ISSN1000-9825 Journal of Sefiware B # % 8 2000,1141):8~22

Combining OO and Functional Language Concepts’
QIAN Zhen-yu Besma Abd Moulah

(Universitit Bremen Germany)}
E-mail; gian@kestrel, edu

Abstract This paper considers the problem of combining the object-criented and functional programming
paradigms. Compared with most of the approaches in this direction, the combination has the foliowing two ad-
vantages. First, the authors combine several important concepts as they are well known in widespread main-
stream languages. In other words. the authors do not introduce new language concepts but try to interpret
well-known language concepts based on the new ones. Second, the combination has the property thar individ-
ual language concepts do not influence the whole language to the extent as they do traditionally, so that usual-.
Iy one needs to pay for a language concept only when he uses it. Concretely, a core language for functional
object-oriented programming together with a straightforward operational semantics is proposed, where the
properties mentioned above hold, The core language combines the following key language convepts [rom the
languages Eiffel. Java, ML and Haskell: obiects, classes. multiple inheritance, method redefinition, dynamic
binding, static type safety, binary methods, algebraic data types. higher-order functicns , ML-polymorphism.

Key words Object-Oriented programming » multiple inheritance , method redefinition, dynumic binding , static

type safety, binary methods, functional programming, algebraic data types, higher-order func-

tions s ML-polymorphisn.

A programming language should provide concepts for coding {real-world) objects such as persons and cars,
and algebraic values such as integers, reals and lists. Object-Oriented (programming) languages can naturally
describe objects, while functional (programming) languages can naturally construct algebraic values by function
symhbols. Thus it is desirable to combine both paradigms.

Several languages, e. g. Pizza"™, Objective ML, Objct SML™*1, Haskell®!, were quite successful in
combining different ideas from both paradigms. Whether these combinations will recach widespread industrial ac-
ceptance is still cpen. [n our view, a problem with these languages might be that some tmportant concepts in
widespread mainstream languages are missing. Another problem might be that these languages often embody
well-known ideas by [anguage concepts that are different from those in widespread mainstream languages. In-
deed, new language concepts cen be desirable and necessary in many situations. But, if possible, a betrer ap-
proach might be to combine the key language concepts from mainstream languages . since these concepts have al-
ready proved successful in many different applications.

Since the existing language concepts do not always mix well, we pursue a discipline in our combination,

« QIAN Zhen-yu is currently a computer scientist at Kestrel Institute. Prior to joining Kestrel, he held academic positions
at Bremen University in Germany, where he received Ph. ID. and “Habilitation” in Computer Science in 1951 and 1996, respec-
tivelv. His research interests include object-oriented. functionals concurrent, logic programming and specification languages.
Besma Abd Moulah is a Ph. D). candidate in Computer Science. Ier interests include programming and specification languages,
and formal methods for softwate engineering.

Manuscript received 1998-05-06, accepted 1998-10-30.

© HEFRES AT http:/ www. jos. org. cn

QIAN Zhen-yu ¥ . &4 G0t A S8 XE T oA — 9 —

namely “you pay only for the concepts you use”. The discipline is important for at least two reasons : First, pro-
grammers usually expect that the same concepts have comparable behavior and performance; second. it should
be possible to implement only a part of these concepts without losing much in efficiency for concepts that are not
implemented.

This paper describes, as the first steps of a long-term attempt. how to combine key language concepts from
the languages Eiffel, Java, ML and Haskell. Haskell is particularly important, since its type class system pro-
vides a natural connection between the object-oriented and functional paradigms, i.e. between interfaces and al-
gebraic data types. We propose a core language FOC ™ for functional object-oriented programming and defline an
operational semantics in a simple and straightforward way. The concepts in considerstion are objects, classes,
multiple inheritance, method redefinition, dynamic binding, static type safety, binary methods, algebraic data
types, higher-order functions, ML-polymorphism.

At least two important issues are not considered in FOC. The first is the design of & type reconstruction.
‘The reason is that the problem can be made orthogonal to FOC by assuming that a type reconstruction has been
run and all type annotations have been generated. Since too many explicit type annotations may make a program
look invelved. we write only explicit casting operators where subtyping is needed and give a usual type inference
system to infer other type annotations. Note that a powerful type reconstruction can be in general a difficult task
in the presence of subtyping and type variables: a type reconstruction may easily yield a huge amount of subtyp-
ing constraints'™ , which can neither be easily checked nor be simplified (see Refs. [7~9]).

Another important issue we do not consider is the concept of references. Although the related languege
concepts, e. g. ohject states, the assignment, the value or reference semantics of an expression, classes and in-
heritance, and interfaces and implementation, are important in object-oriented programs, and although we use
the assignments in sample programs in this paper, the issue is to a great extent orthogonal to the topics in con-

sideration and will be documented in a separate paper.

1 Syntax of FOC

The syntax of FOC is given in Fig. 1, where «, 5 range over type variables, x over expression variables, &
ranges over classess X aver type consiructors {of algebraic data types), o, over objects of class #, a over attributes

and ¢ over value constructors (of algebraic data types), m over methvds aud 7,220, We assume the usual con-

vention for renaming bound variables. Throughout the paper, the notation O, denutes the list y,. .. ,O, with
rn=20,

Monomorphic types ¢ =als|x (ca) (for n-ary X3 |70y |72

Polymorphic types s =rl¥ a<n. g

Expressions set = lm|cCsn) | Ga)

[Az:z, 5| (s ¢) | Aa<<w. s |s[7]

[let z;0— 5 im ¢

loe|s.alstr
Values wv =m [To] e (5.0 | GaY |Ax T 5| 0k]5. a
Declarations d = class w<{K attr a.§ meth m| .0 }l=s

| datatype ¥(a,) cons c.o

| subtype a;<si=>x{m) <x meth m=s

| tun x:0=s
Programs P =slds p

Fig.1 Syntax of FOC

* The name stands for “Functional Object-Oriented language Concepts”.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

— 10 — Journal of Software #HHEFH 2000,11(1)

1.1 Types

Classes in FOC combine object classes in Eiffel and type classes in Haskell. Type constructors build alge-
braic data types.)

Monomorphic types are constructed by type variables, classes and algebraic data types. Function types 1\~
ty and n-tuple types (z,) are algebraic data types constructed by predefined type constructors — and (~,...,-).
Monomorphic types containing no type varizbles are called ground types. Ground types are ranged over by &.

Polymorphic types are obtained from monomorphic types by all-quantifying type varizbles at the sutermost
position using the subtyping relation < and classes as bounds. The definition of < will be given later. A poly-
morphic type is said to be closed if it contains no free type variables.

1.2 Class declarations

A class declaration (cf. the syntax in Fig. 1) declares a class «, which is a subclass of each class, called su
perclass, in K, declares an attribute by an attribute declaration a:£, and declares a method m by a method decla-
ration m:¢=s or redefines the method m by a methed redefinition m=s. The syntax supports the multiple inher-
itance, since K may contain more than one class. In general, a class may contain zero or more attribute and
method declarations. We write the syntax with one piece of each for notational simplicity. A class cannot be de-
clared more than once in a program.

An attribute o can only be of a ground type &, This is a consequence of several design decisions. First,
classes in FOC are at the top-level and thus the type of an attribute should be closed. Furthermore, we decide
that the type of an arttribute in FOC should not have any quantifications of type variables; otherwise a more
complex type system for deep polymorphism would be needed™" 12,

An attribute of a class is either declared in the class or inherited from a superclass. For simplicity, we re-
quire that if an attribute has been declared in a superclass then it cannor be declared again in 2 subclass. ‘

For simplicity, we alsc require that a method can be declared at most once in a program. If a method is de-
clared, then it can be redefined in subclasses.

The requirement that a method can be declared 2t mest once in a program may be too restrictive for practi-
cal programming. We do this just for notational simplicity. In fact, one could relax the restriction in several
ways. The details are out of the scope here.

A method declaration m:o=s consists of a method neme m, a closed polymorphic tvpe and a fody s. The
name m mzay be used in the body s or the bodies of other methods, Thus methods may be mutually recursive.
Although the type of a method is a polymorphic type, the type inference system (in Section A. 4) will ensure
that a method application is always of a monomorphic type.

The type ¢ of a method declaration m:0=5 in the class & must be closed and of the form
Voa<le. ¥ a,<k,. (M)*r
g

for g=21 and #220. The type variable @ of the outermost quantification resembles the type of self-obiject in a usu-

.

al object-oriented language and thus always has the current class # as its bound. The part (a,. .. .a) is the type
of the first argument. One may regard the first argument as a receiver-expression of a method. (One can write
e. g. {x.y).eq instead of eg(x,¥).) In order to ensure static type-safety, we require that the type variable e
should never occur within the domain type of a function type in the type r. If g=1, then the method is called
simple and the type (@) of the first argument may be written as a; otherwise, the method is called binary.

If a class &' declares a method by m:o' =5 and a class & is a subclass of &', then « can redefine the method

wm by m=¢,

© HIERRESSAHIIFTR http:/ www. jos. org. cn

QIAN Zhen-yu ¥ B &G axtim QN BE T VRS 1] —

A class » is said to inherit a method m from a superclass «' if & declares or redefines the method m and
there are no subclasses of #* that are superclasses of x and declare or redefine the method .

A method of a cless is either declared or redefined in the class or inherited from a superclass.

In the presence of method redefinitions we need dy- class Eg

namic binding to determine a method body for a method meth eq. Y a~<{Eq. (o, a)— Bool
eq (2.y) =egMjlr,y)
cluss Poine < Eq

application (Section 3).
Figure 2 contains three classes in FOC. The class

. . . it :
Eg consists of only a binary method eg for testing the e~ aitr pos:Ine

. . . meth move. ¥ a<Point. o—=int—c
quality of twe objects. The class Point is 2 subclass of
. . A move 1 1= (x. pos;=1)
Egq. It declares an attribute pos for positions and & sim-
meth ¢qCx,y) =eqla. pos,y. pos}

le method move for movi object to a positi and)
ple ove 10 10g an obl p 1ons class Color Point<FPoint

redefines the method eg. The class CoforPoint is a sub- attr lor .13

class of Poinz, declares an additional attribute color, in- meth eg(x.v) =eq(x. pos.y. pos} & eq(x. color, v, color)
herits the attribute pos and the method move from Point Fig. 2 Classes in FOC
and redefines the method eg.

As in most functional languages, methods in the program are delined using pargerns * . Explicit type peram-
eters are omitted for simplicity. It is clear that the methods can be transformed into the FOC syntzx in a stan
dard way. We assume that the type Boof has the usual values and the usual operstion &., that the type fut has
the usual values and o method ey (see Section 1.4), and that an operation eg(¥; for checking the equality of two
objects is predelined.)

1.3 Deciarations of aigebraic data types

A datatype declaration (cf. the syntax in Fig. 1) declares a type constructor ¥ with a value constructor ¢ of

the type 0. The type & must be closed and of the form Y a,. (r.)—¥(%). A type constructor can be declared at

most once in & program. A vaiue of an algebraic data type ¥{z,) must
datatype List(a)

cons empiy .Y a. List(a) be of the form c(z,) where each # is an expression of the type .. In

cons con: ¥ a. (e, List(a))= List (a) general we may writc zero o1 more value constroctors in one datatype
Fig. 3 A datatype declaration in FOC declaration. The syntax here includes only one value constructar for
notational simplicity. As an example, the list type constructor List
can be declared as in Fig. 3. The predefined types In? and Boof are regarded as algebraic data types.
1.4 Subtype declarations
A subtype declaration (ef. the syntax in Fig. 1) declares that a type x(z;) is a sui)type of class # whenever

-

each t, 15 a subtype™ of £, and redefines a method of ¥ by m=s. A type x(r.) as above inherits esch method
of & that is not redefined in the subtype declaration.

In general, a subtype declaration may contain zero or more method redefinitions, The syntax includes only
one tedefinition for notational simplicity.

The style of subtype declarations resembles that of instance declarations in Haskell. The intuition behind

the subtype declaration is that the class x is an interface and each type ¥(r.) implements the interface. But we

= Patterns are constructed by value constructors and expression variables in the standard way. In particular, a pattern does
not contain casting operators.
++ The subtyping relation s delined in Section A. 3.

*#» Although we could have ailowed a set of classes at the place of &, we did not do it for simplicity.

© HIEERES AT hip:/ www. jos. org. cn

— 12 — Journal of Software F MR 2000,11(1D

want to keep the simplicity and do not explicitly introduce a concept of interface. Thus we require that the class
« in the above subtype declaration should contain no attributes. Since a subtype declaration does not declare =
new type, we requite that a subiype declaration cannot declare attributes ar new methods.

subtype Ine=< Eq We can extend the declarations in Figs. 2 and 3 by

meth eqCr,3) =eqlnt (. y) the subtype declarations in Fig. 4. The first subtype

subtype o< Eq=>List(¢) < Eq declaration declares that frr is a subtype of £g, and re-
meth eq(empty,empty) ="True defines the method eg in Int using a predefined opera-
eqlempty,con{y,ys)y=False tion egfnt. The second subtype declaration declares that
eql{conizsas) cempty) =False a list type is z subtype of Eq if the element type is a
eqicontzizshiconly,ys)) =eq(xsy) & eqglzs,) guhrype of Lg, and redefines the method eg for these

Fig.4 Subtype declarations list types. Note that the body of the redefimtion for the

list types contains applications of the method eg on list efements. These applications are statically well-ryped.
since the type of the elements is a subtype of Fg,
1.5 Function declarations

Function declarations define usual functions as in functional languages. The functions are global and can be
used in class and subtype declarations.
1.6 Expressions

The expressions are divided into three groups. The first group consists of expression varizbles =, method
names m, algebraic expressions ¢(s,), n-tuple expressions (5,), function abstractions az:t. s, function applica-
tions s £3, type abstractions Aa<(«. s, type applications s 7_ and let-constructs Jel r:o=s in 2. All the above
expressions are Core-XML likc expressions!¥), We regard n-tuple expression ¢3,) as Leing constructed by a pre-
defined n-tuple value constructor (-....,-). We may write (s£... 2,3 for (($s4,)... 080 and s [71,. .. »7,] for
5_T1 .. _tu]. Note that the definition x=: in let x;5—s in ¢ is assumed 0 he not recursive for the sake of sim-
plicity. Although the variable 7 in let r.o=s in ¢ is annotated explicitly with a polymorphic type o, the type in-
ference system (in Section A. 4) will ensure that each oceurrence of it in ¢ is of a monomoerphic type.

The second group of expressions in FOC is those for crearing and manipulating objects. Here we consider
only a notation o, standing for an object of the class x and a notation r. a for the usual attribute access operation
on an object. As mentioned, we do not consider references in this paper. If we did this, then we would have to
consider a notion of the object etiribute assignment s.@: =2, which assigns ¢ 1o the attribute @ of the object 5, a
sequence expression (s;;... 15, which executes the expressions s,. ..., s, in tha: order. an environment to
map each object attribure to a reference, and an environment 1o map each reference to an expression. A conse-
quence weuld be also that we would have to decide which expressicn should have the value semantics and which
should have the reference semantics. Since the language allows no implicit type coercion (see below) and the
static type inference assigns a unique static type to each expression, we could do the following; If the type is a
class then the expression would have the reference semantics: if the type is an slgebraic data type then the ex-
pression would have the value semantics; if the type is a type variable then the expression must be a bound vari-
able of an enclosing abstraction. A bound variable of an abstraction need not have the reference nor value se-
mantics in our language, since it can be implemented as a placeholder, whase semantics is that of the actual ar-
gument. Although these language concepts must exist in object-oriented programs, the treatment is greatly or-
thogoenal to the topic here.

The third group of expressions is of the form s # r, called a casting conversion. The natation * ¢ is called a

casting operator, which converts an expression of a subtype into one with the super:ype z.

© HIEERES AT hip:/ www. jos. org. cn

QIAN Zhen-yu F: 8B4 &6 £ o B8 L F TriMsd — 13 —

1.7 Values

In this paper values are only used to formulate the dynamic binding (in Section 3). Thus they need not be
completely irreducible. More concretely, a value may be a method name, an algebraic expression, a tuple, an
abstraction, an cbject creation or an attribute access. In particular, a value does not have casting operators at
the outermost position.

Afver the declarations in Figs. 2, 3 and 4, we can wr'te the following expressions ;

let z = confocuarrom * Point scon{oummermpty)) in

let y = con(6' coropains * Pointy cono’ pon sempty)) in eq(x, v)
which compare two lists via the method eg. The lists are statically well-typed.
1.8 The environment

This subsection defines several environment components for a given program.

£ is the set of the formulas ©<x’ or ¥ o <r,=>X (2, <« in all class or subtype declzrations.

£ is the set of the pairs {m,o) for all method declarations m:c=s. Note that the class « is also included in
the method type o; we prefer to have it explicitly for con‘venience. The method type'in the method declaration
slways generalizes that in a redefinition. Thus £ need not include the type in a redefinition.

I’ denctes a sequence of formulas of the form e<«x or x.0, where e<(x declares a type variable o with a
class x as found, and x.o an expression variable o of a2 polymorphic type . A seguence I may be written as
[...J and + denotes the concatenation operation.

An environment contains £2, 3 and I". Since £ and X are fixed in a given program, we will omit them in the
inference rules.

1.9 Additional restrictions on the syntax

- The class and subtype declarations in & program induce a subtyping relatien on types. A formal definition of
the relation is given in Section A. 3. In this section we will use the special case | | - £=<{& . which is a reflexive
and transitive relation satisfying the following conditions ;

[T F &<« holds for each k<K€D and ¥ €K,

- For each a, < sp=2 ¥ (m) <x € {3, if [JF &~k hold for i=1,...,k, then []+ (&)<« holds.

Two classes x and &' are said to be independent if none of [- x<«" and [] F ¥ <x holds.

Now we formulate the {ollowing additional restrictions on the declarations of a program.

1. There is a predefined class O&j such that [] F x<{Obj holds for each £, and ¥ & <Obj=x(a;) <Obj € N

holds for each ¥. '

2. There is at most one ¥ a,<#,=>¥(a,) <#£€ {2 for each ¥ and . For each V o<, =2 ¥ (@) <« 2, and

each & with [F k<&, there is always ¥ a,<x"=¥(a,) <& € I such that [JF & <« hoid for i =
la... k.
3. For any (m.¥ a<{x'. ...)€ X, the following conditions hoid .
+All subtype declarations ¥ a, < =>¥(a)<<k with [] F k<<«’ redefine m with the bodies 4 a, <.
Ao <x4. t containing identical A &', <&, £, or none of these subtype declarations redefine m.
“For each ¥ oy <ry=>¥(a) <€ 2 with «=x" and [] + #<«', the class x contains no redefinition
of .
4. For any (m.¥ «<{x'...)E X, if the classes x;and &, are both subclasses of «*, and have a common sub-
class «, then une of the {ollowing cenditions is true.
*Both #; and x; inherit the method m from a common superclass.

*Every maximal common subrlass of x; and x, redefines the method =.

SRS hitpy/ www. jos. org. cn

© rhlERE

~ 14 - Journal of Softwars B4 2000,11(1)

5. For any binary method m with (o, ¥ o<¢..., 2T Z and any e <K€ 2, if 0,5, € K wre independent

classes with [] F & <’ and [T+ #; <’ , then x; and #; inherit the mothod = from & commen superclass.

The restriction 1 says that the predelfined class 987 is the supertype of 8}l ground 1ypes. For notational sim-
phirity . we sometimes write ¥ o o for ¥ a<{0Obf. 0.

The resiriction 2 implies that if [7F y(z)< e holds then there is exactiy one ¥ & < =>¥(m) <x& [2 such
that | | Fe<{w for i=1,... . h The restriction 3 ensures that the method for the same algebraic expressions is
not redefined differently. As examples, the programs (a) and (b) in Fig. 5 satisiy the restrictions 2 and 3 but
the programs £c} and () do not. where we assume that { is a type constructor declared elsewhere.

The restriction 2 dues not necessarily mean that if a program contains 2 subtype declaration for a subclass,
then it has to contain a corresponding subtype declaration for each superclass explicitly, If such 2 subtype decla-
ration is missing for a puperclass, we can let a compiler generate one from a corresponding subtype declaration
for & subclass, Similarly, if a method redefinition is missing in & subtype declaration according to the restriciion
3y we can also et a compiler generate one from a method redefinition in another subtype declaration. In this

sense ., the progrem {(¢) in Fig. § can be aceepted as 4 legal program.

(&) elass A meth o oesy (b) class A mmeth m.o-=5 {ed class A meth m o=y {d} chass A meth m ey
cluss KA class B+JA class B-< A class B-<4 meth mo=g
subtype <4 meth m=¢ subiype <A subtype f=<A subtype <4
subtype J<R moth »=r subtype {3 subtype {8 meth m=7 sublype I<{B

Fig. 3 Sample programs for the restrictions 7 and 2

The restriction 2 corresponds to certain restrictions in Haskell (Sectien 4. 3. 2 in [147, see also Section 3 in
{15703, The restriction 3 coincides with the following conventions in Haskell, ¢1) ¥ a type is declared to be an
instance of a class then it must be declared to be an instance of each of the superclasses; (2) The implementation
of a member fonction declared in a class with respect to a type must be given cxoctly onee. namely in the decla-
ration that declares the type to be an instance of the class, Experiences with Haskell show that the restrictions
do not lead to much serious inconvenience in practicel programming.

Mote that the second condition in the resiriction 2 can still be weakened. But the resulting coadition would
becote complicated. Therefore we decided not to do that in the current paper. The restriction 4s a usual con-
dition in order to ensure the unambiguity of the dysamic binding for methods in the presence of muitiple mheri-
tance, As examples, Fig. § contains two programs satisfyving the restriction.

The restriction § is nesded to ensure the unambiguiry of the dynamic binding for binary methods in the pres-
ence of multiple inheritance. To show the problem, consider the program in Fig. 7. 1f &, is a B;-object and 5:a
B chject. then the methed eg in the application eq(h, + Kq .8 % Eq) can be bound 1o different redefinitions in 4,
and in 4z, Thus the dynamic binding is ambigucus. In fact. it is easy to check that the additien of any of the last

two declarations to the first three declarations of the program violates the restriction 5.
ciasy Ky meth eg. Y e Eq (a0 —=Bool==x

class A moth zooess class 4 meth o=, class A < Eq meth eq=~5

class -4 elass B<A meth =z class A2~ Eg meth eg==ye

chass <4 class (<74 class By« {4, Az} meth og=4,
-ciass D={8,Ch class O=<{B,Clmeth z==x class By<{{4;. 42} meth eg==1y

Fig. & Sample programs for the restriction 4) Fig. 7 A sample program for the restriction 5

2 Functions and Methods

We define the environment component 3 to be 2 set of the forms x =3 and m = {£.555.) for recording

© HIERRESSAHIIFTR http:/ www. jos. org. cn

QIAN Zhen-yu F . Ao@HANEFRBEXETORS — 15 -

function bodies and method bodies, respectively. The notation (§,=%s,), called a multi-body, is a finite mapping
of ground types &, called guards, fo expressions 5. A guard & is intuitively the supertype of all those types. for
which the method is declared or redefined with the body 5,.. A multi-body is not an expression.

We define an operation + {or adding into M a method declaration/redefiniticn with a given guard as

follows :

M+ & m==M, U lm=E>1,.&>} for M=M U im= (&=) g0
where the case of g=0 denotes that 4/ does not contain m=. ...
We use a judgement of the form d, F M~M' with n>21 to denote that the declarations d, change M into
M.
Figure & gives the rules that generate M. Note that the tvpe of the body of each entry in a multi-body can
be derived from the guard and the type of the method in the method declaration.
Rule (MethC} deals with a method declaration/redefinition in a class dezlaration.

(m,Y o<’ . 6)E L [t &<k [Fs.Y e<a.c (MethS
class &, , . meth m[;Y a<{k, 06]—s F M~>M+ (k,m=15) et

Rule (MethS) deals with a methad redefinition in a subtype declaration.

(¥ a<e’,)VES [Jrs:¥ <y o

subtype 2,< & ;= X{a) <& meth m=s - M~+=M+ (X&) ,m=s) (MethS)

Rule (Fun) deals with a function declaration,

(ks .o
fun x,0=s5 - M~—~M+(x=3) (Fun)

Rule (MethAll} deals with a set of declarations.

d,l‘M;“——“MH.l i = le. .. W
d_nl'Mlu at1

{MethAlD>

Fig. 8 Generation of the environment component,

We assume that in Fig. 8 the rules contain the environment components = and {2, which have been con-
structed by a previous pass of the program. This means that a method body can use all classes, typz construc-
tors, the subtyping relation, attributes, methods, expression constructers and their types declared in the whole
program. A consequence is that recursive methods are implicitly allowed.

In the first two rules we write just one merhed declaration for ngtational simplicity. The rules can be easily
extended to deal with class and subtype declarations containing zero or more method declarations/redefinitions.

As a simple example, consider

(eq.Y a < Eq. (a,a) = Bool) € %
(] Feglist ¥ o < Eg. (List(a,), List(a,)) — Baol
Then the environment component M= {eg= (Eq=eykqy) } is changed as follows;
subtype o < Eq=>List(a) < Eg meth ¢q = eqlList
FM ~— {eq = (Eg=>eqEq,List(Eg)=>eqlist}}

Rule (MethS) needs some explanations. First, we use the type (¥,) as the guard for the body 5. since
¥(¥';) is the least common supertype of all abgebraic data types ¥ (z.), where 7 is 2 subtype of &'; fori=1,...,
#, Second, the subtype declaration in rule (MethS) is exactly the one for the class &' with (m.,¥V e<«'.d) € 3;
ather subtype declarations need not be considered. Lemma 2.1 tells why this suffices.

Let M be the environment component obtained from a program, m=<{& =5, M and (m.Y a<«'....)E
X, Then we have the following lemmas,

Lemma 2. 1. If ¥(rs) is a type with I* F x(%.) <«', thea there is a least type & with 15X f<n among £, satis-
fying that Ik x () <&, Furthermore, if ¥(z',) is another type with I' F ¥(z5)< «', then the above &, is still

© hEERE

PFUFEHT http:// www. jos. org. cn

16 Journal of Software HAFH 2000,11(1)

the least type among £, satisfying that I' I ¥(7/,)<&-.

Preof. By the assumption that I'F ¥(7,><«', and the restriction 2 in Section 1.9, there must be a sub-
type declaration for a, <« =>¥(a)<« € {1. Tf the subtype declaration contains a redefinition of m, then by rule
{Meth8), we know that §=x(«",) is the unique type amang Z,, which is of the form ¥{...). Thus the asser-
tion of the lemma holds. If the subtype declaration does not conrain a redefinition of m. then hy the restriction
3 in Section 1. Y, the method s of the rlass &' is the inherited method in all subtype declarations for ¥ and x with
“THe<&". By the restriction 4 in Section 1. 9 the methad m in &' is redefined in & or inherited from one unique
class. Thns the assertion of the lemma holds. O

Lemma 2. 2. Far any type 7 with T'F r<<«', there is a least type £, among &, satisfying that I'F =<<&,.

Proof. Assume that the type 7 is a class, Then the assertion of the lemma follows from the restriction 4

in Section 1. 9. If ris an algebraic data type ¥(r.), then by Lemma 2. 1, the assertion of the lemma holds. [

3 Reduction

The computation of the expressions is given by & reduction relation of the form I' t s[>t defined by a set of
single-step reductions and a set of context reductions. The context reductions are standard. We consider only
the single-step reductions here.

In order to formulate the reductions compactly, we assume that a form s # z on the left-hand side of a re-
duction always stands for s % ri... 4 7, 4 £, 2220, or s itself in an environment " with [+ ;7.

Figure 9 gives all single-step reductions., The Af-reduction generalizes the standard one 't (Az:r.s) [
[t/2]. Note that due 1o nonvariance, the domain type of a function type always remains unchanged along the
subtyping relation. The Af- and let-reduction are standard. The fun-replacement is trivial. The get-simplifica-
tion considers the access of an attribure in an object with casting operators. But this reduction is not that inter-
esting, since we do not consider the manipulation of objects in this paper. The % -reduction is also trivial, but
without it the formulation of the argument (o, * r) in the ()-reduction would hecome = little more complex.

AB-reduction I F {(Azt i) 4 =2 D) o s[e/a] b
AB-reduction " - (Ae<{x. s[r]3[> s[r/e]
fun-replacement I' I x5, where r=s& M
let-reduction [F let x:o=y im :{>¢s/2]
get-simplification I F (0. t &/). al>ov. @
§ -reduction 'k (5,0 4 (00> G, 7)
<) reduction I+ ([, ... 14 @—=2) @G b DD (e[Fa, ..] G F b,
where m= (E, =53 €M, 't v fori=1.... ,m, r,=p({5,}, 1), &ris the least type among 5, satis-
fying that I'F r,<#;, and if £s=x{...) then T, satisfies that ¥(7+)=r,, otherwise Ty =1,.
Fig. 9 The single-step reductions

The (i-reduction formalizes the dynamic binding for methods. It is the only rule that introduces a multi-
hady inta the computation. Roughly, the(}-reduction works as follows. First, the first argument is redueed to
a tuple of values. Then a certain common type of these values is computed. Finally the type determines a sody.
The existence of such a bedy is ensured by the statie type inference. The context conditions (Section 1. 9) en-
sure the uniqueness. If you remove all casting operators then the reduction becomes

' Tk (mlr,... 3 GO GlTh. . 1))

The definition of the function p2({r,},7) is the key 10 compute a common type of the values in the first argu-
ment tuple.

L XE) = X(5)

© HIEERES AT hip:/ www. jos. org. cn

QIAN Zhen-yu ¥ 440 Gad L iS4 35 T oo — 17 —

#{{%,} %)== a minimal class x, with [T+ & < &, i = 1,....7, [F 5, <«
ARG XGED L= 2G6) for a < B X(a) <k € O

u{, ., otherwise, .. k)= &
An easy observation is that except the second case the time complexity of #is linear to the size of the input. The
first case in 2 enables some type-based optimization of method applications.

The additional type arguments t'; are needed in the case that £,=¥(...), since the body s, in that case
stems from a subtype declaration @ <w# = 3(a)<« and is a type abs:raction of the form Aw, <", ...,

Assume the program in Figs. 2, 3 and 4. Let M contain

eq = {(Eg=>eqEq, Point=>eqPorint, ColorPoint=reqColorPoint, List{Eq)=reqList}

Then the following reduction steps hold:

eq List(Eq) Vcon(opgmesempty) d List(Eqg), con(o' pum,empty) * List(Eg))

> (eqlList[Eq](. . . the same argument as above...)) * Bool

eql EqJ (0o s 0" cotorponm t Point)

> (egPoimt[Paint (. . . the same argument as above. ..)) 4 Bool

eq Eql(con(om empty) ¥ Eq, con(a' ogmempty) ¥ Eg)

[> (eglList[Eq](. .. the same argument as above...)} » Boal

eg[EqgJ{opun * Eq, con(e oy sempty) 2 Eg)

[>(eqEq[Eq](...the same argument as above. ..)) 4 Bool
The following lemma states the main properties of the function g

Lemma 3, 1. Assume m = (£,=35,)€M and I'+ =.<r hold for i=1,... ..

1. Then p(it,} 7Y always yields a type 7, satisfying that T'} z,<r, and

2.1 (m,V a=<#'....}EZand I' + 1<k, then there is a least type & with 1< f<.g among &, satis{ying

that I F 7, ~&;.

Proof. 1. Tt is easy to check that for each ,u({r_n} »7}, exact one pattern in the definition of g is applica- -
ble. The property that I" | 7,7 follows directly from the definition of g.

2. It follows directly from Lemma 2. 2. [

Although the type t, vielded by p({7.}.7) is not necessarily the least or a minimal type satis{ymg that I" b
o<r, for i=1,... ,n and [- r,<{r, it is small enough to determine a body in the dynamic binding. Formally we
state this as the following theorem.

Theorem 3. 2. Assume the notations in LLemma 3. 1. Then for any type ', such that ' b ¢’ ,<r,and [' I ;<
¥, for i=1.... ,n, the type & is the least type among &, satisfying that I' + ¢ . <&/,

Proaf. We check each pattern in the definition of a.

Let the pattern be (... },X(z,)). Then the asserticn follows from Lemma 2. 1.

Let the pattern be #(1%,} .} If mis a simple method, then 7,5=7',,, thus the assertion holds trivially. 1f m
is a binary method, then the assertion follows from the restriction 5.

Let the pattern be #({y(zl),... .x(z{)},x). Then the assertion follows from Lemma 2. 1.

The pattern u(...otherwise... ,#) can be divided into two cases: p ({1, ¥(Ta)s... }+&) and p{{¥(r:),
¥ <te)s. .. }aie). In the former case, the assertian follows from the restriction 2 and the first condition of the re-
striciion 3. In the latter case, the assertion follows from the restriction 2 and the second condition of the restric-
fion 3. [

For simple methods one may expect that the specialization of the {)-reduction is equivalent to the following

intuitive reduetion ;

PFUFEHT http:// www. jos. org. cn

18 — Jowrnal of Software HAEFIH 2000.11(1)

Cr (e At A o) (s [Tha.. . o2 A7

where 7, satisfies that Do :zr,, & and 7, are compuied as in che ¢ -reduction. Strictly speaking, both reduc-
tions arc different in that the type 7. yielded by the function gin the {}-reduerion may be bigger than the type 7.
in the above intuitive reduction. However, Theorem 3. 2 ensures that the results of both reductions are equiva-
lent to the costing operators.

It is straightforward to prove the type-preserving property of the reductions,

Thearem 3.3. If 't 5.7 and I - s>¢ then 't £:2.

Proof. ‘The type-preserving properties of the 18-, A2 , lec. and 4 reductions and the fun-replacement are
straightforward. The type-preserving property of the {-reduction follows from Lemma 3.1-1 and the restric-
tion that in the type ¥ a<(x. V &, <x,. (@)-+7 of a method, the type variable @ docs not oecur within the domain

type of a function type in . il
4 Reifated Work

The goal of FOC is to maodel the comhinatian of a number of important concepts in the mainstream object
oriented and functional languages. Abadi and Cardelli investigated severzl relevant object caleuli™. Our work
could be seen as another effort in the same line.

Pizza*'"" extends Java by parameterized clzsses, algebraic data types and higher-order functions. The exten-
sions are based on the F-bounded polymorphism!'™!, which is quite different from the concepts in the mainstream
languages. Two concrete things that FOC has but Pizza does not are the support of a unified concept for hasic
and constructed types like in a functional language and a mechanism for binary methods. far which you do not
have to pay i you do not use. Parameterized classes are missing in FOC, but we do not see any serious difficul-
ties in integrating it inte FOC in certain way.

Objective ML is based vn an extension of ML-polymorphism by polymorphic access 1o record (ypes and
preserves most good properties of the Ml-polymorphism. Similarities between FOC and Objective MJ. are, for
example, explicit casting conversions and type preservation in method redefinitions. One difference between
FOC and Gbjective ML is that FOC anifies Haskell zlasses and obiect-oriented classes, whereas Objective ML
does not.

Ohject SML™ Y introduces extended ML datatypes for classes and treats obijects as values of these extended
ML datatypes. Similar to Objective ML, Object SMI1. does not provide a unificd concept for Haskell and object-
oriented classes. In addition, Object SML deoes not allew binary methods.

Haskell + -+ extends Haskell with objects based on the theories of existential types {see Refs. [18~217.
Although existential types can formulate the relationship berween interfaces and classes, they have problems in
formularing the general concept of inheritance.

In order to assure static type safety for binary methods. Bruce ef af. " introduced the neotion of match in
the languages Poly TOILY and LOOM™. Match is a generalizatinn of subtyping between object classes. Poly-
TOIL and LOOM have the same property as FOU that binary methods are statically type-safe. PolyTOIL com-
bines subtyping, match. LOOM match and an unusnal notion called hash types to achieve some benefits of sub-
typing. Thus the mechanisms for binary methods in PolyTOIL and LOOM are unusual. Bruce’s binary methods
distinguish between the receiver and other arguments as usval . whereas in our case a2 number of arguments play
the same part in the dynamic binding,

Castagna, Gtelli and Longo'™ were the firsts who combined subtyping . multibodies and dynamic binding
in the method reduetion. The ()-reduction in FOC has some similarities to their method reduction, In their cal-

culus the entries of a multibedy need not have a common type scheme. This may lead to a type system that can

© HIEERES AT hip:/ www. jos. org. cn

QIAN Zhen-yu ¥ . &2 a6t g R EXF T HRE — 19 —

yield a very large set of types as a type annotation.

The ¢>-reduction in FOC has similarities to & dynamic binding reduction in the caleulus TOFL™, But the
TOFL approach is quite different and much mere complicated than FOC. First. TOFL does not include explicit
casting operators. In order to define the dynamic kinding reduction, TOFL imposes some additional restrictions
to ensure the existence and uniqueness of 2 least type of a term and includes an additional type inference system
to effectively derive the least type. FOC includes explicit casting operators and thus does no: need these proper-
ties and the additional type inference system any more, Indeed, these properties do not help in FOC. and the re-
strictions in Section 1. § are needed anyway. Second. TOFL defines the concept of values as irreducible terms,
while FOC defines the concept completely syntactically. contributes much ro the simplicity and clarity of the
work and provides the possibility to use different reduction strategies in the implementation. Third. the restric-
tions on the syntax of TOFL are quite different and to a great cxtent not so clear as those on the syntux of FOC.
Fourth. the reductions in TUFL are much less efficiently implementable than 1he reductions of FOC. As an ex-
ample, the computation of g in FOU does not need the inner structure of the types, whereas that of the corre-
sponding function in the dynamic binding reduction in TOFL does.

Parallel to the work reported here we designed a small language based on FOC-". The current pretotyping
implementation also implements a type reconstruction for a special case ol the current version of FOC based on

an algorithm in Ref. [27],
5 Conclusion and Future Directions

We have presented the core language FOC, which combines quite a number of imporiant concepts in Eiffel,
Java, ML and Haskell. Although the explicit casting operators may make programs ook a little bit involved,
the approach it to a great extent simple, naturn] and straightforward, The approach is alsu cluse o the practical
implementations that use type 1ags.

It is interesting to mention a few specizlizations of FOC to show why “you pay only for what you use”. I
we have only functional programs, then we need no casting operators. In this case subtype declarations model
some aspects of Haskell instance declarations. If we have only object-oriented programs, which contain only
classes and basic types, then we need no sublype declarations and can assume thart casting operators are implicit-
ly everywhere in an expression. In [uci. the casting eperarors now correspond to the usual checking of subtyping
between classes. 1f we do not have multiple inheritance, then the restrictions 1 and 5 in Section 1. & hold auto.
matically. I we du uot have binary methods, then the restrietion § holds automatically.

We are currenily working on an implementation of FOC, which extends Java. We want to point out that
there is a well-known problem with static type safety in the presence of assignment and co-vartant subtyping for
comstrucied types. Tollowing what Java docs with arrays. we allow assignments to components of algebraic

types and live with static type unsafcty.

References

1 Odersky M., Wadler P. Pizza into Java: Translating theory into practice. In: Proceedings of the 24th ACM Symp. , Princi-
ples of Programming Languages. 1997 146~—159

2 Rénmy D, Vouillon J. Objective ML : a simple object-oriented extension of ML.. In: Proceedings of the 24th AUM Symp.
Principles of Programming Languages. 1997. 40~-53

3 Reppy]+ Riecke). Classes in object MI. via modules, In, Procredings of 1996 ACM SIGPLAN Conterence on Program-
ming Language Design and Implementarian. SIGPLAN Notices, 1066,3°(5,171~180

© HEFRES AT http:/ www. jos. org. cn

— 20 — Journal of Software BAFFER 2000,11(0)

11

12

14
15

16
17

19
- 20
21
2z
23
24

25

26

27

Reppy I, Riecke J. Classes in ohject ML via modules. Technical Report, 1996, Presented at the FOOL'3 waorkshop
Hughes |, Sparud J. Haskcll++: An object-oriented extension of Haskell, In: Proceedings of 1995 Workshop on Haskel-
Ly 1995

Hoang M, Mitchell J. Lower bovads on type inference with subtypes, In; Proceedings of the 22nd ACM Symp. Principles
of Prograimming Longuages, 1905, 176~~185

Aiken A, Wimmers E. Type inclusion constraints and type inference. In. Prowveedings of the Functional Programming
Languages and Computer Architecture. ACM, 1993. 31~4[

Eifrig J, Smith 8, Trifonov V ez al. An interpretation of typed OOP in a language with state. Jourral of Lisp and Symbolic
Computation, 1995. 357~397

Smith G 8. Principal rype schemes for funcrional programs with overloading and subtyping. Scignce of Computer Program-
ming, 1994,23;197~226

Wand M. Complete type inference for simple objects. In: Proceedings of the nd IEEE Symp. Logic in Computer Science,
1587, 37~44, Corrigendum in Praceedings of the 5rd IEEE Symp. Logic in Computer Science

Remy [). Typechecking records and variants in a natural extension of ML, In. Proceedings of the 16th ACM Symp. Princi-
ples of Programming Languages, 1989, 77~87

Ohori AL A compilation method for ML-atyle polymarphie record calenls. Ia; Proceedings of the 19th ACM Symp. Princi-
ples of Programming (Languages, 1992 154-~165

Harper R, Mitchell]. The essence of ML. In: Proceedings of the 15th ACM Symp. Principles of Programming Lan-
guages, |D88. 28~ 46")
Hudak P, Peyton Jones S, Wadler P. Report on the Programming Language Haskell ; a Non-strict. Purely functional lan-
guage (Version 1 23, ACM SIGPLAN Nosices, 1992,27(5)

Nipkow T, Prehofer C. Type reconstruction for type classes. Journal of Functional Programming, 1555,5(2):201~224
Abadi M, Cardelli [.. A Theory of Objecis. ‘Springer-Verlag, 1998

Canning P, Cook W, Hill W ¢t /. F-bounded poiymorphism for objeci-oriented programming. n: Proceedings of the
Functional Programming Languages and Computer Architecture, 1950, 273~ 280

Mitchell J, Flotkin G. Abstract types have existental type. ACM Transactions on Programming Language: and Systetu,
1988,1043):475~- 502

Cardelli I, Wegner P. On underttanding types, data abstraction, and polymorphism. Computing Surveys, 1985,17(4).
471~522

Aufer K. Combining type classes and existential types. In, Proceedings of the Latin American Informatics Conference
(PANEL), ITESM-CEM, Mexico, 1994

Aufer K. Odersky M. Polymorphic type inference and abstract data types. ACM Transactions on Programming Languages
and Systems, 19%4

bruce K, Schuett A, Gent R V. PolyI'Oll.; A type-sale polymorphic object-oriented language (extended abstract). In,
Proceedings of the 91h Evropean Conference on Object-Oriented Programming, Springer-Verlsg LNCS 852, 1895, 27~5]
Bruce K, Peterson L, Fiech A, Subtyping is not a good “martch™ for object-oriented languages. In Froceedings aof the 11th
Eurcpean Conference on Object-Oriented Programming, Springer-Verlag LNCS 1241, 1997

Castagna G, Ghelli G, Lungo G. A caloulus for overloaded Tunctions with sublyping. Informstion and Computation, 1995,
171 .115~135

Qian 7, Krieg-Briickner B. Object-Chriented functional programming with late binding. In: Cointe Ped, Proceedings of the
10th Eurgpean Conference on Object-Oriented Programming, Springer- Verlag LNCS 1098, 1956, 48~72. Long versicn as
technical report FB Informatik, Universitdt Bremen, 1996

Qian Z, Abd Moulah B. Entwurl und pretotypische implementierung einerobjek torientierten funktionalen sprache. In:
Tagungsbund der GI-Jahrestagung 1997, Springer Verlag “Informatik Aktuell”, 1997

Qian Z. Krieg-Brickner B. Object-Oriented functional programming and type reconstruction. In. Haveraaen M, Owe O,

Dahi O-J eds. Recent Trends in Data Type Specification, Springer-Verlag LNCS 1130, 1986, 458~477

© HIEERES AT hip:/ www. jos. org. cn

QIAN Zhenyu ¥ : B4 EA £ H EH KB THHRA — 21 —

28 Curien P-L, Ghelli G, Coherence of subsumption, minimum typing and the type checking in F. Mathematical Structures
in Computer Science, 1992,2(1)
Appendix A Formal Treatment of the Types and Terms
A formal calcutus for FOC can be obtained from the calculus F <441 by stratifying the cypes inlo menomorphic and polymos-
phic types, replacing implicit coercion by explicit type lifting and adding type constructors, classes, attributes. multi-bodies and
a dynamic binding mechanism,
A.1 The environment
It is assumed that the set of type varizbles and the act of expression variables are always disjoint. We define &% (0) to be
the set of all free {type or cxpression) variables in a syntactic abject Q. 1Loe.
F 9 (r) = the set of all type variables inr
FF Y e < wa)=FF (o) ~ (o)
FFM = e r{o} Ulasert{z) U F5 ()
An environment I must satisly the least relation b I" closed under the rules in Fig. 10, Note that the judgment of the form I'

& used in the rules is defined in the next subsection.

b eZF¥ (D) & occurs in £

([Jenv) I 2 5 () Tta
FLIT FT[a<x]

FF+[IU’_‘

Fig. 10 Well-formedness of environments

(=<{-env)

(:-env)

Intuitively, rule {[J-env} creates an empty environment, rules {=<(-env) and(:-env) ensure that each (expression or
type) variable in an environment may only be declared at most once, and that no varinble may be used before it is declared. Note

that it suffices to heve only classes as bounds in the environment I', since it is so in the source programs,

A. 2 Well-formed types a<x1s al}‘ell.e:lem of F(n‘—t.ypc) 'ﬂ?"‘?‘?’;‘“ ‘Q(,c_,ype)
The inference rules for environments are based on the X
Plroli=1,.... k) ¥ hary and in {2
well-formedness of types. Formally, the relation ' 4, i.e. @ CF e Cy-Lype)
is well- formed under I', is the least relation closed under the PtTau] b a((ﬂ "
rules in Fig, 11. It is easy to prove that if 5 is well-defined un- My a<s. o P

der I then all its free variables are declared in I'. Fig. 11 Well-formedness of types

A.3 The subtyping relation
A set of inference rules for deriving I' b 0<(¢" is given in Fig. 12

w={x is an element of I <K€ EeK

T La<k (e-subty) —AP—}_;ZK,——(xfsuhty)
¥ <o =) <k€0 Fro<eli=1, ..., k) BT
T rx(mo<# eubty

Cro <t ¢G=1, ..., k) Xis not>

- - —sub
IS TER T x-subty)

o=l e
I'br=z <T—=7y
Tt <y o<y

o<

(—+-s5ubty)

I'tr r(reﬁ-subty) (trans-subty}

I -7

P {ae=Cu, | F o<t
ly- 3
TT Va2, ¥ me T Pely by

Fig. 12 The sublyping relation
The first three rules need no further explansations. Rule (¥-subty) says that the subtyping relation is co-variant for all type
constructors except —. Rule {~—=-subty) says that the subtyping relation is co-variant for — at the range position and non-
variant at the domain position.
There is at least one reason for us to adopt non-variance, instead of the usual contra-variance, at the domain position of a
function rype. If a programmer writes a subtype declaration a < A={a->B)<C, then he would expect that I't (- F) <

holds for all types t satisfying that T’ r ©<(A. The contra-variance would imply that I"+ (' B)<(C for all types 7' satislying

© HEFRES AT http:/ www. jos. org. cn

— 22 — Journal of Software HH ¥R 2000,11(1)

that Db o7 and I'b r<{A, i.e, T} ("= B)Y<C for cll types t¥ satisfying that I' b A<(+". This is usually not what the
programmer wants with the original subtype declaration.

Proposiilon A. 1. Let I"be an environment and o and o' arbitracy types such that I' F o ard '+ ¢ hold. Then it is decidable
whether I Fo—<¢" Lolds.
A.4 Typing expressions

We use A to denowe the ser of the pairs e, {@n:8,)) for all classes & ard all attribute declarations a,:47 in & I (x,
{an: 8212 € A then we use A¢c) to denote {2, 18,7},

We use & 1o denote the set of all value constraciors ¢: ¥ . (te3—x (@),

We use @ tn dencte the set of the forms r;¢ for all function declarations fun & o=

Now an environment contains {3, 2. A, &, @ and . Since £2, ..’S, A, B and @ are fincd in a given programs we will emit
them in the inference rules.

Let ' k2.4 dencte that an expression ¢ hzs a type o under an envirgnment I'. Then the relation can be defined as the least
relation closed under the rules in Fig. 13.

a0 DD

Y Y e BlbniG=1s...,
s {m9. E)GE(MTam) ¥ e, 7€ Fn=1 »n)

Trmo Tt eielm/a]

It [a<k] Fs:o
My Ae<{a. s ¥ o<l o

(VTaut)} (CTaur}

Frs;Ya<x, o CFr=<x
MEs[c]iolera]

FP4lzr)ts. o

(Tapp) (Tabs)

s tf—=r Il

Fkix,r.s,r—»r’(Abs) F-{st).t S (App)
et (oo
FPSJ' Es {r’i)ijrl(SUb)
F[;c;:c,:c<0bj) IIF“FF:‘_:iEEA(‘C)(Anr)

Fig. 13 Typmng rules in FOC
ule (Sub) deals with explicit type liftings. The last two rules are straightforward, All other rules are standard in typed
caleuli, Note that rules (Sub), (Abs), (App) and (Attr) require that the expressions should be of mongmerphie types.
‘Thisensures that a pelymorphic function/method must be first instantiated into 2 monomorphic expression by rule (Tapp? and

then applied to another monomorphic expression.

HESERMRFTHXIBEHERS
QIAN Zhen-vu Besma Abd Moulah

(Universitit Bremen Germany)

BB AR T80EGMAMBERARAREYNHYE 52 —Fa8X FRF AL AR LTEFNTES
MR EE BT ARSI E T PAFTH LY -2 T E2/MA BT 2 AFHOETELH
WEH RS AL MBEL A B iRt LR ERELEFTHIEA LR EMEF T UHET AL
MUAL TG ETHRANHh AR, SA AR - E T RENHEAEE LT, AhkmiE, 807 -4
AAGEBRHEETHATERATAOMEARFBIHHHRCEST, A F L LMRGRA. I CETEST
Eiffel, Javas ML #r Haskell 3 € P F AR CHE ML ML £, 5 Fak A, 72 FAX HAHL . BALY
oM, LTk REEELY. A0 FE.ML- S 58,

XEiE @M ERART.IEER . FREELL HARR ARV SR, AT R BEAAART, R

SACAEE Y. SR M ML 3 A4,
REEFHES TPILL

© HIEERES AT hip:/ www. jos. org. cn

