-
tion w, we call them «-tules.

arrules

wl. If w(k+1)[s]5w, then w(k)[s]1<wl(t+1)[s];

w2, I 82(A;, Arsx)s] 4 o then we get w(z)[s]=w; if w(x)[s]7w, then o(z)[s]& Ay L) A,,s

0. If w(s)[s]#w then wl(x)[s+1]=wif and only if w{x)[s]€ (Ao.e; UA)r:)— (Aol A)s

wh, f wlr)[s]Zw=w(z)[s+1], then (V¥ yZx} w(y)s]1Zerwiy)[s 1€ (A U4 ]

The #-module will proceed as follows.

L HAHAp, Aysk) ¥ =K (£), then enumerate w(x) for every 22k with w{x) £ into A, for one and only
ome € {0.11};

2. Othetwise, let £ be the least x such that w(x)=w. Define 2{A,,A,:4}=K (%) with w(£) fresh.

By the #-module, for any &, lim.w(&) ¥ = w(k)<Cw, and by the w-rules, w(#) is computable in (A,PA).
For any fixed £, (AP A,)-computably find the least stage s, such that @(£)[s:]& AU A,, then by the ZF-mod-
ule, € K if and only if REK, . KxrADA.

‘The problem is that the enumeration of w-uses is not determined completely by the ZR-module, that is 1o
say, other strategies may also enumerare w(%) for some % into A, (i =0,1). The point is that, for a fixed k.,
there are only finitely many strategies which may enumerate (%), and cach of them will enumerate w(£) only
finitely many times. In this case, for any £, limw(2)[s]} =w(&)<w, end again w(k) is compulable in ASA,.
K<14,T4,. # is satisfied.

1.3 A F-module

The basic module for a &P -requirement, say “®;, is a standard Friedberg-Muchnik procedure. 1t will pro-
ceed as follows,

1. Appoint a witness, say ¥, which is a fresh odd number;

L. Wait for a stage at which @{A;y) § =0=A;_;(y). Then enumerate yinto A,_; and preserve computa-
tion @(A;y) § =0,

1.4 An .#-module
For the szke of an .4 -requirement, say .# {we drop the index?}, we defire the length function / of agree-

ment between ¥°(Ay,A) and ¥ (A;,A) as usual. We say that stage s is .#¥-expansionary, if s=0 or the current
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length function £2>I[w] for all v<ls. Clearly if there are only finitely many ..##-expansicnary stages, then & has
already been satisfied. Therefore we consider only the case that there are infinitely many ..##-expansionary
stages. An .#-module will work only at ..#-expansionary stages. An .#-module is the so-called Fejer’s™
method. It will build a p.c. functional ACA) during the ..#-expansionary stages and proceed as follows.

1. (Correct ACA)). If there is an x such that ACA;x) v ZW°(A,,Asx) and [, then let p be the least
such x, enumerate A{x) for every x22p with A(z)2w into A;

2. (Build ACA)). Let p be the least x such that ACAsx) %. 1f {>>p, then define ACA;p) ¥ =¥ (Aq, 4,
P> with A(p} fresh.

For the use function A of p.c. functional A{A), we also require that the use function A should satisfy the
following properties. We call them A-rules.

A-rules

(a) ACAs;x) ¥ if and only if A(x)#w;

(b) H ACAs 2=+ D [si¥ 5 then A(A; ) [s] ¥ and Alx) [s]<<A(x+1)[sT;

) If ACAs (s ¥ » then A(x)[s]& AL

(d) If ACA;x)s] ¥ then ACA;x)[s+1]4 if and only if A(x)[s]& Ao, — A

(e) If ACAsa)[s]y and ACAz;x)[s+1]4 , then (V =) A [s]F =w>A €A L]

By the —#-module, if there are infinitely many .# -expansionary stages, then A(A) is built infinitely often.,
and if ACA) is total, then -# is satisfied.

Clearly by the —#-module, it ¥*(A,, A)=P'(4,,A)=g is total, then A{A) is a total function. The prob
lem 1s that the enumeration of A-uses will not be determined completely by the .#-module, that is. other strate-
gles may also enumerate A-uses into A. The point is that for any fixed p. there are only finitely many strategies
which may enumerate A(#), and each of them may enumerate A{p) only finitely many times unless some strate-
gy has proven that there is an r<{p such that ¢/ (x) will be unbounded for some /€ {0,1}

Thus in any case, ..# will he satisfied.

1.5 An “-module

Suppose that § is an Z,-strategy. Then let J*=J"! and let o’ =0'®), & will work with a boundary &(8)
which is defined by £(8) =max{s|§ is initialised at stage s}. An .Z-strategy will simply enumerate every x>
6C8), x€J'— A, into A. Clearly & will satisty its requirement unless lim, #(6)[s]=oc, and in the latter case,
we do not need this &, since it is not on the true path.

1.6 A strategy below an #-strategy

Suppose that § and & are strategies. and that § is an Z-strategy. Let §C° ¢, If £ assumes that & has only fi-
nite actions. then & injures § only finitely many times. (therwise, £ knows the computable set which is enumer-
ated by é. And then £ can prevent the injury from 8. For example, & believes a computation @{A;y) ¥ =z, only
it for every &, if #>6(8). x€ @ and x<C@(y), then x has slready been enumerated into A. We now complete

the description of the basic modules.
2 The Strategies

In this section, we will design the strategies for various combinations of the requirements.
2.1 'The strategies For a triple (#,.#, 57} of requirements .%,.# and #

Suppose that §,a and § are .#-, & - and 5?-strategies respectively. Let §CaC 3, S assumes that & is enu-
merating an infinite computable set, and that « is building & p.c. functional A(A). Suppose that 8 works on

2.7, then let e(f)=e¢ and i(B)=1. In the following discussion, we will drop the index e(8).
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We say that @(4;3) v (or W' (A, A1p) 4 ) is f-delievable, if for any x. if 2226(8), € o’ and 2Ke(y)
(or z<<¢'” (p}) then z has already been enumerated into A. The method to prevent the injury to & computation
S{Ary) + =0 {rom the building of the p.c. functional A{4) is the Slaman’s cenfiguration method. B will im-
pose an Aug-restraint %' (3), However, even if +¥{#) will not be injured by a strategy on the priority tree, it
may be injured by the building of the p. c. functional £2(A4,, A;}. The point is that § will work with a fixed
threshold , say k. We will ensure that the A, -restraint # () will never he injured by an enumeration of w(x)
for any x22k. And if 7 () is injured by the building of £2(A,,A,), then resez 3, that is, cancel any previous
progression of A but keep the threshold & unchanged. Thus if ' (8) is injured by the enumeration of w(s) for
sotme z, then z<C4. The point is that, for any x, w{x} is enumerated only finitely many times, and then 2 is re-
set only finitely many times.

Thus the S@-strategy will proceed as follows,

1. Appoint a witness y(f) to be a fresh odd number;

2, Wait for a stage, say sy at which @(A;y(8)) ¥ =0=A,_,n{x(#) ) via S-believable computation, Run

the following.

Program — 1.

Step la. I @(y{B)>e{y{8))[t »5 ], where [17,57 _ is the greatest previous state al which step 2
occurred, then set () =uw;

[Remark. (@) is simiiar to a threshold of £ for ACA). We call it “contrelier” of £ 1o distinguish it from
the threshold £=£(g). ]

Step ib. If ¢(#)=w, then define ¢(3) as [resh;

Step le. If either A (M= (B> 1) or there is an x<<e{f) such that AA; =Y FEE T A0, 41 7
or ¥ A5, A 1) is not f-believable, then enumerate Alx) for all 23 c(B) with A(x) 5w into 4;
Step 1d. Otherwise, enumerate ACx) for every xze(f#) with A(x)+ @ into A. and go on to program 0.
Program 0: Let #®{8) =max{¢® (p) | p<e(p). There are two cases:

Caose Ja. «(R(2))<A P (). Then enumerate wlr) for every 2k (2) with w(x)7w into A s+

Case Ob. Otherwice. enumerate y(A) into A, .». enumerate w(x) for every z22k (B) with w(r)Fw
inta A.g.

It Case 0b of pragram 0 oecurs at a stage s» and K[ 2(3) :K‘“Fk(ﬂ) . then @Ay (AN [so] ¥ =0F1=4, ..»
{y€A1) and @045y [« ]+ =0 will never be injured by the building of A(A) at a stage =>s5,. And then 2%is
satisfied.

If Case 0a of program 0 occurs at a stage so and K[£(3) =K, [£(8), then Case Ob of Step 0 will occur at the
next e-expansionary stage. say s;, and then @;(A4;v(3)) 4 =0 will be preserved and y(3) will be enumerated
into Ay . @(Av(B)) § =02 1=A, .5 (y(AY). s satisfied.

1 lim, (y(8)){s]=0o0. then @(A;y(B)) diverges, and then #, is satisfied. And in this case, limec(F)[s]=
oo, and then for any fixed p. 3 enumerates A(p) only finitely many times. ACA) is still correct. I Step 2 oceurs
only finitely many times, then either ¢{3¥(#)) will be unbounded or @(A; y(B)IF0=A_ ;0 (+(5)). B satislies
its Z-requirement.

Otherwise, limc{#[s] ¥ =c{#Y<<w. And then for almost every stage at which Step 2 accurs, Step lc of
program —1 will accur. By the strategy, there is a p<Cc{(8) such that ¢® () will be unbounded and A(c{(5))
wilt be unbounded. Therefore 5 proves that .## has already been satisfied, but g fails to satisfy its -
requirement. In this case, there are finitely many buckup strategies S” for every p<ic(f). 57 assumes that p is
the feast x such that A(2) will be unbounded. And the “-requirement of 8 will be re-arranged to a backup
strategy for the strategy 3, say S*. The point is that the backup strategy S* will never be injured by the building
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of A(A4).
2.2 The strategies for all requirements below one .27 -strategy

An F-strategy will be the same as an .#-module. Suppose that « is an #-strategy. If there is a #-strate-
gy B such that a8 and @ fails to satisfy its #-requirement, then # proves that the -#-requirement of « has al-
ready been satisfied. And then all other requirements will be satisfied by a backup strategy S for the 8 for
some p.

Otherwise. Every &-requirement will be satisfied by a #-strategy 87a. And clearly, every F-require-
ment will be satisfied by an #-strategy §Da. And by the .#-strategy a, A{A) will be built infinitely often. By
the definition of ¢(#) for the @—strateéy 8, for any fixed p, p will be defined to be ¢ () for some F-strategy f
at most once. And by the assumption of this case, for every fDe, either A has only finite actions or Hm, ¢ ()=
20, Therefore A(p) will be enumerated by S#-strategies only finitely many times. Thus A{A) will be total un-
less there is a fixed p such that A(p) will be enumerated infinitely many times by #-strategy e itself. By the
~# -strategy, in the latter case, either ¢°(p) or ¢! (») will be unbounded. Thus in any case, - is satisfied.
Therefore in any case, -# and all other requirements will eventually be satisfied.

2.3 A SP-strategy below finitely many 7 -strategies

Generally, a #-strategy 2 will satisfy its “Z-requirement while priority is given to a finite number of #-
strategies which are building p. c. functionals A,(A) for j=1,2,... ,m.

8 will always assume that, for any p, A (p)<<TA(p)<<. .. <A, (p) Gf they are defined). As in section 2. 1,
£ will dafine a finite number of parameters.

« y(B3): the current witness of 8;
« (3,7 the controller of 8 for A;(A), jE€{1,2,....m};

« FP(3) s the Ai-restraint of §;

< u(A): max{g(y(@), #P{D}.

2 will proceed as follows.

A1 Aprpoint witness y{(8) to be a fresh odd number;

#2 Wait for a stage, say s, at which @:(A;v(B)) v =0=A, s (¥(F)) via f-believable computation. Exe-
cute program —m.

Program —m.

Step ma. If g(y(B1>@(y(8)3[¢" .5~ ], where [¢7 ,57 ] is the greatest previous state at which 82 occurred,
then set ¢ (2, j) =w for every jE {1,2.....m

Step mb. If ¢{f,m)=w, then define c(Z,m) to be a fresh number;

Step me. M either 4, (c(B,m )< (c(B,m>—1Y or there is an x<Zc (8,m) such that either A.(A;x)#
Yol (A As 20 o WP (A As 1) is not B-believable, then enumerate 4, (x) for every xxc(8,m) with A,
(zx)#Fwinto A;

Step md. Otherwise, enumerate ,(z) for every x22c(#,m) with L,(x)7w into A and go on to program

—m—+1:

Program —j.

Step ja. If c(8, ;) was defined at substage £-+1 of stage s~ for some £, and ¢} (¢ (8, + 1) — 1) F¢E (3,
i+ —=13{t,57], then set c(f,iy=w for every ;€ {1,2,... ,j};

Step jb. If ¢{8,;j)=w, then define c¢(3, ) as fresh;

Step jc. I either A;(c (B, DI P (P, /) —1) or there is an 2<Cc (8, j) such that either A;(A; 737 ¥
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(Auns Ay 2) or P (Augs As 1) is not F-believable, then enumerate A () for each i€ {j,j+1,... ,m} and
every x==c{8,j) with A {x)5#w into A;

Step jd. Otherwise, enumerate &,€{x) for every x22c{B,7) with &, {z) Fwinto A and go on to program - j
+1;

Program —1;

Step la. If c(@, 1) was defined at substage t+1 of stage s~ for some ¢ and @5 (c (8. D — D (¢ (§:2)
ity ], then set c(F,1)=w;

Step 1b. If ¢(f,1)=w, then define ¢c(#,1} as fresh;

Step lc. If either A (c{, 1)< (c(8,1)—1) or there is an x<c(#,1) such that either A:(A:z)z=¥®
(Aun s Asz) or TP (A, Asx) is not G-believable, then enumerate A (1) for each 7€ {1,2,... .m} and lor
every z-2c(#,1) with A (z}5#w into A;

Step 1d. Otherwise, enumerate A, () for every xz2c(f,1) with A (x)# @ into A and go on to program 03

Progtam 0; Let 7@ (@) = max {¢/® (p) 1 p<<e By 3dy j=1.2.... m), and let u(8) =maxir*® (3),
#{v(8))}. There are two cases.

Case 0a. w(E(@)<F"(3), then enumerate w{x) for every x=2k () with wilx)F winto Ay .

Case Ob. Otherwise, enumerate () into A,_ip » enumerate @(x) for every x22£(3) with @(z)+w into
Aiepye
2.4 The possible outcomes of the & -strategy

If program O cccurs at a stage spand w(k)[s,] ¥ & A, U A, for every 2<C4(3), then ®(A; (N[5l { =0
and it will never be injured by the building of 4,{A) for any j€ {1,2,... sm}. And then $CA;v(FN (5] 4 —0
will be preserved forever. If Case Ob of program 0 occurs at stage 5o, then Aoy [se]=1. Tf Case 0z of
program 0 occurs at siage 5. then y(8) will be enumerared into A,_.s at the next stage 5,>>s; at which £ is
visited. Thus if program ( occurs at a stage 5o, and for any k<TA{(8) w(B)[so ¥ € AU A, S(A;3(D) § =05
1==A o C¥(B) ). & is satisfied.

If 82 occurs only finitely many times and program 0 will not held permaneatly, then either g(y(8)} will be
unbounded or @:CA;y(EIF0=A; ;s (y(B)). In either case, 5 is satisfied.

If lim,c(B,m)[s]=cc, then g(y(A)) will be unbounded, & is satisfied and by the defimtion of ¢(5,j), for
every 7€ {1,2,... mm}, lim, ¢ (8, 35 ]=o0. A,(A) is still correct for every & {1,2,... i}

Otherwise, lim.c(#,m}[s]} =c(B.m)<<aw. Let j be the least 7 such that limc(f,i)[(s]v =c(f:i)<<w. By
the strategy, ¢ (c(f,7)) will be unbounded, and A (¢(2,;}) will be unbounded for every i€ {j. 7+ 1,... m}.
A ;has been satisfied, and for any ;€ 11,2,... .7 — 11+ A(A) is still correct. In this case, there are finitely
many backup strategies below 3. A backup srtrategy of B will guess for each i€ {7.5+1s... ,m} the least p such
that & () will be unbounded, and then the backup strategy will not be injured by the building of A:(4) for any
i€ {fj+ 1. . sm).

2.5 A backyp strategy for the &-strategy p

Suppose that j is the least ¢ such that lime(F.i)[s] ¥ =c{B.7)<Tw. Let rg((zf;m A Sfap "
(s i Y ves " Al mrpm)?s such that p,22p0 22 .. pr Let 87 =F" = Then 8" is a backup strategy of
A, and 8" believes that p; is the least p such that 4(p) will be unbounded for every i1 & {7.,j+15... ,m}. The
P-requirement of § will be rearranged to nodes DF*. The backup strategy deals with the injury from at most
m—1 p.c. functionals A;CAY, . A, 1 CA), A5 (A) ..., AL (A). Then a backup strategy of £ is similar o

and simpler -han the general “@-strategy f in section 2. 3.
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3 The Priority Tree T

In this section, we will describe the building of the priority tree. The priority tree will grow upwardly. For
some node ¢, there is a number e{e) or a pair {¢(a),i(a)) of numbers which is associated with it natrurally.
Intuitively, it is the index of the requirement on which « works. For example, if ea) ¥ and i(a) § » then ais a
#-straregy which waorks on 2 for e=e(a) and i =7:(a), For some node a, we define neither e(a) nor i {al.
Intuitively s « is a real strategy if and only if e(e) ¥ . And if e€a) + . then we call @ a virtwal strategy. “The for-
mal definition of the real and the virtual strategies will be given in definition 3, 2. |

The priority tree ' will be built by an effective construction which enumerates the nodes of 7. 1i e{e) {or
{e{a)+i(a}}) is defined then it will be defined at the stage ar which ¢ is enumerated into 7.

To build the priority tree T, we {irst give some notations.

Definition 3. 1. (i} Define the priority ranking of the requirements by ()= — 1, 0 (. #F,) = de, o(F) =4¢
+1, o(P=1e+2 and o{FD=4de+3 for all ¢€ o,

We define “# <% for requirements &~ and %, if o(( & )<0(%).

Give a node €7

(ii) Wz say that ¥ has been destroved at § if YC & and there exists an @ and a 8 such that @ {(0,efa)) )7
A2~ ((foy p))=£ for some ;>0 and for some pE wi and we say that 7 is correct at £if ¥ & and ¥
has not been destroyed at £ yet,

(i1} A real Fstrategy & with §C€ has been satisfied at 7 if § is correct at &,

(v} A real «#-strategy @ with T § has been satisfied at €, if @ is correct at £and a” ((0,e(a)) ;AT E"
(CZy— )07 ((faup)>=€ for some ;>0 and for some p€ w.

(v} A real .#-strategy o with aC & is active at & if a is correct ar € and a has not been satisfied ar &.

(vi) A real F-srrategy § with C"€ has been satisfied at £if B is correct at and £ (a)<TE, a= G, e (B),
(1) for some #=0,1 or 3.

(vil) &, or ., lias been satisflied at € if there is a real .Z- or a real - ~strategy which has been satisfied
al £

(viii} & Las been satisfied at § if there is a real @ strategy A such that 2 has been satisfied at &

(ix) ', 15 active at £1f .47, has not been satisfied at & and there is a real -# ,-strategy « such that « is active

L

at

We now define the possible outcomes of the strategies.

Definition 3. 2. Given a real F-strategy 8. let e== (¢(A).7{A)). Suppose that all real ..#-strategies which
are active at A are ay.ap,. .. »2, with 2,07, .. C a.Cg. Then

(i) Define m () =m:

(i1) Define the pessible outcomes of B as follows: (0,63, ((1ye) ¥, ((3ved? and ((2,— 7)) " ((f.,j N
Cfe e 0T 7 LU spa ) for m=m (B, p, 2 =0 . 2, and JE 11,20, (B ),

(iai) For any ¥=8" ((2,—j))° Cfan 227 <(f’u+1 shi? " T (s pad ) for m=an (B) with p,22pi0
Zeo. Zpee Vis areal strategy and every & with SCECY is a virtual strategy, and every ¥=8" (a) fcr a €
{€0,6),(1,e). (3.2} is a real strategy.

Suppose that «ix a real % or ..# -strategy. Then

{iv3 The possible outzomes of a are ((0,e(e)?) and ({1,e(a))}, and both e~ ({0.e(a))) and «~ ((1,
e{a)) ) are real strategiess

{v) We define the ordering of the possible outcames as the usual lexicographical order.

We now describe the priority tree T
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Definition 3.3. (i) We dcfine the root nude A=<(—1.1) as a real .#,-strategy;

(ii) The immediate successors of a real strategy are the possible cutcomes of the correspornding strategy as
deseribed in definition 3. 2

(iii) Suppose that we have enumerated £ to be a real sirategy but e(£) has not been defined, then find the
requirement %"~ with 0(%2") minimal such that Z8 has not been satisfied at &€ and 2 is not active at &; if & is
S, or A, then define & to be a real .7 or . #-strategy respectively with e(8)=¢ and if 2 =52, for some ¢, i,
then we say that £ is a real SP-strategy with e(£)=¢ and i (£)=1,

Then the priority tree T is built as follows.

Definition 3.4, {i) The priotity tree T will be built as a ¢. ¢. set of strategies while the full construction
proceeds ;

(i1) At the state at which a strategy £ appears in the full construction for the first time, we enumeraie &
inte T simultaneously and automatically;

(iii) If a real strategy §is in 7', and ¢(§) has not been defined, then define ¢{&) or (e{£), {(£)} by delini-
tien 3. 3 stmultaneously and automatically ;

{iv) At any point during the full construction, we always respect the lexicographcal ordering of nedes,

We now have built the priority tree T" to be a computably enumerable set of all strategies (either real or vir-

tual > which appear in the full construction.
4 The Fuil Construction

Befoie describing the cunstructon, we first give some notarions and parameters,

Definltion 4. 1. {i} For a real .#-siraiegy a, we say that 5 is a-expansionary, if s=0 or Hay =) ] for
all +<Cs at which « is visited, where [{a} is the carrent length of agreement between ¥9{Ay, A) and YL(A,, A
and ¥. (A0 A} i3 the version of i, (A A) which is computed by a;

(i) We {ix an infinite partition ULeow® V=D, <) <<, ..} such 1hal every D, is an infinits cum-
putable set;

(i) For a real “-strategy & let e=¢(8), then define J°(=J'"1) 1o be the version of 77 which is enumer-
ated by &, and define w’— ! ;

(iv) Given a real “-strategy &, suppose that all real .# strategies which arc active at  are ey1@z4.. .« 1@n
with o C e’ ... (_a,,. L'hen

Y Define m(f8)=m;

(hy Il m(823=0, then 8 has only one parameter v(3) {(the current witness of #3;

(¢) Ham(3y#0, then 8 will have the following parameters,

< k(D + the threshold of 3;

* v{f): the current witness of 3:

«c(B.g): the controllers of 8. where jE{1.2.....m{4) };

=P BY . the Aum-testraint which is imposed by A; and

vu(): maxig (Y. D),

Definition 4. 2. Suppose that 8 is a real “F-strategy. We say that ®{A; (BN ¥ =0 (or TP (Aym, Asp)
¥ 7 3% B-believable, if both (iY and (ii> below hold.

(i) For any .#-strategy & with 8" ((0,£(8))> 8, every x with 226(F), x€ o’ and 2<p(v(8)) (or <
&P () hes already been enumerated into Aj;

{(i1) For any £ such that §” ¢(f., )= 3 for some « and some p,&L(p) >0y ()} (or L(p)>/¥ (p)).

For a p.c. funetional which is built by our construction. we always assume that the use function will have
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some properties.

Definition 4.3. (1) For the p.c. functional 2, we assume the e-rules wl ~wd in 1. 2;

Gi1) For a p.c, functional A, we assume the h-rules (a)~ (e} in 1. 4.

During the course of & construction, we often initialise some strategias. We now define the action of initiali-
sation.

Definition 4. 4 (Initialisation>. (i) If a real “P-strategy fis initialised. then set k(D =1 (B =r " ()=~
and set c{@1j) ~o for every O {124 .. e (A}

(i) If a real &#-strategy Pis reset, then set y(A)=¢7"" () =—Tand set c(?,j) =0 forevery ;S (1,8,...,
@It '

{iti} Il a real «# -strategy o is initialised . then set A,(A) to be totally undefined without any enumeration;

{iv) I a real strategy £ is initialised, then any link {a,8) or (£€,3) for any « and any £ will be cancelled,

For the convenience of the deseription of the full construction, we define the notion of the ENUMERATE.

Definition 4. 5. (i) We say that ENUMERATE w(a) into A: (/= 0,1) if we enumerate w(y) for every y2=
r with w{y)# e inte 4

(it} For a real .« strategy . and for a natural number p, we define the notion ENUMERATE A.{(g) by
the following astions .

{a) Enumerate A,{x) for every az2p with L{(x)7#winto A;

{b) For any real .«¥-strazegy ¢ , if (' and @ 15 active at & , then enumerate A (x) for every z22p with ir
()7 winto A.

During the course of the construction, there are a number of actions which will be executed automatically.
We list them as follows, and we will not mention them in the description of the full construction.

Definition 4. 6 (Automatic Action), (i) If £ is initialised or reset, then any ¥ with £C7 is initialised simul-
tanecusly and sutomatically:

(i1} I a strategy (either real or virtual strategy) appears in the construction, and § has not been enumerat-
ed into 17, then enumerate & mto T immediately and avtomatically s

(i) I a real strategy €isin 7"y and ¢(&) has not been defined, then define e(£) or {(£(5),i(£)) by definition
3.3 Gil) immediately and automatically

(v) If a real 47 -strategy o is in T', e(a} is delined and L), has not been defined s then define ), immediately
and automatically such that [, is the <Z-least elemeat 7). which has not been used;

(v) if a reat #-strategy ¢ is mitialised, then redetine £(8) to be the current stage immediately and automat-
ically.

We note that there is no action which is taken for a node & until § is enumerated inte 7. The fol! construc-
tion will be divided into odd stages and even stages. We {ix an enumeration {K,[s€ w} of K. witiout repetition
such that £,—= @, K,= K, if 515 even, and |K,— K. [ =1, il s is odd. We naw describe the {ull canstruction.

Dafinifion 4.7 (The Construction), Stage s=0. Sev T=A=A,=A, = ; Stage s=2n+1. Let L, EK,—
K, 1. There are twg cases :

Case 1. wlk)5%w.

(i) If there is a ##-strategy € such that w(t )< (8, then let 8 be the unique £ with £(§) minimal {see
Propesition 5.1 (iii}). Then

+ We say that § receives artention at stage s;

+ ENUMERATE @{(AY in A, o

» Reset any ¥ with £{(8><{k(¥).

i) Otherwise, then ENUMERATE w(&,) In 4., in either subcase. go to stage s+ 1.
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Case 2. Otherwise. then let & be the least x such that @{x)=w. Define w(%) to be a fresh even number,
and go to stage s+ 1.

Stage s=2{n+1>. We say that § is visited at stage s, il € is eligible to act at g substage of stage s. We first
allow the root node to be eligible to act at substage 0.

Substage r. Let ¢ be eligible to act at substage ¢ of stage 5. If 2==s, then initialise any ¥ with £< ¥ and go
to stage s+1; if £<Cs and & is 2 real strategy, then there are three cases, otherwise, go to the action: phase of
stage 5.

Case A. £=g is an ..#F-strategy. Then run program « below.

Program «;

al. If 5 is not a-expansionary, then let «” {((1,e(2)) be eligible to act next (j.e.. a” ((1,ela))} is eligible
to act at substage t—1 of stage 5}

«2. If there is a link (a,&) which was created and which has neither been travelled nor been cancelled for
some &, then let 3 be the <-least such &, and go to program 3 (in Case C below);

3. If there is an z such that A, (A;2) } . (@) =7 and A.(A; ) F i (A, Az ), then let p be the least
such z, ENUMERATE A.(pJ, initialise any ¥ with ¢ ({0,e{&))>< ¥ and go to stage s+ 13

ad. M there is an x such that A(x)<Cmin{gh ()¢ (2}, then let p be the least such x, ENUMERATE A,
(), initialise any ¥ with & ((0,e€a)))<I1Y and go to stage s+ 1;

ai. lLet p be the least x such that A, (x> —w. Il for any &' Ce such that & is active at @, A, {p)5w, and {
{@)>>p. then define A.(A;p) —¥i{As,A;p) and define A.(p) to be the fresh yC D,, and let ™ {{¢,e(a))} be
eligible tw acl nexd;

uf, Otherwise, initialise any ¥ with &<, ¥ and go to stage s+ 1.

Case B. £=8is an .%-strategy. Then run program ¢ below.

Program & ;

31, If there is an x such that +7>6(8) and 7" — 4. then enumerate x into A, and let & ({G,e(8)3) be
eligible to act next;

32, Otherwise, let §° ¢(1.e(A)) be eligible to act next.

{ase C. §=4f is a P-strategy. Then run program £ below.

Program 3.

Al IE @p( Ay () 4 =0#1=A, ;s (y(#)) has been created since £ was initialised or reset for the last
fime, then let 87 ({0, {e(F1.:(F1)1) be ehgible to act next,

#2. (1) 1f there is a link (a.8) ({or some real .#-strategy @) which was creared and which has nejther been
travelled not been cancelled, then travel this link by case 0b of program 0 of 83 below;

(i) Otherwise, go to F3.

83. Suppose that @:(Asy () ¥ =0=A,_;n(y(8)) via S-believable computation. If m(8)=0, then enu-
merate y(£) into A ;. initialise any ¥4 3 and go to stage s+1.

Otherwise, let m=m (), and go to program —m below.

Program — .

Step ma. If c(Bn) was defined at state (1 457 ], and @y (B> (v (D[t ,57 ], then set ¢(§, j)=w for
every JE11.2,...»m()}, and let 8" ((1,23) (where e= (2(#),i(§})) be eligible to act next;

Step mb. If c(8,m)=c, then define ¢(#,m) to be fresh, and set ¢(3,j)=w for every jE {1,2,... .m()
=15

Step me. If either & (c(B.m ) }sSgl® (c(B,m)— 1) ar there is an 2<Cc(f,m) such that either 4, (Aza)#

n

VP (A Asx) or T (A » Asx) is not f-believable, then
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* ENUMERATE A,_(c(8.m));3

* Set c(f,j) = for every j& {1,2,....m(8)—1};

* For every x<c(f,m), define s, to be the greatest stage s'<Us at which £° (2, —m )} " ((f,_+2)) was
either visited or initialised, if 8~ ((2,—m)} "~ ((f., +x)) was visited or initialised, and let 5. be the
greatest stage s’ <Us at which # was visited, otherwise; let p be the least x such that max{A, (x)[t]7w]|
5.5 t<Is i >max{ A, (o[t ]Fwlt<ls ) let 7 ((2,—m)) " « (fa, £ be eligible to act next;

Step md. Otherwise, ENUMERATE A, (c(&.m)) and go on to program —m+1 below

Program — ;.

Step ja. If c¢(fA.7) was defined at state [t~ ,s ], and 9!’{'3121 (c(,@,j-l‘])—]);ﬁgb'.}i,?] B+ D—D0 s 1,
then set ¢{f,{)=w for every i€ {1,2,...,j};

Step jb. If c(8.j} = w, then define c{§.;) to be fresh;

Step je. If either A <Cg'™ (e (8, 7> —1) or there is an #<Cc(84) such that either A (A FW (A A
r) or ‘I/"L;:" (Aiggy 1 Asx) is not §-belisvable, then

* ENUMERATE A (¢ (8,50}

» Set c(fyi)=w for every i€ {1,2,....7—1};

* For every 2= ¢(@#,j), define s, to be the greatest stage 5’ <(s at which 37 ({4, —;))~ (o020} was ei-
ther visited or initialised, if 8~ <(2,— 43>~ ¢ (f(a;»x)? was visited or initialised, and define s, to be the
greatest stage §' <5 at which 5 was visited, otherwise: let p be the least x such that max{xu}(x)[z]¢m1
5.5 r<s} > max (A, () (] w|e<Za by ler 87 (2, — 50" (Cfu, 227 be eligible to act next;

Step jd. Otherwise, ENUMERATE f.j(n (3+j)> and go on 10 program —j+1.

Program 0: l.et r"‘m(ﬂlzmax{ﬁ?)(/ﬁ) [p<<eCAyj)s j=1.24...m (@)}, Let u{@) —max{g(y(8)),
~ERY

There are two cases;

Case Ja. w(k (@<, then

« ENUMERATE w(£(33) in A;_ups

« Create a link (o, 1)

+ Initialize any ¥<£ 3 and go ta stage s+ 1.

Case Ob. Otherwise, then

* Enumerate v(3} into Ai_.a

+ ENUMERATE «(k(3)) in A p;

+ Initialise any ¥<£ 3 and go to stage s+ 1.

B4 T A(B)F~ —1 and v(F)=—1, then define y(#) to be a fresh odd number. We say that 2 receives atten-
tion at stage 5, and for anv 7, if 4{3)<C£(¥), then reset 7, initialise any ¥<{# and go to stage s+ 1.

B85. It £(2)=—1, then let £(8) be a fresh number, initialise any ¥<( 4, and go to stage s+1.

6. Otherwise, let 87 {3,4e(f), i(3))) be eligible to act next.

Action phase of stage s.

Let # be the longest real strategy &, let § be the longest node (C§. Then §is a “#-strategy. Suppose
that all real .# ~strategies which are active at Fare a,,8.,. .. +a, with ¢, Ce, (. .. Ca,. By the assumption of £,
§=& - ((fajsp,)) for some j<lm(f}.

* For every x=<{ p;. define 5, to be the greatest stage 5’ <{s at which &~ ((fa}._l +a)} was visited or ini-

tialised, if s’ exists, end define 5, to be the greatest stage s'<(s at which & was visited, otherwize;

© rhmEE

9 http:// www, jos, org. cn



*55— %_‘/l\'glﬁﬁﬁiﬁ -— 35 —

* Let p be the least = such that max{d. | (i]Fw|s.s5 t<Is)max{d, | (Dle]#Felt<us
«Let £ ((f. +#)) be eligible to zct next.

§ The Verification

In this section, we will prove that the construction satisfies all of the requirements. We first ohserve some
properties which hold at the end of an arbitrarily given stage.

Proposition 5.1. (i) If there is 2 &P-strategy 8 such that # 7 (@ [s—1]= =17 P (D {s], then k{®s1Z
—1, (@ [5]<5 and for any &=k (D) [s], olk)s]=w;

(i) 1 there is a “P-strategy £ such that 7/ (B —13=— 127" 5], thenforany &, if — 158 (5[~
1<k (@ s—1](=£(Ds1), then w (A(EI[s— 11>/ [s];

(i) At an odd stage 5, if @ (k)< (8) for some #-strategy £, then £,< k(£ and there is a unigue 2 such
that w(k,)<r® (8) and for any &, if £3£5 and @ (k)< (E), then k() <Th{(£);

(iv) For any real .##-strategies 2 and o , if @’ and « is active at «', then for any p and 5. 1 A (p)[s 3£
w, then A, (p)[s1<As (p)[s];

(v) For a real S7-straregy B with m(B)# 0, if j<<m{(B3) and ¢ (3, ) [s] ¢, then ¢ (B, ;+ D[s]¥ <
(@[55

(vi} I & real “P-strategy [ is resst at stage s, then either (a) or (b) below holds -

(a) There is a @ such that —174(F) s 1< (B 5] and w (e )< (F ) [s]s

(b) There is a 8 such that — 15k (S s]<k(3>[s] and » (31— 1_=—153(Z:[s].

Proof. These properties are immediate {from the construction, and we leave them to the readers. T

Secondly, we investigate some properties which hold at the end of the construction.

Proposition §. 2. Given a real &2 strategy 8,

(i) 3is initialised only finitely many times if and only if limA (3 [y] ¥ =4 (8)<lw;

Giy U lim, 2] F =2 <Cw, then him, y{B 1 <w, lim, 7P (D[] =7 (@)L w;

Gii) If im g (B3[s TV =k (A)<"o. then £ is reset only finitely many times and f receives attention only
finitely many times,

Proof. (i) is immadiate from the construction, and (i} follows from Gi). It suffices to prove (). If Fis
visited only finitely many times, then clearly (i) hoids. Thus we suppose that 8 will be visited infinitely many
times from now on.

Choose s, 10 be the least stage such that for any s22s,, 2(@[s]=~, (2 [s,]. By the definition of the thresh-
olds, there are only finizely many &'s such that — 172£(# ) (5. 1< (33 50 1.

For o ' with — 1528 (2 (s, 1<Zk{f[sc ), if lim, B(R Y[ s]2A(B 5.1, then let s{3') he the least stage s,
at which (3" )7k (3 )51, then B will never teset 8 at a stage >s(F ). Let s, =max{so,s(@ )| — 1223 (s, ]
R[50 )8 lims, &3 ) Ts 17203 M [, ]).

Suppose by wnduction for a §° with — 172808 s < () 5o ] and im & (F )14 = k(8 ) (s0] that

@) limy (B 4 =y (F ) <w;

6 bm, " (A= (P e,

Let e(8') be the least stage s, such that for sny s322(8 ), both (A [s1=» (A (#)] and »% (#3[5]
= (F)[2(8>] hold, Then by (vi) of propusition 5.1, & will never receive attention at » stage s=={@ ).

Let ss==max {s,,2(8 ) [ =15 (B )5 ] <A 5] & limk (A I [sT 4 =£(# )[5a]}. Then @ will never be reset
at a stage >>5,. Therefore, lim, (D) []¥ = v (@) (F—1) <.

Let 55 be the least stage such that for any s=5, ¥ () (s 1=v{(A)[s:]. Then by the choice of s;. ¥(F3[s.1&
Al-:‘(ﬁ-[-‘a]»
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1f program 0 of @ 3 will never occur at a stage >>s,, then for any s=2s;, # (D [s]=—1.
Suppose that s, is the least stage >s; at which program 0 of # 3 occurs, Then 3 defines its A, -restraint
FP (5. ]. We now claim that, for any s=2s PP (B) s =" (B s, .

“# (85, ] will never be injured at odd stages >>s5,. By the assumption of stage

By the choice of s; and s,, #
s¢» there is no §C 8 which will enumerate an z<0u(3)[s,] into A at a stage >>5,. And by the initialisation at
stage s¢» any ¥ with ¥<£ 8 is initialised, and then if some ¥ with ¥<£ 8 enumerates an x into either A, or A, then
x5, And by the choice of 54 any ¥<(; 8 will never be visited at a stage >>s5,. Therefore, for any s==s,, 7
(B Ls]=+""(R[s.]. Now (i) follows.

Proposition 5. 3. (i) For any k, lime(t)s]§ =e(t)<<we; Gi) K144,

Proof. (i) follows from (i) and the w-rules.

For (i), suppose to the contrary that » is the least £ such that limw (k) [s]=oo, By the construction and by
the w-rules, the unique possibility is that @(»n) is enumerated infinitely many times by some “#-strategies. By
the choice of n and by the defiition of the thresholds, there is a lixed &-strategy 8 such that lin k(2 [s] 4 —
ry and 8 enumerates w(n) infinitely many times. By 83 of program #. # enumerates w(n) in A, for some /=0,
1 only if B imposes a new A -restraint. By proposition 5.2 Gid, lim, 7 # (@ [5] § =rP(8)<Cw. Thus for any
ko limew(t) 5] ¥ =w(k)<<w. The propesition follows. L]

By the full construction, the priority tree T is a c.e. set of all strategies which appear in the fuil construc
tion. We define the triee path TP of the construction to be the subset of all @€ 7" such that & is visited at infinite-
ly many stages and there are only finitely many stages at which some 8<7 & is visited.

Proposition 5. 4 (Finite Initialisation Proposition). Given a node £€7TP,

() £ is initialised only finitely many times:

(ii) £ is visited at infinitely many stages.

Proof. Clearly the proposition holds for the root node. Suppose by induction that the proposition holds
for every pC° ¢, By proposition 5. 2, choose 5, to be the least stage such that, for any #CC#, 7 will never be ini-
tialised or reset, or will never receive attention at a stage -=s,. Let & be the longest #C_§. There are four
cases

Case A. &7 is a real #-strategy.

This case is immediate from the construction.

Case B. & is a real & strategy.

Clearly (i) holds. Suppose to the contrary that (i) fails to hold., Then let s, be the least stage =5, such
that, for any s==s, il £ Is visited at stage 5, then a link (£7,8) is travelled for some real S2-strategy 3 at stage
s, by a2 of the construction, this is impossible. Hence (ii} holds for &.

Case C. § =f is a real #-strategy.

I m (3> =0, then clearly the proposition holds for £, Assume m(8)50. By proposition 5. 2, lim.y(83[s] ¥
=y (@A) <w and lim+" (D [s] ¥ =r* (B <w. Let 5, be the least stage >>s; such that, for any s=2s;, y{D[s]=
YD ], 7P s]=r"" (@[5, ] and 2 will never receive attention at stage s. Therefore by the construction,
for any YD 8, ¥ will never be initialised by strategics &3 at a stage s,

Now by the definition of TP, both (i) and (ii} hold for &.

Case [D. § =7 is a virtual strategy. i

Let 2 be the longest real strategy C¥. Then by the definition of the priority tree T, §is a 57-sirategy and
m=m(B)7#0, and 3CE &,

If 67487 ((2,— 43 for some € {1,2,...,m}, then by the assumption of £€ T'F and by the i-rules,
beth (i) and (i1} hold for &.
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Ortherwise, §=8" ((2,— )" ((fy+p>? for some p. By the construction and by the assumption of §€
TP, both (i) and (ii) hold for £.

Thus it any case, the proposition holds for &, ]

Proposition 5.5 (The Existence of the TP Proposition). Given a node §E€ TP, there is a such that £ {a) &
TP,

Proof.  'The unique nontrivial case is that §=§" ((2,— ) for some H# strategy # and for some j<g
m(f). L]

By proposition 5. 4. choose sy to be minimal such that ¢ will never be initialised at a stage =2s.. By the as-
sumption of §, lim, g Cy (B[s] v =@ (y(8))<lw, and then lim, ¢ (5,m) s ]+ =c(Fm)<w for m—m ().

Suppose that j is the least 7 such that c(8,i)[s] ¥ <Cw. By the construction, forany i€ {j-+1,... {3},
Srep ic of program —i of B3 vecurs only linitely many times, and Step jo of program - ; of 43 occurs at infinite-
ly many stages. Then by the construction, 45 (c {8,523 will be unbounded. And then there is a p<Zc () such
that 87 ((2,— ;)" ((fnj +#2} will be on the true path TP. The proposition follows. J

Proposition 5. 6 (Finite Injury Along TP Propesition). For any requirement S22 £ %, there exists a strate-
gy «such that @& 1P, and cither & is active at § for any § with «CC£€ TP or &2 has been satisfied at £ for any
& with «”6C TP

Proof. For #,, let A be the root node. H a=23" ({1,00)E TP, then for any &, if aCEE TP, then _#,
has been satisfied at £, If there is a “P-strategy 4 such that aC&=§" ((2,— )0 " {{(fi,p)) €TP {or some j
and for some #, then for any £, if £&,C7EE TP, then .4, has been satisfied at £ Otherwise, for any £, if aC &€
TP, then .., is active at £

Suppose by induction that « is the shortest real strategy € TF such that for every requirement &7 <&
and &7 # R, then either & has been satisfied at & for any £ with «CEE TP or #” is active at £ for any £
with «ZEE TP,

Choose &, to be the longest real strategy Ca which works on 7. I “# =4, for some e, let £,=6," (@} €
TP, then for any &, if £ CEE TP, then & has been satisfied at £.

If & =% for some e,is then by the maximality of &, &~ @) ETP for some a& ¢ {0,{e.i2 3 {1, (e.id).
(3,{e,3)}. Thus ir. any case, . has been satisfied at & for any £ with §,CEETP.

If # = for some e. then by the proof of case ..#,. The proposition follows.

Preposition 5. 7 (Possihle Outcomes Along TP Praposition). (i} For a real F-strategy &, if 87 ((G,e(8)>}
€TP, then J*=«’y Gi) If €7 ((f.,p)) ETP for some &, a and p, then A(p)[s] will be unbounded; (i) For
areal F-strategy B if 77 ((1,eNETP lor e={e (@), ((8)), then lime ({8 [s1=w; (iv) For a real -
strategy @ if @ ((0,e(@) Y ETP, then A{A) will be built infinitely often.

Proof. This proposition is immediate from the construction. ]

Proposition 5. 8 (. Sarisfaction Proposition}. For every ¢, .%, will be satisfied.

Praof.  Let §C 7P be the real .#.-strategy. By proposition 5. 4. lim, 5(8) s 1¥ =&(8)<w. By propasition
5.7, J%=J* By program & of the construction, every +3>4(8) and 7€ J° will be enumerated into 4 eventual-
ly. Then J*IC " A, And by the construction, 4%'=" 4% Hence %, will be satisfied. L1

Proposition 5. 8 (.. Satistaction Proposition). For every ¢, if ¥)(A,, AY=¥1(A,.A) =g.is total, then g,
S A

Proof. By proposition 5. 6. let & be the shortest node € TP such that either .77, has been satisfied at £
for any € with §;CEE TP or .+, is active ot & for any & with S CEC TP, Let o be the fongest real _#, strategy
Cé&. By the assumption of the proposition, @ {(0,e{e)))C&. By the choice of & and by proposition 5. 7,
A, (4} will be built infinitely often. By the .#-srrategy a, if A.(A) is a total function. then A,(4)=g,. %,
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will be satisfied. [

Suppose 1o the contrary that p is the least number such that A(#) will be unbounded during the full con-
struction. By the assumprion of the proposition, A.(p) is enumerated by some SCa only finitely many times.
Therefore there is » & -strategy 8 such that ¢ ((0,e(a})}SRC A" (2, — )27 ((for p)) &5 for some j.
Therefore program — j of 23 occurs infinitely many times. By the choice of &, lim.c(B, ) Ls] v =¢(8,/)<{ew. By
the assuuition that YA, A) =¥1(A,.A) =z, is twtal, Step jc of program — j of 83 occurs only finitely many
times. Therefore 87 ((2, —¥»<;TP. A contradiction.

Thus A,(A) is a total function. #, is satisfied.

_ Proposition 5. 10 (¥ Satisfaction Proposition). For every e, iy %, s satistied.

Proof. DBy proposition 5. 7, choose § to be the longest real &;-strategy € TP. Then §° (@) ET P for a€
{¢ksie.i)) |A=0,1,3}. By proposition 5.4, lim,&(8[s]=k(F)<(w, and then by proposition 5. 2, lim,y(3)[+]
b =3(D < Let s;he the least stage such that for any 225y, #(B) s ]=£(A)0s. ] and choose 5, to be the least
stage such that for any s22s,,y (8 [s1=v(8) [5;]). Then by the constructien s,<Is;. Thers are three cases;

Case 1. 87 {(0:{esi))ETP.

Clearly ¥(8)€ A;.im- Let s; be the stage at which we enumerate y(#) into Ay_um. Then 5 <Tse.

If m(B)=0, then @e(A; (DI [s:] ¥ =0A1=4A, . (y{BA)) and by (he asswption of 8 al stage s:+ there is
no £C_8 which will enumerate an r<ig {3 (8) s, into A ar a stage >s;. and by the initialisation at stage s..
there is no any strategy 7<% 8 which will enumerate an r<<s; into A at a stage >5;. Therefore @:(A;y ()]s, ]
+ =0 will be preserved forever. Thus ©p(A;9(8)) ¢ =07 1=4A,..(n (¥ will be preserved forever. . is
satisfied.

Assume m{F)=m>>0.

Suppose that we travel a link (e, 3) [or some real .4 strategy ¢ which is active at 8 at atage .. Suppose
that the current link Ca,#) was created at stage s, then 5,<Cs;<Zs;. And by the construetion, @x{4: {71 s;]
{ =4. By the choice of stages s; and 51, »*® (@) [s;] will never be injured at a stage >,

Suppose that all real #-strategies which are active at # are @,.6;,. .. ,a, with & Ca,C, . . Ca,. Then for
every j& (1.2, vm)s c{Byj[s:] ¥ » and for any p<<c (F.50[s: 1, Ao (Aep) = ,jf’ (Aupr AipdTsa ] is G-be-
lievable , and for any pZzc {8, /) [s;] ,Agj(p)[sd]-—-w. By the construetion at stage 55 and by the A, -restraint P
(6] fur every € {1.2.. .. vmlb, and for sny p<7s (2,005 ], A.J,(A;p)[s;] ¥ =!P“;,i‘a}(A,;m vA3 ) s ] holds
forever. Therefore @;(A; ¥(2)2ss] ¥ — 0 will never be injured hy the building of A,’,(A) for any jE{1,2,...:
)y 81 a stage Ssp, and by the mitialisation of stage o, @A 13(F))[s:] ¥ =0 will be preserved forever. And
then (A5 ¥(8)) + =07 1= A4 ;5 (»(F)) will be preserved. forever, 2, is satisfied.

If we crumerate v(f) into A, qm at stage sz« then by the same argument as above, @e(Aiy(B[, ] =0
and it will be preserved forever, and then @(A; (8 [s,]1 ¥ =07 1= A ;s {¥(B)). Flis satisfied.

Case 2. §° ((1,4e, 1)) ETP.

By proposition 5. 8, @ (y(#)) will be unbounded. & is satisfied.

Case 3. 87 (3, {e. Y NETP.

By proposition 5. 8, either ¢a{y () will be unbounded or ®:(A; (¥ FE0=A,_;n(x(A¥). In cither case,
21 s satisfied.

Therefore, in any case. % 1s satisfied.

O
This completes the proof of the theorem. OJ
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