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Abstract:  Linear time mu-calculus (µTL) is an extension of linear-time temporal logic (LTL) by fixed points, 
which is a convenient way to specify and reasoning about reactive systems. As µTL being more expressible than 
LTL, the properties specified by LTL could be determined by µTL. Similar to the intuitionistic linear-time temporal 
logic (ILTL), we propose an intuitionistic variant of µTL as intuitionistic linear time mu-calculus (IµTL). We have 
established a correspondence between IµTL and ILTL, and compared their expressive power. Using IµTL to specify 
safety and liveness properties, and assumption-guarantee specifications are also discussed. 
Key words:  propositional linear temporal logic; intuitionistic linear time µ-calculus 

摘  要: 线性 mu-演算(µTL)是线性时序逻辑(LTL)的不动点扩展.LTL 是一个便于规范和论证反应式系统的方

法.µTL 作为比 LTL 表达能力更强的逻辑,用 LTL 表示的性质度可由µTL 表示.类似于 LTL 的直觉线性时序逻辑

(ILTL),提出一种基于直觉解释的µTL,称为直觉µTL(IµTL).确立了 IµTL 和 ILTL 的关系,比较了它们之间的表达能

力.讨论了使用 IµTL 与安全性质和活性描述的关系以及描述“假设-保证”规范的问题. 
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1   Introduction 

Temporal logics is a convenient language for the specification of reactive systems[1]. The underlying model of 
such behaviors possesses infinite nature i.e. a non-terminating sequence of interaction between system and its 
environment. Sometimes we need to bifurcate the finite and infinite behaviors simultaneously in order to distinguish 
them. For example safety and liveness properties are two important features of reactive systems, and these 
properties differ fundamentally in the way they constrain finite and infinite behaviors[2]. We usually observe real 
systems in finite domain and idealize them in an infinite domain in order to determine whether the observations 
violate the specifications or not. Various suggestions have been proposed to extend the LTL to finite behavior. In 
Ref.[3] semantic interpretations of LTL formulas given by weak and strong semantics that differ on finite behaviors. 
In contrast to above segregation the semantical interpretation of LTL that treats finite and infinite behaviors 
uniformly is expounded in Ref.[2]. The proposed solution in Ref.[2] is based on prefix-closed sets of finite and 
infinite behaviors by providing an intuitionistic linear-time temporal logic (ILTL), the intuitionistic variant of LTL. 
Wolper in Ref.[4] illustrated that some properties are not expressible in LTL, while fixed point treatment discussed 
in Ref.[5] with an idea that expressive power beyond LTL is necessary. The linear time µ-calculus (µTL) is an 
extension of standard linear time temporal logic (LTL) by fixed point operators[6] with increased expressibility, and 
the µTL is more elegant than Wolper’s extended temporal logic ETL[4,7] as requiring only single nexttime temporal 
operator, while ETL requires infinite family of operators[8].  

The fixed point intervention by extending TL with maximal and minimal fixed point quantifiers, originally 
advocated by Emerson and Clarke and then by Baringger et al.[6], as was done for dynamic logic in Ref.[9] yielding 
µ-calculus. The propositional µ-calculus is a powerful language for expressing properties of transition systems by 
using least and greatest fixed points operators[10]. From a theoretical perspective, the status of µ-calculus as the 
canonical temporal logic for regular requirements is due to the fact that its expressiveness exceeds that of all 
commonly used temporal logics such as LTL, CTL, and CTL*[11], while equals that of alternating parity tree 
automata or the bisimulator-closed fragment of monadic second-order theory over trees[12,13]. On the other hand, 
from a practical standpoint, iterative computation of fixpoints naturally suggests symbolic evaluation, and symbolic 
model checker such as SMV checks CTL properties of finite-state models by compiling them into µ-calculus 
formulas[14,15]. As mentioned earlier the temporal logic LTL is built around nexttime(X) and until(U) operators.  

Motivation: The intuitionistic nature of ILTL comes in handy when doing assume-guarantee reasoning, 
because special temporal operator that have been introduced to reason about assume-guarantee specifications are 
definable through the intuitionistic implication[2], while our intuitive motivation is the more expressiveness of µTL 
than the LTL[11]. We propose a variant of µ-calculus in intuitionistic domain as intuitionistic linear-time µ-calculus 
(IµTL). To express the concurrent system properties like safety and liveness characterized through IµTL in order to 
chalk out these properties in the underlying Heyting algebra, and to specify that a few properties couldn’t be 
specified in previously presented intuitionistic logic ILTL. Thus, we express properties in a new characterization for 
properties presentation and their segregation through simultaneous behaviors of finite and infinite nature. In our 
treatment we provide semantics interpretation of linear-time µ-calculus (µTL) in intuitionistic domain. The 
proposed intuitionistic linear-time µ-calculus as a variant of µTL encompasses ILTL. We establish a correspondence 
between ILTL and that of IµTL in order to maintain deducibility of ILTL from I IµTL. We also demonstrate the 
assumption-guarantee specifications specified in IµTL. 

Plan: In Section 2, some preliminaries for notations and definitions are given. Section 3 constitutes of the 
definition of linear-time µ-calculus, and the semantic definitions in classical and intuitionistic logics. The 
expressive powers of µ TL and IµTL in Boolean and Heyting algebras and the correspondence between IµTL and 
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that of ILTL are the contents of Section 4. Section 5 consists of definitions of safety and liveness properties in the 
classical and intuitionistic domains, and an example of safety property in the proposed IµTL is treated, while 
Section 6 deals with discussion over assumption-guarantee specifications with respect to IµTL. The conclusion 
regarding intuitionistic linear-time µ-calculus is outlined in the last Section 7.  

2   Preliminaries 

During the course of development of the problem and its synthesis we will use various notations and 
definitions, the most of them are defined in this section. The non-empty set of the atomic propositions is taken  

as { , , ,...}AP p q r=  with its power set as 2 , { , , ,...}AP a b cΣ = a set of alphabets, and ∑∞ is a set of all non-empty  

words over ∑. The set ∑∞ is further bifurcated into ∑* and ∑ω as the sets of finite length and infinite length words  
respectively. We have ∑r as a set of all sets containing r i.e. { 2 | }AP

r rξ ξΣ = ∈ ∈ . A behavior is taken as a word in 

∑∞. The power set of ∑∞ is designated as P(∑∞), and this constitutes a power set lattice ( ) ( ), ,P∞ ∞Σ = 〈 Σ ∩ ∪〉P  with 
order ⊆. We designate the elements of this power set lattice P(∑∞) as languages or properties. We have a closure 
operator Cl for the mapping of the power set P(∑∞) to itself as : ( ) ( )lC P P∞ ∞Σ → Σ , which is characterized by the 
properties of inflationary, idempotent, and monotonicity, i.e. for all L1,L2 and L∈∑∞, then ( ), ( ( ))l l lL C L C C L⊆  
=Cl(L) and if L1⊆L2 implies Cl(L1)⊆Cl(L2) respectively. In addition to above properties the closure operator 
Cl on ∑∞ is distributive over finite joins i.e. Cl(∅)=∅ and for all 1 2 1 2, , ( )lL L C L L∞⊆ Σ ∪ = 1 2( ) ( )l lC L C L∪ , then 
the closure operator Cl will be a topological closure operator on ∑∞. 

In order to chalk out an infinite behavior in some language L∈∑∞ we have a function : ( ) ( )Bf P P∞ ∞Σ → Σ  

which maps the language L such as ( )Bf L L ω= ∩ Σ that is a set of infinite behaviors in L. Since mapping fB preserves 
infinite joins and meets, and hence it is an endomorphism over the complete lattice P(∑∞). The range of the function 
fB is denoted as RB, and is defined as { ( ) | } ( )B BR f L L P ω∞= ⊆ Σ = Σ . Being an endomorphism RB induces a 
sublattice of P(∑∞), and which kept the behavior of complete lattice sets. The induced sublattice is given as 

, , , , ,B BR ωΛ = 〈 ∪ ∩ Σ − ∅〉 , which is in fact a complete Boolean algebra, where − denotes the complement of the 

language L such that { | }L Lωω ω− = ∈Σ ∉ . 
We represent ≺  as prefix order on ∑∞, for ω, u∈∑∞, if u is a prefix of ω then u ω≺ , while 

( ) { | }Hf u uω ω∞= ∈ Σ ≺ . The mapping : ( )Hf P∞ ∞Σ → Σ , maps a behavior ∑∞ to language (P(∑∞)), while we could 

extend the domain of fH, and define : ( ) ( )Hf P P∞ ∞Σ → Σ  which extends the behavior to language. By fH(L) we 
mean that ( ) ( )H L Hf L fω ω∈= ∪ . We say that language L is prefix closed iff L=fH(L), the set of prefix closed 
languages. Despite of not preserving all meets RH induces a complete sublattice of P(∑∞), which turns out to be a 
complete lattice of sets. Then , , , , ,H HRΛ ∞= 〈 ∪ ∩ ⇒ Σ ∅〉  constitutes a complete Heyting algebra, i.e. for all 

languages 1 2, HL L R∈  we have a language L∈RH known to be greatest language as 1 2{ | ( ) }HL f L Lω ω∞= ∈ Σ ∩ ⊆  
such that 1 2L L L∩ ⊆ . The language L is a relative pseudo-complement of L1 and L2 and is denoted as 1 2L L⇒ . 

3   Linear-Time µ-Calculus 

The language of µ-calculus is formulated from propositions, standard Boolean connectives, least fixed point µ, 
greatest fixed point ν, and the temporal operator nexttime ⊙. The set of formulas Ωµ of the linear time µ-calculus 
(µTL) is defined by the following convention:  

:: | |T | | | | . | . |p Z ZµΩ ψ ϕ ψ ϕ ψ µ ψ ν ψ ψ ϕ= ⊥ ∧ ∨ →⊙  

We have formulas , µϕ ψ Ω∈ , p ranges over atomic propositions, V={X,Y,Z,…} be the set of variables, µZ.ψ 

is the least fixed point for ψ and its corresponding counterpart for greatest fixed point is vZ.ψ whereas the variable 
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Z in µZ.ψ and vZ.ψ is in the scope of even number of negations. In linear-time µ-calculus we have bounded and free  
variables and the formulas with free variables are interpreted with respect to an environment : ( )V Pρ ∞→ Σ , which  
maps all free variables to ς ⊆ ∑ω. 

Closed Formulas: Variables in the µ-calculus can be either free or bounded by a fixed point operator, a 
formula is said to be closed if the formula doesn’t contain free variables.  

Positive and Guarded Formulas: A formula is positive if and only if all negations in the formula appear only 
before propositions. A µTL formula ϕ is in guarded form iff every occurrence of the bounded variable Z∈ϕs is in the 
scope of some modality operator, where ϕs is a subformula of ϕ. Every formula is equivalent to some positive 
guarded formula[16].  
 

Proposition 1. If : ( ) ( )mf P Pω ωΣ → Σ is monotonic with respect to ⊆ then fm: 

1. has a least fixed point given as the set { | ( ) }mL f L Lω
µ µ µ⊆ Σ ⊆∩  

2. has a greatest fixed point given as the set { | ( ) }mL f L Lω
ν ν ν⊆ Σ ⊇∪  

    Proof:  We shall prove 1 and leaving 2 by dual reasoning. Let { | ( ) }fp mf L f L Lω
µ µ µ= ⊆ Σ ⊆∩ , in order to  

establish Lfp is a fixed point i.e. fm(Lfp)=Lfp we suppose L∈fm(Lfp) . By definition we have L∈fm(Lµ) for every Lµ⊆∑ω 
such that fm(Lµ)⊆Lµ. Consequently, L∈Lµ for every such language Lµ, so L belongs to their intersection too. This 

means ( )m fp fpf L L= . 

Next assume fpL f∈  but L ( )m fpf L∈ , and let 1 {L}fpL L= − . By monotonicity of fm we have 1( ) ( )m m fpf L f L⊆  

but we have just shown ( )m fp fpf L f⊆ , and since L ( )m fpf L∉ . It follows that 1( )m fpf L L= . Therefore, 1 1( )mf L L⊆  

which means that 1fpL L⊆  by the definition of Lfp which is a contradiction. We have shown that Lfp is a fixed point 
of fm. 

Consider any other fixed point jfpL . Because j j( )m fp fpf L L= , it follows that j j( )m fp fpf L L⊆ , and by definition 

of Lfp we know that j j
fp fpL L⊆  which means Lfp is the least fixed point. 

Proposition 1 guarantees the existence of extreme solutions, which are least and greasiest fixed points of the 
monotonic function. 

3.1   Semantics of LTL in classical interpretation 

The semantics of the linear-time µ-calculus (µTL) formulas are inductively defined over infinite words in ∞Σ  
i.e. words belonging to ∑ω. As free variables get bounded under environment ρ, therefore, the semantical 
interpretation is formulated under that environment.  

In order to give the classical semantic interpretation of the linear-time µ-calculus we have the monotonic 
function cnext defined as ( ) .cnext L L= Σ  Let .Zλ ψ  be an explicit representation for variable dependency of the 

formula ψ in which the variable is Z in this case. Let Ord be the set of ordinals. 
The semantics of µTL formulas under that the environment ρ is given, and is defined over Boolean algebra ΛB  

by interpreting through classical interpretation function cI ρ  given as :c BI ρ
µΩ Λ→ : 
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with cmunext ρ  defined as ( . )( ) ( )
L
Z

c cmunext Z L I
ρ

ρ λ ψ ψ
⎡ ⎤
⎢ ⎥⎣ ⎦= , and for a limit ordinal n, 

[ ( . )] ( ) [ ( . )] ( )n n
c m n cmunext Z munext Zρ ρλ ψ λ ψ<∅ = ∅∪  and [ ( . )] ( ) [ ( . )] ( )n n

c m n cmunext Z munext Zρ ω ρ ωλ ψ λ ψ<Σ = Σ∩ . 

The interpretation function cI ρ  interprets the modalities over the environment : ( )V P ωρ → Σ  in which it is  

implemented. For a closed µTL formula, this interpretation corresponds to the classical meanings that the formula 
represents the set of ω-words satisfying the formula. 

3.2   Intuitionistic interpretation of semantics of LTL 

As µTL is semantically expressed in the above section on the same analogy we express the linear-time 
µ-calculus in linear intuitionistic logic, and it is designated intuitionistic linear-time µ-calculus (IµTL). The IµTL is  
defined over Heyting algebra ΛH. In this domain we have the interpretation function cI ρ  with mapping 

as :i HI ρ
µΩ Λ→ , and following corresponding interpretations: 

O

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) { | , : }

( ) ( ( ))

( ) ( )

( . ) [ ( . )] (

i

i

i i i

i i i

i i i

i i

i r r

i i i

i
n

i n rd i

I T

I

I I I

I I I

I I I

I I

I r q u qu
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I Z Z

I Z munext Z

ρ

ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ

ρ

ρ ρ

ρ

ρ ρ

ψ ϕ ψ ϕ

ψ ϕ ψ ϕ

ψ ϕ ψ ϕ

ψ ψ

ω ω

ψ ψ

ρ

µ ψ λ ψ

∞

∞ ∞ ∞

∈

= Σ

⊥ = ∅

∧ = ∩

∨ = ∪

→ = ⇒

¬ = →⊥

= Σ Σ = ∈ Σ ∃ ∈ Σ ∃ ∈ Σ =

=

=

= ∪

⊙

O

)

( . ) [ ( . )] ( )n
i n rd iI Z munext Zρ ρν ψ λ ψ ∞

∈

∅

= Σ∩

 

Intuitionistic Monotonic Functions: In establishment of intuitionistic variant of µTL for the formulation of  
intuitionistic linear-time µ-calculus (IµTL) we have corresponding functions nexti and ,imunext ρ and are given  

below: 
Intuitionistic Monotonic nexti Function: For ∑ be a set of alphabets, and nexti be a monotonic function, then 

it generates language inductively as ( )inext L L= Σ ∪ Σ  for L∈RH. In defining the language or properties we have 

∑* and ∑ω as the sets of finite and infinite length words respectively and their superset ∑∞. Therefore, the properties 
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we are taking into consideration are only for non-empty words and so the monotonic function nexti is over a 
non-empty language.  

Intuitionistic Monotonic imunext ρ  Function: In this case we have language L∈RH, and the environment 

: ( )V Pρ ∞→ Σ , the monotonic function imunext ρ  is defined as: 

( . )( ) ( )
L
Z

i imunext Z L I
ρ

ρ λ ψ ψ
⎡ ⎤
⎢ ⎥⎣ ⎦=  

Besides the difference in the semantic domains, the classical and intuitionistic semantics interpretation 
functions differ in interpreting negation, implication, and next operator. These differentiations mainly depend upon 
the interpretation of µTL over Heyting algebra while µTL is defined over Boolean algebra. Furthermore, the 
condition for positive occurrences of fixed point variables also remained in the formulas in IµTL. 

4   Expressive Power 

The sets of behaviors in different logics are compared in order to expedite the comparative expressive power of 
µTL and that of IµTL. The formulas in the µTL are interpreted over Boolean algebra ΛB, while the formulas of IµTL 
are interpreted over ΛH, the Heyting algebra. Therefore, we cannot compare them directly; rather their  
corresponding carriers may be compared. As : ( )B Bf P R∞Σ →  and : ( )H Hf P R∞Σ → , so first we will compare the  

semantics in Boolean algebra ΛB by restricting the intuitionistic semantics to infinite words through fB, and then by 
extending the classical semantics into prefixed closed set through fH for comparison in Heyting algebra ΛH. 

4.1   Expressive power in Boolean algebra ΛB 

In order to compare µTL and IµTL in Boolean algebra we would restrict the intuitionistic semantics to infinite 
word through fB. Below is a proposition which relates the formulas in negation normal form for semantics in 
Boolean and Heyting algebras. Before presenting and proving the proposition, we have a definition and 
representative interpretation of the symbols. 

Suppose ϕ be a closed formula, then both the interpretation functions ( )cI ρ ϕ  and ( )iI ρ ϕ  in classical domain  

and in the intuitionistic domain respectively do not depend on ρ. Then we write Ic(ϕ) and Ii(ϕ) for semantics of the 
closed formulas. Furthermore, a formula is in a negation normal form (NNF) if it does not contain implication nor 
equivalence, and negation is applied only to atomic propositions. 
    Proposition 2. If ψ is a closed formula in NNF then ( ) ( ( ))c B iI f Iψ ψ= . 

Proof:  For the first, since ( )Bf L L ω= ∩ Σ preserves arbitrary joins and meets, we have ( ) ( ( ))B i i i B if L f L=∪ ∪  
and ( ) ( ( ))B i i i B if L f L=∩ ∩ . For the second, we define fB(ρ) by ( )( ) ( ( ))B Bf Z f Zρ ρ=  (an overloading of the symbol fB 
for related meaning). Then an environment ρ in the intuitionistic domain corresponds to an environment fB(ρ)in 
classical domain. We prove a more general statement ( ) ( ) ( ( ))Bf

c B iI f Iρ ρψ ψ=  by induction on ψ. 

• The base cases are obvious i.e. for the constant ⊥ and T , atomic propositions and negated atomic 
proposition. 

• Conjunction and disjunction are straightforward since fB distributes over intersection and union. 
• For all L∈RH 

( ( )) ( ) ( ) ( ( ))c B B B B inext f L f L f L f next L= Σ = Σ ∪ Σ =  

Therefore, for the next operator ⊙  we have 



 

 

 

3128 Journal of Software 软件学报 Vol.19, No.12, December 2008 

( ) (( ( )))

( ( ( )))

( ( ( )))

( ( ( )))

c c c

c B i

B i i

B i

I next I

next f I

f next I

f I

ρ ρ

ρ

ρ

ρ

ψ ψ

ψ

ψ

ψ

=

=

=

=

⊙

⊙

 

•  For all L∈RB we have 
( )

( ) ( . )( ( )) ( ) ( )

( . )( ) ( )

f LB BB ZB

Lff Zf
c B c c
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The Proposition 2 reflects that the IµTL is as least expressive as µTL, since every formula in the classical 
interpretation corresponds to formula in NNF, and the deducibility of formula in prefixed closed set is completely 
expressible in the µTL domain of infinite behavior. 

4.2   Correspondence between ILTL and ILTL 

The interpretational algebra of both ILTL and IµTL logics is Heyting algebra ΛH and their relative 
correspondence could be established through their modalities e.g. we have ϕUψ which is interpreted in ILTL 
through Modi(ϕUψ), while this modality could be expressed in fixed points of IµTL. The intuitionistic interpretation 
function Modi for modality ϕUψ is given in Ref.[2]: 

( ) [ ( ), ( )] ( )n
i n i i iMod U  untilnext Mod Modωϕ ψ ϕ ψ<= ∅∪  

and the monotonic function 1 2[ , ]iuntilnext L L  (with parameters 1 2, HL L R∈ ) is defined as: 

1 2 2 1[ , ] ( ) ( ( ))i iuntilnext l L L L L next L= ∪ ∩ . 

Let ϕ be an LTL formula, and we define g(ϕ)as follows: 
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) .( ( ) ( ( ) ))

g p p
g p p
g g g
g g g
g X g
g U Z g g Z

ϕ ψ ϕ ψ
ϕ ψ ϕ ψ

ψ ψ
ϕ ψ µ ψ ϕ

=
− = −

∧ = ∧
∨ = ∨

=
= ∨ ∧
⊙

⊙

 

Proposition 3. Let ϕ be an LTL formula, then ( ) ( ( ))i iMod I gρϕ ϕ= for any ρ. 
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Proof:  This proposition can be proved by induction on ϕ. We only discuss the case of ϕUψ, the other cases 
are trivial. For the first, we obtain that [ .( ( ) ( ( ) ))]( ) ( ( )) ( ( ( )) ( ))i i i imunext Z g g Z L I g I g next Lρ ρ ρλ ψ ϕ ψ ϕ∨ ∧ = ∪ ∩⊙ . 

[ ( ), ( )] ( ) ( ) ( ( ) ( ))i i i i i iuntilnext Mod Mod L Mod Mod next Lϕ ψ ψ ϕ= ∪ ∩ . 

Therefore 

[ ( ), ( )] ( ) [ .( ( ) ( ( ) ))]( )i i i iuntilnext Mod Mod L munext Z g g Z Lρϕ ψ λ ψ ϕ= ∨ ∧⊙ . 

Since g(ψ) and g(ϕ) are closed formulas, by induction on the number of applications of untilnext we obtain 
( ) ( ( ))i iMod U I g Uρϕ ψ ϕ ψ= . 

The relative correspondence between ILTL and IµTL indicates that the ILTL is deducible from IµTL, and the 
correlation between the interpretation functions in these logics is well-established. 

4.3   Expressive power in heyting algebra ΛH  

In order to compare expressiveness of the logics µTL and IµTL in the domain of Heyting algebra ΛH of 
prefixed closed sets of behaviors we have to extend the semantics into prefix-closed sets through fH. The proposition 
below relates these domains. 

Proposition 4. There is no closed µTL formula ψ with ( ( )) ( ).H c if I Iψ = Σ = ⊥⊙  
Proof:  Let µψ Ω∈ , and ( )cI ψ = ∅  then ( ( ))H if I ψ = ∅ ≠ Σ . Otherwise there is ( )cIω ψ∈ , so ( ( ))H cf I ψ ≠ Σ  

because ( ( ))H cf Iω ψ∈  and .ωω ∈ Σ  

This reflects IµTL is more expressive than its counterpart in the classical domain i.e. µTL. 

5   Safety and Liveness in Classical and Intuitionistic Domain 

The safety and liveness properties are the most fundamental properties of reactive systems, and characterized 
by elimination of bad happening and eventuality of good happening respectively. In the classical domain Alpern and 
Schneider[17] give topological characterization in which safety properties are closed sets and liveness properties are 
dense sets. The topological characterization has been extended by various researchers e.g. Gumm presented the 
notion of safety and liveness in the more abstract setting of Boolean algebras[18]. We have safety and liveness in 
terms of topology on ∑ω for ∑ be a finite, the properties constitute a topology known as Cantor topology on ∑ω.  
This topology is induced by the topological closure operator Clc on ∑ω. The closure operator : ( ) ( )cCl P Pω ωΣ → Σ  

is defined as *( ) { | ( ) ( )}c H HCl L f f Lωω ω= ∈ Σ ∩ Σ ⊆  for all L ω⊆ Σ . We have BL R∈  as a classical safety 
property if L is closed that is Clc(L)=L and a classical liveness property if L is dense that is Clc(L)=∑ω[2]. 

The underlying algebra of IµTL is Heyting algebra ΛH. In order to express the notion of safety and liveness 
properties in ΛH, an analogous to Clc, a closure operator Cli in the intuitionistic domain is established as  

: ( ) ( )iCl P P∞ ∞Σ → Σ  by defining  *( ) { | ( ) ( )}.i H HCl L f f Lω ω∞= ∈Σ ∩ Σ ⊆  It turns out that Cli is a topological 
closure operator on ∑∞ and induces Scott topology on it if ∑ is countable. Thus, the corresponding properties in 
intuitionistic domain are defined as Cli(L)=L a safety property and ( )iCl L ∞= Σ a liveness property for L∈RH. The 

closure operator Cli is algebraically definable in ΛH as for all L∈RH, *( ) { | ( ) ( )}i H HCl L f f Lω ω∞= ∈ Σ ∩ Σ ⊆ =  
* LΣ ⇒ . Therefore, L is an intuitionistic safety property iff * L ωΣ ⇒ = Σ  iff * LΣ ⊆  iff * L LΣ ∪ = . The 

following proposition defines the generalized safety property characteristics[2]. 
Proposition 5. Let ωω ∈ Σ let 1 2, , HL L L R∈  and let L⊆RH  

1. ∑∞ is an intuitionistic safety property.  
2. ∅ is an intuitionistic safety property.  
3. fH(ω) is an intuitionistic safety property.  
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4. If L1 and L2 are intuitionistic safety properties then so is 1 2.L L∪   
5. If all LL ∈ are intuitionistic safety properties then so is LL L∈∩ .  
6. If L2 is an intuitionistic safety property then so is 1 2L L⇒ .  
7. If L is an intuitionistic safety property then so is L L− = ⇒ ∅ .  

5.1   Mutual exclusion problem as a safety property in IµTL 

In order to manifest IµTL implications, we have chosen an example regarding a trivial CSP solution to the 
mutual exclusion problem. 

1 1 1 1

2 2 1 2

: *[ : ; ; ; ]||
: *[ : ; ; ; ]

o

o

P l C c l N c
P m N c m C c

= 〈 〉 〈 〉

= 〈 〉 〈 〉
 

with C1 and C2 are the critical sections for the processes P1 and P2 respectively. The mutual exclusion property in 
this case is a safety property which requires 1oat l at m∧ never holds. The solution proposed in Ref.[19] 

demonstrates that in P1 we may visit lo after an even number of communications, and in P2 we may visit m1 only 
after an odd number of communications. It is illustrated in Ref.[4] that this property cannot be expressed in LTL. 
These properties can be specified in µTL while by saying that lo cannot hold at odd moments instead of saying 
that at lo may hold at even moments, we have[5] 

( .( ))oZ at l Zν − ∧⊙ ⊙⊙ . 

Analogously, it is stated that at m1 does not hold at even moments, and is interpreted by the formula 

1.( )Z at m Zν − ∧⊙⊙ . 

In order to illustrate that this is an intuitionistic safety property, we have to show that the set of traces 
represented by the formula satisfies requirements for safety property as mentioned in Proposition 5. We first prove a 
lemma as follows. 

Lemma 6. If L is an intuitionistic safety property, then ( )inext L L= Σ ∪ Σ is also a safety property. 
Proof:  Suppose that L is a safety property then Cli(L)=L. For proving Σ∪ΣL is a safety property, we need to 

prove that ( )iCl L LΣ ∪ Σ ⊆ Σ ∪ Σ . Obviously, we have ( )iL Cl LΣ ∪ Σ ⊆ Σ ∪ Σ . The remaining is to prove that 
( )iCl L LΣ ∪ Σ ⊆ Σ ∪ Σ . Let ( ).iCl Lω ∈ Σ ∪ Σ  Either ( )iClω ∈ Σ  or ( ) \ ( ).i iCl L Clω ∈ Σ Σ  In the former case, we 

have ω∈Σ In the latter case, let ω σω′= where .σ ∈Σ  Then ( ) .iCl L Lω′∈ =  Therefore, ω∈ΣL. This concludes the 

proof. 
Proposition 7. If ϕ is a closed formula and Ii(ϕ) is an intuitionistic safety property, then .( )Z Zν ϕ ∧⊙⊙ is an 

intuitionistic safety property. 

Proof:  Since ( .( )) [ ( .( ))] ( ),n
i n Ord iI Z Z munext Z Zρν ϕ λ ϕ ∞

∈∧ = ∧ Σ∩⊙⊙ ⊙⊙  according to Proposition 5, it is 

sufficient to prove that [ ( .( ))] ( )n
imunext Z Zρ λ ϕ ∞∧ Σ⊙⊙  is a safety property for all n. For n=0, we have 

[ ( .( ))] ( ) ( ) ( ( )).n
i i i imunext Z Z I next nextρ λ ϕ ϕ∞ ∞∧ Σ = ∧ Σ⊙⊙  

Since Ii(ϕ) and Σ∞ are safety properties, according to Lemma 6 and Proposition 5, [ ( .(imunext Zρ λ ϕ ∧  

))] ( )nZ ∞Σ⊙⊙  is a safety property for n=0. Assume [ ( .( ))] ( )n
imunext Z Zρ λ ϕ ∞∧ Σ⊙⊙  is a safety property for 

n=k. Let [ ( .( ))] ( ).n
iL munext Z Zρ λ ϕ ∞= ∧ Σ⊙⊙ Then 

1[ ( .( ))] ( ) [ ( .( ))]( ) ( ) ( ( )).k
i i i i imunext Z Z munext Z Z L I next next Lρ ρλ ϕ λ ϕ ϕ+ ∞∧ Σ = ∧ = ∧⊙⊙ ⊙⊙  

Since Ii(ϕ) and L are safety properties, according to Lemma 6 and Proposition 5, [ ( .(imunext Zρ λ ϕ ∧  
1))] ( )kZ + ∞Σ⊙⊙  is a safety property. This proves that [ ( .( ))] ( )n

imunext Z Zρ λ ϕ ∞∧ Σ⊙⊙  is a safety property for all  

n according to Proposition 5. 
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Clearly, the negation of a proposition represents an intuitionistic safety property. The above proposition and 
lemma illustrate that both 1.( )Z at m Zν − ∧:: and ( .( ))oZ at l Zν − ∧: :: are intuitionistic safety properties.  

6   IµTL Perspectives for Assume-Guarantee Specifications 

An assumption/guarantee specification of a system composed of an assumption part and a guarantee part, the 
former specifies the assumptions regarding environment of a system, while later specifies the properties by the 
system if the environment obeys the assumptions. If a reactive system satisfies a specification S and in an 
environment that satisfies an assumption A then this specification sometimes written as A⇒S. In a composed system 
i.e. one satisfying A⇒S while other S⇒A, this implication has some problem depicted in Ref.[20]. The solution 
proposed in Ref.[21], while this formulation is elaborated and extended in various contexts in Refs.[22−24]. By 
employing linear-temporal logic of Manna and Pnueli[25] the solution to composition has been proposed in Ref.[20] 
with aspect of formulation concerning the handling of assumption/guarantees with internal handing, which simply 
are existential quantified variables in LTL. 

In context of Heyting algebra of prefix-closed sets of finite behaviors, it has been illustrated in Ref.[23] for a  

suitable notion of concurrency an assumption/guarantee specifications ϕ ψ+⎯⎯→ corresponds to an intuitionistic 

implication ϕ ψ+⎯⎯→ . This gives rise to composition rules based on conjunction of intuitionistic implication. 

Afterwards a more general interpretation of the operator +⎯⎯→ is provided in Ref.[26]. The interpretation again can 
be reduced to intuitionistic implication. The interpretation of the operator +⎯⎯→ over Heyting algebra ΛH of 
prefix-closed set is given as for ,ϕ ψ Ωµ∈ : 

j( ) { | ( ) : ( ) ( ) ( )}i H H i iI f f I implies Iϕ ψ ω ν ω ν ϕ ν ψ+ ∞⎯⎯→ = ∈Σ ∀ ∈ ⊆ ∈  

where j( ) :H Hf Rν ∞Σ → maps behaviors to their sets of proper prefixes i.e.
k

( ) ( ) \ { }H Hf fν ν ν= . Since the 

interpretation function for ILTL deducible from the interpretation function in IµTL, therefore, A-G specifications 

are interpretable both in IµTL and ILTL. The connective +⎯⎯→  introduced in Ref.[9] has interpretation in IµTL as: 
( ) (( ) ).i iI Iϕ ψ ψ ϕ ψ+⎯⎯→ = → →  

Hence in ΛH, A-G specifications are merely short hands for intuitionistic implication. The circular dependency 
of assumption/guarantee specifications is dealt in Ref.[25], and concise soundness proofs of various proof rules 
regarding circular dependent assumption/guarantee specifications are established. The composition rules for A-G 
specs are that they essentially only admit circular dependencies on safety properties. In classical linear temporal 
logic this is dealt through decomposition theorem Ref.[2], while disallowing circular dependencies on the liveness 
parts[17,27]. Thus, a similar, decomposition theorems for intuitionistic domain are conjectured, and for ILTL given in 
Ref.[2]. In Section 4.2 a correspondence between IµTL and ILTL is established, which could be implemented when 
dealing with A-G spec. In ILTL illustration of A-G spec the specification formula is taken as a formula belonging to 
LTL.  

7   Conclusions 

IµTL, an intuitionistic variant of linear-time µ-calculus, has been presented in this paper. It is capable to 
specify set of finite and infinite behaviors simultaneously. The proposed logic IµTL also interprets ILTL, the already 
presented variant of LTL in intuitionistic domain. A correspondence has been established between these logics i.e. 
IµTL and ILTL, this shows that all properties of a system which are interpretable by ILTL are also deducible 
through proposed logic i.e. IµTL. Therefore, IµTL encompasses all the properties of the ILTL, and in addition to 
these IµTL interprets intuitionistic safety properties defined over fixed point operators. Since these properties are 
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not expressible through LTL and consequently ILTL may not express them as well. Therefore, the expressibility of 
the most fundamental properties of the reactive systems like safety and liveness properties are demonstrated in the 
intuitionistic domain and elegantly illustrated in the proposed IµTL. The assumption/guarantee specification is also 
expressed in IµTL, and since the underlying formulas in case ILTL belong to LTL which is less expressive than 
µTL. Therefore, IµTL deals with formulas which are more expressive.  
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