ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, V01.20, No.3, March 2009, pp.692—-701 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00574 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

REMEEBRBERHE
h R RER RN

(FE 5O B0 5 ot SRR A 2 e 008 Rat 210097)

.El

Certificateless Proxy Signature Scheme with Provable Security

CHEN Hu*, ZHANG Fu-Tai, SONG Ru-Shun

(School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China)

+ Corresponding author: E-mail: chenhuchh@163.com

Chen H, Zhang FT, Song RS. Certificateless proxy signature scheme with provable security. Journal of
Software, 2009,20(3):692—-701. http://www.jos.org.cn/1000-9825/574.htm

Abstract: This paper studies proxy signatures in the newly proposed certificateless public key setting. The authors
present a very strong security model for certificateless proxy signature schemes against both Super Type |
Adversary and Super Type Il Adversary. And also an efficient construction of certificateless proxy signature scheme
using bilinear maps is put forward. The security of this scheme is based on the infeasibility of the Computational
Diffie-Hellman problem and is formally proven under the security model of certificateless proxy signature schemes.
Due to its security, high efficiency and freedom from certificate management, it may have practical applications in
electronic commerce and mobile agent systems, etc.

Key words: certificateless cryptography; bilinear map; computational Diffie-Hellman problem; proxy signature;

random Oracle

B E HREFRBOLEPAAEDMAATHREESL P48 T LiEHREE FEFRG L

BR Z AR T EH RN RRGABRER | XA 1| K EH B A F) AR iﬂ#&éﬁuﬂ-? &

é’Jim%KﬁZ 4 FE 2o mE T A Diffie-Hellman 7] 22 64 B X, F A sb 2 A4 R T4 F X 84 2 4E
R TFr RN R SRPAIEBTENRECT 2R TATHS. BHREEALAEH@.

aéﬁilﬂ: FAEP 5 A B 4 LR k4t 3T - Diffie-Hellman 192 ARIEA 4 AL 5 5%

PEESES: TP309 SCERARIRED: A

1 Introduction

The concept of proxy signature was first introduced by Mambo, Usuda and Okamotof! in 1996. In a proxy
signature scheme, one user 4, called original signer, delegates his signing capability to another user B, called proxy
signer. Upon receiving a proxy signature on some message, a verifier can check its correctness according to a given

« Supported by the National Natural Science Foundation of China under Grant N0.60673070 (¥ % [#Fl%:3E4x); the Natural
Science Foundation of Jiangsu Province of China under Grant No.BK2006217 (L. 754 H R Rl 24 3L 4)
Received 2008-05-13; Accepted 2008-10-27

© HEEREETOR

http:// www. jos. org. cn

B FTIER A AR P RIEEL FE 693

verification procedure, and further be convinced of the original signer’s agreement on the signed message. For a
secure proxy signature scheme, the following requirements must be satisfied: correctness, strong unforgeability,
verifiability, prevention of misuse, strong undeniability and strong identifiability. Proxy signatures have found lots
of practical applications in areas such as electronic commerce, global distribution networks, and mobile agent
systems, etc. To adapt to different situations, many variants of proxy signature scheme are studied, such as threshold
proxy signature!®, proxy multi-signature®), Designated Verifier Proxy Signature!!, 1D-based proxy signature® and
so on. We notice that almost all proxy signature schemes available in the literature are based on the traditional
public key cryptography (TPKC) or the identity-based cryptography (IBC). And it is widely known that the TPKC
requires heavy cost on certificate management while IBC suffers from the key escrow problem.

In 2003, Al-Riyami and Paterson'® introduced an intermediate model between TPKC and IBC, known as
certificateless public key cryptography (CL-PKC). Having no certificates that are essential in TPKC, CL-PKC
achieves implicit certification without suffering from the inherent key escrow problem in IBC. Therefore, CL-PKC
still keeps the advantages enjoyed by TPKC and IBC. Since the appearance of CL-PKC, it has attracted the attention
of many researchers and there have been several interesting works on certificateless signature schemes . The
advantages of certificateless cryptography and the distinguished characteristics of proxy signature schemes make it
very interesting to construct secure and efficient certificateless proxy signature (CLPS) schemes. In 2005, Li, et al.[¥
proposed the first certificateless proxy signature scheme without any formal security proof. Unfortunately, their
scheme was found insecure. Recently, Lu, er al.*% and Yap, et al.™ respectively pointed out its security flaws. To
the best of our knowledge, no appropriate security model and secure CLPS scheme are available in the literature.

We investigate the appropriate security model and the construction of secure CLPS scheme in this paper. We
introduce a security model of certificateless proxy signature schemes. In the security model, the adversaries are
Super Type | Adversaries and Super Type Il Adversaries!”’ with the strongest attack power. At the same time, a
provably secure CLPS scheme in the given security model is put forward. Our scheme meets only two pairing
operations in the proxy signing and verification processes and enjoys all the security requirements for proxy
signatures. We provide formal security proofs for our scheme under the assumption that the Computational
Diffie-Hellman problem is intractable.

In the next section, we show some preliminaries and the background knowledge required throughout the
paper. In Section 3, we introduce the security model of the CLPS schemes. In Section 4, we present our concrete
CLPS scheme. Its security and efficiency analysis are given in Section 5. Section 6 concludes this paper.

2 Preliminaries

2.1 Bilinear maps and computational problem

Let G; denote an additive group of prime order ¢ and G, be a multiplicative group of the same order. Let P
denote a generator of G;. A map e: G;xG;—G; is called a bilinear map, if it has the following properties:

1. Bilinear: e(aP, bQ)= e(P, Q)" for P, 0 € Gy, a, be Z,".

2. Non-Degeneracy: There exists P, Q € G; such that e(P, Q)#1g,.

3. Computable: There exists an efficient algorithm to compute e (P, Q) for any P, Q e G;.

Computational Diffie-Hellman (CDH) Problem.

Given a randomly chosen P e Gy, as well as aP, bP (for unknown a, b e Zq*), to compute abP.

2.2 The concept of CLPS

A certificateless proxy signature scheme involves an original signer and a proxy signer. It consists of ten

R AHIETO

© mE

http:// www. jos. org. cn

694 Journal of Software #4334k Vol.20, No.3, March 2009

algorithms: Setup, Partial-Private-key-Extract, Set-Secret-Value, Set-Public-Key, Set-Private-Key, Partial-
Proxy-Key-Generate, Partial-Proxy-Key-Verify, Set-Proxy-Key, Proxy-Sign and Proxy-Verify. The formal
definitions of the first five algorithms are the same as those in a certificateless signature scheme. Readers can refer
to Ref.[6] for details. The others are formally defined as follows:

Partial-Proxy-Key-Generate: An algorithm which takes as input a parameter list param, a warrant m,, an
original signer’s public/private key and identity to generate a partial proxy key. This algorithm is run by the original
signer.

Partial-Proxy-Key-Verify: An algorithm which accepts a parameter list param, a warrant m,, an identity and
public key of an original signer, and a partial proxy key to returns True if the partial proxy key is correct, or False
otherwise. This algorithm is run by a proxy signer.

Set-Proxy-Key: An algorithm which accepts a parameter list param, a partial proxy key, and a proxy signer’s
private key to output a proxy key. This algorithm is run by a proxy signer.

Proxy-Sign: An algorithm which accepts a parameter list param, a warrant m,,, a message m, an identity and
public key of the original signer, an identity and public key of the proxy signer, and a proxy key to generate a proxy
signature ¢ on message m. This algorithm is run by a proxy signer.

Proxy-Verify: An algorithm which accepts a parameter list param, a message m, a warrant m,, a proxy
signature o, an original signer’s identity and public key, and a proxy signer’s identity and public key to return
True if the signature is correct , or False otherwise.

3 Security Model of CLPS

Similar to the adversaries against certificateless signature scheme defined in Ref.[7], for the security of
certificateless proxy signature schemes we consider two types of adversaries, namely Super Type | Adversary, Super
Type Il Adversary with different capabilities in CLPS schemes.

Super Type | Adversary: A Type | Adversary A; does not have access to the master-key, but A, has the ability
to replace the public key of any entity with a value of his choice.

Super Type 1l Adversary: A Type Il Adversary A; has access to the master-key but cannot replace the target
user’s public key.

Informally speaking, a secure CLPS scheme should prevent an adversary from producing any valid new
message-proxy signature pair without the knowledge of the private proxy key of the proxy signer even if he has
already gotten many valid message-proxy signature pairs.

To formally define the security of CLPS schemes, we demonstrate a game played between a challenger Q and
an adversary I e {A;, A}

Setup: (2 runs the Setup algorithm of the CLPS scheme, takes as input a security parameter ¢ to obtain a
master-key and the system parameter lists param. Q then sends param to the adversary I'. If I'" is a A, Q also
sends the master-key to I". Note that ¢ is a security parameter throughout the paper.

Attack: The adversary I" can get access to the following oracles (as well as the random oracles if there exists),
which are controlled by Q.

- Create-User oracle: This algorithm takes as input an identity ID. If ID has already been created, nothing is to
be done by this algorithm. Otherwise, it runs the algorithms Partial-Private-key-Extract, Set-Secret-Value, Set
-Public-Key to obtain the partial private key D,p, secret value x;, and public key P;p. Then it adds (ID, D;p, x;p, Pip)
to the list L. In this case, ID is said to be created. In both cases, Py, is returned.

« Partial-Private-Key oracle: (For A; only) On input an identity /D, which has been created, the oracle browses

R AHIETO

© mE

http:// www. jos. org. cn

B FTIER A AR P RIEEL FE 695

the list L and returns the partial private key D, corresponding to the ID as answer.

- Public-Key-Replacement oracle: Taking as input an identity /D and a new public key P, , where /D denotes
the created identity, the oracle replaces the public key of the given identity /D with the new one and updates the
corresponding information in the list L.

« Secret-Value oracle: Accepting a created identity /D, the oracle browses the list L and returns the secret value
x;p as answer. Note that, the secret value output by this oracle is the one which is used to generate ID’s original
public key P;p. In addition, it doesn’t output the secret value associated with the replaced public key P, .

+ Partial-Proxy-Key oracle: On input an original signer’s identity /D, and a warrant m,, the oracle outputs a
partial proxy key ® , as answer.

- Proxy-Key oracle: Accepting an original signer’s identity 7D, a proxy signer’s identity /Dy, and a warrant m,,,
the oracle outputs a proxy key for the proxy signer as answer.

+ Proxy-Sign oracle: On input a message m, a warrant m,, an original signer’s identity /D, a proxy signer’s
identity /D, the oracle outputs a proxy signature o as answer.

Forgery: Finally, I" outputs a tuple (m,,”, ID,", P,",®) or (m", m,”, ID,;", P{", IDs", Py", o) as its forgery.
We say I wins the game, if one of the following conditions is satisfied:

casel: /° outputs atuple (m, ", ID,", P, ® ;") satisfying:

(1) True «Verify(param, m,”, ID,", P,",0®);
(2) I is A, ID, has never been made Partial-Private-Key query. If I” is A, ID," has never been
made Secret-Value query;
(3) (m,", ID,, P,") has never been made Partial-Proxy-Key query.
case2: I" outputsatuple (m", m, , ID,", P.", IDg", Py, o) satisfying:
(1) True «Verify(param, m, mw*, IDA*, PA*, IDB*, PB*, (r*);
(2) I is A, ID, has never been made Partial-Private-Key query. If 7" is Ay, ID," has never been
made Secret-Value query;
) (m, ID,", P") has never been made Partial-Proxy-Key query;
(4) (m, . ID,", P{, IDy , Pg") has never been made Proxy-Key query;
(5) (m",m,, ID,, P, IDg", P5") has never been made the Proxy-Sign query.
case3: /" outputsatuple (m", m,,, ID,", P,", IDg", Py , o) satisfying:
(1) True <Verify(param, m,m, ID,, P, IDg, Py, 0'*);
(2) IfI" is A, IDg" has never been made Partial-Private-Key query. If /7 is Ay, ID; has never been
made Secret-Value query;
() (m, . ID,", P{, IDy , Pg") has never been made Proxy-Key query;
@) (m",m,, ID,, P, IDg", P5") has never been made the Proxy-Sign query.
< s

Definition. A certificateless proxy signature scheme is existentially unforgeable against adaptively chosen

The success probability of an adversary to win the game is denoted by Succ

message and chosen identity attack if the success probability of any polynomially bounded adversary in the above
cma cida

game is negligible. In other words, Succ, s -

() < ¢ ,where ¢is negligible.
4 Our CLPS Scheme

We use some ideas of the certificateless signature scheme in Ref.[8]. It consists of the following algorithms:

R AHIETO

© mE

http:// www. jos. org. cn

696 Journal of Software A3 4R Vol.20, No.3, March 2009

Setup: IG is a bilinear map instance generator. This algorithm runs as follows.

1. Run IG oninput ¢ to generate output (G, Gy, €), where e: G; X G;—G; is bilinear map.

2. Choose a random generator PeG;.

3. Choose a random master-key seRZq* and set Py=sP.

4. Choose cryptographic hash functions Hy, Hy, Hs, Ha: {0,1} =G,

The system parameters param = (G4, G,, e, q, P, Py, Hy, Hy, Hs, Hy). The message space is = {0, 1}*.

Partial-Private-Key-Extract: This algorithm accepts a user’s identity 7/D;e{0,1}* and computes Q;=H; (ID,)
to output the partial private key D;=sQ;.

Set-Secret-Value: This algorithm takes as input param and a user’s identity ID;, and selects a random x,-eRZq*
and outputs x; as the user’s secret value.

Set-Public-Key: This algorithm accepts param and a user’s secret value x; to produce the user’s public key P=
x;P.

Set-Private-Key: This algorithm takes as input param, a user’s partial private key D,, secret value x;, public
key P;, and identity ID,. The output of the algorithm is the private key S;=D;+x,T;, where T=H,(ID|| P,).

Partial-Proxy-Key-Generate: On input param, a private key S, and a warrant m,,, the original signer 4 with
the identity /D, and the public key P, computes partial proxy key for the proxy signer B.

1. Randomly pick rAeRZ,,*and compute R =r,P.

2. Compute U, = Hz (m,|| ID4|| P4|| R4) and K,=S,+r,U,.

3. Output (m,,, R4, K,) to B and take O ,=(R,, K,) as the partial proxy key.

Note that a warrant m,, specifies the delegation relation, the delegation period, what kind of the messages can
be delegated, etc.

Partial-Proxy-Key-Verify: Upon receiving (m,, R4, K,), the proxy signer B checks whether e(K,, P) = e(Q,,
Po)e(T,, Py) e(Uy R,) holds. If it does, accept (m,,, R4, K,). Otherwise, reject it.

Set-Proxy-Key: If the proxy signer B with the private keySy accepts(m,,, Ry, K4), B Sets its proxy key as (Ry,
K4, Sg).

Proxy-Sign: To sign a message m, the proxy signer B with identity IDg, public key Pz and proxy key (R4, K,
S) performs the following steps:

1. Randomly pick rBeRZq*and compute Rz= rpP.

2. Compute Ug=Hy(m||m,,|| ID3|| Ps|| Rz) and V=K, +Sg + rz Up .

3. Output o-=(Ry4, Rp, V) as the proxy signature.

Proxy-Verify: To verify (m, m,,, o) with the original signer’s identity /D, and public key P, the proxy signer’s
identity /Dy and public key Py, a verifier executes the following steps;

1. Check whether or not the message m conforms to m,,. If not, reject o-; otherwise, continue.

2. Compute Q=H; (ID.s), Op=H1 (IDs), Ty=Ho(IDA||P4), T3=Ho(ID5||Ps), Us = Hz (m|lID4]| P4ll R4), and Up
= Hy (m||m.|| LDgl| Ppl| Rp).

3. Check whether or not the equation e(V, P)= e(Q4+Qs, Po) (T4, P,) (T, Pg) e(Uy, R,) €(Up, Rp) holds. If it
does, accept o. Otherwise, reject o-.

5 Security and Efficiency Analysis

5.1 Correctness

The correctness of the proposed scheme can be easily verified.
e(V, P)=e(K, +Sz + r3 U, P)

R AHIETO

© mE

http:// www. jos. org. cn

B FTIER A AR P RIEEL FE 697

=e(Sy + 14 Uy, P) e(Ss, P) e(Up, Rp)
=e(D4+x4Ty, P) e(Dg + x3Ts, P) e(Uy, Ry) e(Up, Rp)
=e(Q4 + Os Po) &(T4, Py) e(Ts, Pp) e(Uy, Ry) €(Us, Rp).
5.2 Strong unforgeability
Assuming that the CDH problem is hard, we prove the unforgeability of our CLPS scheme.

Theorem 1. In the random oracle model, if A; is a super type | adaptively chosen message and chosen identity

cma,cida

attacker against our CLPS scheme with the success probability SMCCCLPS,AI (¢) within a time span ¢ and after asking
at most gcy Create-user queries, gppx Partial-Private-Key queries, gpgr Public-Key-Replacement queries, gsy
Secret-Value queries, g, H, queries, gyz Hs queries, guq Hji queries, gpp.x Partial-Proxy-Key queries, g¢p,.x
Proxy-Key queries and gps Proxy-Sign queries, then there exists an algorithm Q which can use A, to solve a random
instance of the CDH problem in Gy within time ¢ < ¢+ gcytcu+ gppx trpx+ Grkr trkr + qsy tsy + Quotuz + Guatust
Griatiia +qprrok trprok +qprok trrok Fqps tps and with the success probability &ﬂf;'f)(f) = q;(l—q;)"”"“"”'“ Suwé:"p;ijj 0,
where tcy (resp. tppk, trirs tsyy tizy tizs thas trproks trrox @Nd 2pg) 1S the time cost of a Create-user (resp. Partial-Private
-Key, Public-Key-Replacement, Secret-Value, H,, Hs, Hy, Partial-Proxy-Key, Proxy-Key and Proxy-Sign) query.

Proof: Given a random instance (P, P;=aP, P,=bP) of the CDH problem in G;, we show how Q can obtain
the value of abP with the help of the A,. In the proof, we regard the hash functions Hy, H,, Hs, Hy as the random
oracles. We assume that A; doesn’t repeat any two identical queries.

Setup: In this game, Q sets Py=P;=aP and the system parameters param = (G, G,, €, ¢q, P, Py, Hy, H,, Hs, Hy).
Q returns param to A,.

Attack: A; can ask 2 Create-User, Partial-Private-Key, public-key-Replacement, Secret-Value, H,, Hs, Hy,
Partial-Proxy-Key, Proxy-Key and Proxy-Sign queries. In order to maintain consistency and avoid conflict, Q
keeps four lists L, H,, Hs, H, to store the used answers, where L-list (resp. H,-list, Hs-list, H,-list) includes items of
the form (ID;, O;, D:,a;, xi, Py) (resp. (ID;, PuS., To), (m,', ID4, P4, Ry, UJ, v, (ms m,', IDg', Pg', Rg', Ug', hy)). All
of these lists are initially empty.

+ Create-User oracle: Q first picks a random fe{1,2,...,qcu}. Upon receiving A;’s query CU (ID;), Q picks
random x;, aieZq* such that there is no item (*,*,*,;,*,*) in the L-list. If i=f, Q sets Q;=a;P, D;=a;Py, Pi=x;P. If i=f,
Q sets O=x,P +P,, D=1, P= x/P. Finally, Q adds (ID;, O;, D;, a;, x;, P;) into the L-list and returns P; to A, as
answer.

« Partial-Private-Key queries: Whenever Q receives a query PPK(/D;), Q first checks the L-list. If i=f, Q
returns D; as answer. If i=f, Q aborts.

+ Public-Key-Replacement queries: Accepting a query PKR(ID;,P;"), checks the L-list and updates the tuple
(D, O, Dy, a;y x;, Pi) as (ID;, Oy, Dy, o, L, Py).

+ Secret-Value oracle: On receiving a query SV(ID)), Q first checks the L-list. If x;= 1, Q returns x; as answer.
Otherwise, Q returns L as answer.

+ H, Queries: On receiving A;’s query H,(ID; || P;), Q first picks a random B, € Zq* such that there is no item (*,
.[.,) in the Hy-list, sets 7;= B,P. Then Q adds (ID;, P;, 3, T;) into the H,-list and returns 7; to A; as answer.

« H; Queries: On receiving A,’s query Ha(m,,||ID/||P.{|IR (), Q first picks a random y,eZ,” such that there is no
item (*,**** 5)) in the Hs-list and sets U,’= y,P. Then Q adds (m,’, ID,, P/, R/, U, v,) into the Hs-list and
returns U, to A, as answer.

« H, Queries: On receiving A,’s query Hy (m||m,,|lID5|P5'|R5"), Q first picks a random 4, Z,” such that there is
no item (****** h) in the Hy-list and sets Uz'=h,P. Then Q adds (m;, m,’, IDg, Pg, Rg, U, h;) into the H,-list
and returns Uy’ to A, as answer.

R AHIETO

© mE

http:// www. jos. org. cn

698 Journal of Software A3 4R Vol.20, No.3, March 2009

- Partial-Proxy-Key oracle: Upon receiving a query PProK(m,', ID,"), Q first checks the L-list to get the
current public key of the ID,". Then Q makes H,(ID, ||P./) to obtain (ID./, P,.f, T,") and executes the following
steps:

(1) Randomly pick a;, b;eZ,".

(2) Set Ry/'= a;Py, Uj'= Hs(mwi||1DAI||PAi||RA[):ai71(biP—QAi), and K,’=b,P1+SP,.

If there is a tuple (m,,, ID,, P,’, R,)) in the Hs-list, Q updates g; in order to avoid conflict. Q returns (R, K./
to A;as answer and adds (m,,’, ID,, P.{, R,/,U/, L) into the Hs-list.

- Proxy-Key oracle: Upon receiving a query ProK(m,’, ID,, ID4), Q checks the L-list to obtain (IDs, O,
Dy, xg', Pg)). If the public key of ID; has been replaced, Q returns L. Otherwise, Q first performs PProK(m,,’,
ID /), Ho(IDg|Ps)to obtain the tuples (R,', K,) and (IDg', P, B 4, Tj") respectively.

If IDy'= ID;, Q aborts. Otherwise, Q sets Sz'=Dj"+x;'T;' and returns (K, S5") to A;as answer.

- Proxy-Sign oracle: Upon receiving a query PS(m;, m,, ID./, IDg"), Q first checks the L-list to get the current
public keys of the ID," and IDg. Then Q makes H,(ID, ||P./) and H,(IDg' ||P5’) to obtain (ID,/, P,B{, T,) and
(IDg, Py, By, T5') respectively and executes the following steps:

(1) Randomly pick a;, b;, ¢;, di€Z,".

(2) Set R'=a;Py, Us'= Hy(m, D, |IP{|IR)=a; (b:P-Q.), and K,'=bP1+B, P,

(3) Set Ry'=c;P1, Ug'= Ha(mi|lm,/IID /P4 IR {)=c; (diP-Qp), and V;= K,/ +d;P1+S5'Py’.

If there is a tuple (m,, ID,, P/, R) or (m;, m,’, ID,/, P, R,) in the Hg-list or H,-list, Q updates a; or ¢; in order to
avoid conflict. Q returns (R, R, V;) to A, as answer and adds (m,,’, ID,’, P/, R/, U/, L) and (m;, m,,', IDg', P§, Ry,
Ug', L) into the Hz-list and Hy-list respectively.

Forgery: A, outputs a tuple (m,,".ID, P, 0 /=R, .K,")) or (m"m,, ID, P, IDy Py, o =R Rs"V")).

(1) If the output is a valid tuple (m,,".ID,;",P.{",® ,'=(R," K,)) satisfying Case 1 as defined in Section 3, Q first
checks L-list, Hy-list and Hg-list to find (ID, 0, .D. & x, P), UD, P . BT, (m, D, P, R, U, v
respectively.

If ID,"#ID;;, Q aborts. Otherwise, Q can compute abP=K, —a P~ P, ~v R, .

(2) If the output is a valid tuple (m"m,"ID, P, IDs".P5", o =(R,"\Rs" V")) satisfying Case 2 as defined in
Section 3, Q first checks L-list, Hp-list, Hs-list and H,-list to find (ID,".0, D" e x4 P, (D5 .05 Dy a5,
x5,Ps), (D, Py B\ Ts), (UDg Py .fs . Ts), (m, D, P, R\ U, v) and (m",m, IDys ,Pg Rz Ug ,h")
respectively.

If ID,"#ID;;, Q aborts. Otherwise, Q can compute abP = V'— a , Pi~f{ P4~ v R~ a5 P1~fs Py —h Ry .

(3) If the output is a valid tuple (m"m,"ID, P, IDs" . Ps", o =(R,"\Rs",V")) satisfying Case 3 as defined in
Section 3, Q first checks L-list, Hy-list, Ha-list and Hy-list to find (ID,",Q4 D" as", x4 P4),(IDs ,Qs Dy a5,
x5 P5),(ID4 P BT). (IDs \Pg \Bs T),(m,, ID Py Ry US, v) and (m'my, IDg ,Pg Rz \Ug ,h')
respectively.

If IDy #ID;;, Q aborts. Otherwise, Q can compute abP=V "~ a ;' Pi~B{ P, '~ v Ry~ a5 Pi—fs Py 'Ry .

Probability of success: We show that Q solves the given instance of CDH problem with the probability
Succg;;fg (¢) . To do so, we analyze the three events that result in Q’s success.

E1: Q does not abort in all the queries of Partial-Private-Key and Proxy-Key.

E,: A, can forge a valid partial proxy key or proxy signature.

E;: After Event 2 occurs, one of the following events happens.

(1) A, outputs a valid tuple (m,,", ID,", P,", R4", K" satisfying ID, =IDy.

(2) A, outputs a valid tuple (m", m,”, ID", Py, IDg", Ps', R{", Ry, V") satisfying ID,"=ID;

R AHIETO

© mE

http:// www. jos. org. cn

B FTIER A AR P RIEEL FE 699

cma ,cida

(3) A, outputs a valid tuple (m", m,, ID", Py, IDg", Ps', R{", Ry, V") satisfying IDy =ID;:

The probability that Q solves the given CDH problem is Pr(E;NE; N E3) =Pr(E;)Pr(E,|E;) Pr(Es| Ex;NEY).
We have Pr(Eq)> (L— g)" "™ | PrE,|Ey) > &mmj” () and Pr(Es[E;NEy) 2., .

Hence, Sucesyy? (1) =Pr(Es N EoMEs) = gy, (1= gy,)™ ™ Succlyps's (£).

In summary, if A; succeeds within a time span ¢ for a security parameter ¢, then the CDH problem in G, can be
solved by Q within a time span ¢ <t + qeutcy + qpek trrk+ Gpkr tekr + Gsv tsy + Qratmz + qustust quatpa® qpprok
tpprok + Qprok tprok + qps tps @nd with the success probability Succgl_;;(é) > q;(l—q;,)"”’”“’”“" Succ;”;;ij‘l').
Theorem 2. In the random oracle model, if A; is a super type Il adaptively chosen message and chosen
cma cida

identity attacker against our CLPS scheme with the success probability Succ .,

(¢) within a time span ¢ and after
asking at most gcy Create-user queries, gpxr Public-Key- Replacement queries, g, Secret-Value queries, ¢, H»
queries, qus Hz queries, guq Hy queries, gpp.x Partial-Proxy-Key queries, ¢p,,x Proxy-Key queries and gps Proxy-

Sign queries, then there exists an algorithm © which can use A to solve a random instance of the CDH problem in

Gywithin time 1" <t + qgcutcu® qrxr texr + qsv tsy + Quotmz ¥ qustust quatua™ qpprok tpprok + Qprok terok + qps tps @nd
with the success probability Succﬁjﬂ)kqi, I Succ;ﬁ;iﬁ[(£), where tcy (resp. tpxr, Lsyr Leor Lu,
tha tpproks trrok @Nd tps) is the time cost of a Create-user (resp. Public-Key-Replacement, Secret-Value, H,, Hs, Hy,
Partial-Proxy-Key, Proxy-Key and Proxy- Sign) query.

Proof: Given a random instance (P, P1=aP, P,=bP) of the CDH problem in G;, we show how Q can obtain
the value of abP with the help of the A;. In the proof, we regard the hash functions H,, Hs, H, as the random
oracles. We assume that A;; doesn’t repeat any two identical queries.

Setup: In the game, Q selects a random seZ,", set Po= sP and the system parameters param = (Gy, Gy, €, ¢, P,
Py, Hy, Hy, Hs, Hy). Q returns param and the master-key s to Ay,

Attack: A;; can ask £ Create-User, Public-Key-Replacement, Secret-Value, H,, Hs, H,, Partial-Proxy-Key,
Proxy-Key and Proxy-Sign queries. In order to maintain consistency and avoid conflict, Q keeps four lists L, H,,
Hs, H, to store the used answers, where L-list includes items of the form (ID;, D;, x;, P;), Ho-list includes items of the
form (ID;, P;, B, T;), Hs-list includes items of the form (m,’, ID./, P, R/, U/, v), Ha-list includes items of the
form (m;, m,,', IDg', P5', Ry, Uy, h). All of these lists are initially empty.

+ Create-User oracle: Q first picks a random fe{1,2,...,qcu}. Upon receiving A;’s query CU (ID;), Q picks
random xieZq*. If i#f, Q sets D;=sH,(ID;), P= x;P. If i=f, Q sets D= sH(ID,), P/=x/P +P;. Finally, Q adds (/D;, D;,
x;, P;) into the L-list and returns P; to A; as answer.

- Public-Key-Replacement queries: On receiving a query PKR(ID;, P;"), Q checks the L-list and updates the
tuple (ID;, D;, x;, P;) as (ID;, D;, 1., P}').

- Secret-Value oracle: On receiving a query SV(ID)), Q first checks the L-list. If i=f, Q aborts. Otherwise, if x;=
L, Qreturns x; as answer; if x;= L, Q returns_L as answer.

H, Queries: On receiving A;’s query H,(ID/||P;), Q first picks a random 8,€Z,” such that there is no item
**.B, *) in the Hy-list. If i=f, Q sets T;=FP+P,. Otherwise, Q sets 7= 8.P. Then Q adds (/D;, P, 5, T;) into the
H,-list and returns 7; to Aj; as answer.

+ Hj Queries: On receiving A;’s query Ha(m,|lID.{||P.{||R), Q first picks a random ,eZ,” such that there is
no item (*,****) in the Hs-list and sets U,’= y,P. Then Q adds (m,’, ID.{, P/, R/, U/, v,) into the Hz-list and
returns U, to A; as answer.

+ H, Queries: On receiving A;’s query Hy (m/||m,||ID5|P5|R5"), Q first picks a random /,eZ,” such that there
is no item (*,*,*** * 1)) in the Hy-list and sets Up'=h,P. Then Q adds (m,, m,,, IDg', P5, R, Ug', h;) into the H,-list

R AHIETO

© mE

http:// www. jos. org. cn

700 Journal of Software A3 4R Vol.20, No.3, March 2009

and returns Uy’ to A, as answer.

- Partial-Proxy-Key oracle: Upon receiving a query PProK(m,', ID,), © first checks the L-list to get the
current public key of the ID,. Then Q makes H,(ID, ||P) to obtain (ID./, P, B, T,) and executes the following
steps:

(1) Randomly pick a;, b;€Z,’.

(2) Set R=b;P, Us= Hy(m, |IID/\P4||R4)=b; (a;P-T "), and K,/=a;P/+D,.

If there is the tuple (m,, ID,, P/, R,) in the Hz-list, Q updates b; in order to avoid this conflict. Q returns (R,/, K.,)
to A as answer and adds (m,,’, ID./, P/, R,’, U/, L) into the Ha-list.

- Proxy-Key oracle: Upon receiving a query ProK(m,’, ID,/, ID4), Q checks the L -list to obtain (IDg, D', x5,
Pg)). If the public key of ID, has been replaced, Q returns L. Otherwise, Q first performs PProK(m, /D),
H,(IDg'||P;") to obtain the tuples (R,,K.") and (IDs' P4, B, T5") respectively.

If ID'= ID;; Q aborts. Otherwise, Q sets Sy'= Dy'+x5' T3’ and returns (K./', Sz') to A;; as answer

« Proxy-Sign oracle: Upon receiving a query PS(m;, m,’, ID,/, IDg"), Q first checks the L-list to get the current
public keys of the 7D, and IDj'. Then Q makes H,(ID,/ ||P,{) and H,(ID;" ||P;") to obtain (ID,, P, B/, T,) and
(IDg', P, By, T%') respectively and executes the following steps:

(1) Randomly pick a;, b;, ¢;, dicZ,".

(2) Set R,’=b;P, Us'= Ha(m,/ D/ \P{|R{)=b; (aiP-T,)), and K =a;P/+D, .

(3) Set Ry'= diPy', Uy'= Ha(millm,/ WD P4 |RA)=d; ™ (c:P~T), and V;= K +ciPg' +Dy.

If there is a tuple (m,,, ID,, P/, R) or (m;, m,, ID.{, P/, R, in the Hs-list or H,-list, Q updates a; or ¢, in order to
avoid conflict. Q returns (R, R, V;) to A as answer and adds (m,,’, ID./, P,', R/,U/, L) and (m;, m,), IDg', Pg, Ry,
Uy', L) into the Ha-list and H,-list respectively.

Forgery: A outputs a tuple (m,, ,ID, P, ® ;=(R,",K,")) or (m",m, ID" P, IDg P5", o =(R, Rz ,V')).

(1) If the output is a valid tuple (m,," /D" ,P{", ® ,'=(R," K,)) satisfying Case 1 as defined in Section 3, Q first
checks L-list, Hy-list and Hglist to find (ID, D, x, P),(IDS P, B "1,),(m, 0D P, RUS, v)
respectively.

If ID,"#ID;, Q aborts. Otherwise, Q can compute abP=K, ~D;~xPr— B P v R4 .

(2) If the output is a valid tuple (m", m,,”, ID,;", P,", IDy", P5", o =(R,", Ry",V")) satisfying Case 2 as defined in
Section 3, Q first checks L-list, H,-list, Hz-list and Hy-list to find (ID.;", D", xi*, Pi), UDg", Dg", x5, Pg"), (D,
P B T, UDs Py Bs s T, (my”, ID, Py R, UL v and (m”, m,,”, IDg", Pg", Ry \Us", h") respectively.

If ID,"#ID;;, Q aborts. Otherwise, Q can compute abP=V ~DxPy— B P~ v Ry ~Dy —fs Py ~h Ry .

(3) If the output is a valid tuple (m", m,,”, ID.;", P.", IDy", P5", o =(R R V")) satisfying Case 3 as defined in
Section 3, Q first checks L-list, Hy-list, Hs-list and H,-list to find (ID,", D,", x", P{),(UDs", Dg", x5", P5"),(ID.(,
PSS T, D Py fs, Ts), (my, , ID, Py Ry, U, vy and (m*, m,,, IDg", Pg', Ry, Uy , h") respectively.

If ID,"#ID;;, Q aborts. Otherwise, Q can compute abP=V ~DyxPo— B Prh Ry ~D4 ~B Ps— v 'Ry .

Probability of success: With the similar method as in Theorem 1, we have the following conclusion: If A,
succeeds within a time span ¢ for a security parameter ¢, then the CDH problem in G; can be solved by Q within a

time span ¢' <t + qeytcy + qpxr tekr ¥ qsv sy + Quotz + Qustust quatuat pprok trprok ¥ dprok tprok T qps tps and with
. G, -G, N -1 7L Ndsy taprok cmacida
the success p'robablllty Succpyo(0) 2 g0, L-q;) SuccCLP.S_f{” (0) : . '
According to the above theorems, we can conclude that an original signer and other third parties who are not
designated as proxy signers cannot create a valid proxy signature. Thus our scheme enjoys strong unforgeability. In
addition, our scheme also enjoys the security requirements of proxy signatures such as verifiability, prevention of

misuse, strong undeniability, strong identifiability, etc. Due to page limitation, we will not describe them here.

R AHIETO

© mE

http:// www. jos. org. cn

B FTIER A AR P RIEEL FE 701

5.3 Efficiency

In comparing our scheme with Lu, ef al.”s schemel™® in detail, we only consider the costly operations including
the bilinear pairing operation (BP), scalar multiplication in G; (SM), exponentiation in G, (E) and hash operation
(H). In both schemes, e(P, P), e(Yip, Om), e(Yp, (Ha(m,,U)0ip*V)), &(Op, Po), &(Tip, Pip), (U, Rip), Hi(ID),
H,(ID||P;p) and Ha(m,||ID ||P:pl|R;p) can be pre-computed in the proxy signature verification phase, so they are not
counted into the operation cost in the table below. We use |*| to denote the bit length of *. The table shows that our
scheme has much less operations cost than the scheme in Ref.[10]. Therefore, our scheme is more efficient.

Table 1 Efficiency comparison

Schemes PPro-K-Gen PPro-K-Ver Pro-Sign Pro-Ver Provable security
Scheme in Ref.[10] 2SM+1H 4BP+1SM+1H 2SM+1E+1H 5BP+3E+1H No formal proof provided
Our scheme 1SM+1H 2BP+1H 2SM+1H 2BP+2H Yes

6 Conclusion

In this paper, we have presented an appropriate security model as well as a concrete construction of
certificateless proxy signature scheme. Our security model takes into account the strongest adversaries in
certificateless public key settings. Without pairing operation in proxy signature phase and with two pairing
operations in proxy signature verification phase, our scheme is efficient. It enjoys all the security requirements of
proxy signatures. The security of our scheme is proved in the random model with the intractability of the
Computational Diffie-Hellman problem. Due to its efficiency and certificateless, it can be widely used in areas such
as electronic commerce, mobile agent systems, etc.

References:

[1] Mambo M, Usuda K, Okamoto E. Proxy signature: Delegation of the power to sign messages. IEICE Trans. on Fundamentals, 1996,
E79-A(9):1338-1353.

[2] Zhang K. Threshold proxy signature schemes. In: Proc. of the 1997 Information Security Workshop. Japan, 1997. 191-197.

[3] YiLJ, Bai GQ, Xiao GZ. Proxy multi-signature scheme: A new type of proxy signature scheme. Electronics Letters, 2000,36(6):
527-528.

[4] Huang XY, Mu Y, Susilo W, Zhang FT. Short designated verifier proxy signature from pairings. In: Proc. of the SecUbiq 2005.
LNCS3823, Nagasaki, Springer-Verlag, 2005. 835-844.

[5] Zhang FG, Kim K. Efficient ID-based blind signature and proxy signature from bilinear pairings. In: Safavi-Naini R, Seberry J, eds.
Proc. of the ACISP 2003. LNCS 2727, Springer-Verlag, 2003. 312-323.

[6] Al-Riyami S, Paterson K. Certificateless public key cryptography. In: Proc. of the Asiacrypt 2003. LNCS 2894, Springer-Verlag,
2003. 452-473.

[71 Huang XY, Mu Y, Susilo W, Wong DS, Wu W. Certificateless signature revisited. In: Proc. of the Acisp 2007. LNCS 4586,
Springer-Verlag, 2007. 308-322.

[8] Zzhang ZF, Wong DS, Xu J, Feng DG. Certificateless public-key signature: Security model and efficient construction. In: Zhou J,
Yung M, Bao F, eds. Proc. of the ACNS 2006. LNCS 3989, Springer-Verlag, 2006. 293-308.

[91 Li X, Chen K, Sun L. Certificateless signature and proxy signature schemes from bilinear pairings. Lithuanian Mathematical
Journal, 2005,45(1):76-83.

[10] Lu R, He D, Wang CJ. Cryptanalysis and improvement of a certificateless proxy signature scheme from bilinear pairings. In: Proc.
of the 8th ACIS Int’l Conf. on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. 2007.
285-290. doi: 10.1109/SNPD

[11] Yap WS, Heng SH, Goi BK. Cryptanalysis of some proxy signature schemes without certificates. In: Sauveron D, et al., eds. In:
Proc. of the WISTP 2007. LNCS 4462, Springer-Verlag, 2007. 115-126.

SONG Ru-Shun was born in 1953. He is a
professor at School of Mathematics and Computer
Science Nanjing Normal University. His research
area is network security.

CHEN Hu was born in 1975. He is a M.D.
candidate at School of Mathematics and
Computer Science Nanjing Normal
University. His current research areas are
information security and cryptography.

ZHANG Fu-Tai was born in 1965. He is a
professor and doctoral supervisor at School
of Mathematics and Computer Science
Nanjing Normal University. His research
area is cryptography.

© HEEREETOR

http:// www. jos. org. cn

