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Abstract:  The Cross Entropy method is a new search strategy for combinatorial optimization problems. However, 
it usually needs considerable computational time to achieve good solution quality. This paper introduces a Cross 
Entropy algorithm for solving maximum clique problem (MCP). To make the Cross Entropy algorithm faster, this 
paper proposes a leader-based cooperative parallel strategy. Unlike the widely used coarse-grained parallel strategy, 
our method has a leader, who can move around the parallel processors and collect data actively, and several 
followers whose main job are simply to sample the cliques guided by the leader via transition matrix. To evaluate 
the performance of the algorithm, this paper implements the algorithm using OpenMPI on MIMD architecture, and 
applies it on the MCP benchmark problems. The speedup and efficiency are analyzed, and the results are compared 
with those obtained by four other best heuristic algorithms. The results show that the presented method has achieved 
good performance among those best population-based heuristics. 
Key words:  Cross Entropy method; maximum clique problem; parallel implementation 

摘  要: 为了提高交叉熵算法求解最大团问题(maximum clique problem,MCP)的性能,提出一种领导者-跟随者协

作求解的并行策略来实现交叉熵算法,从而达到减少计算时间和保障解的质量这两方面的平衡.算法中领导者活跃

在并行处理器之间采集数据,并根据当前获得信息对跟随者作出决策;受控的跟随者则主要根据领导者的决策信息

自适应地调整搜索空间,完成各自的集团产生任务.采用了 OpenMPI 在 MIMD 平台上实现了该算法,并应用到 MCP
基准测试问题上.加速比和效率分析结果表明,算法具有很好的加速比和效率.而与其它几种当前最好的启发式算法

相比,结果表明算法相对于基于种群的启发式算法有一定的性能改善. 
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1   Introduction 

The Cross Entropy (CE for short) method for combinatorial optimization was proposed by Reuven Y. Rubinstein 
in 1999[1]. Comparing with the research of heuristics, CE method provides strong mathematical framework for the 
design of a problem solver. The basic idea behind the CE method is to transform the original (combinatorial or 
otherwise) optimization problem to an associated stochastic optimization problem (ASP for short), and then to 
tackle the ASP efficiently by an adaptive sampling algorithm. 

Consider the following general maximization problem: Let Z be a finite set of states, and let S be a real-valued 
performance function on Z. We wish to find the maximum of S on Z and the corresponding state(s) in which this 
maximum is attained. Let us denote the maximum by γ *. Thus  
  (1) )(max**)( zSzS

Zz∈
== γ

The starting point of the CE method is to associate the original optimization problem (1) with a meaningful 
estimation problem. Now we define a collection of indicator functions {IS(Z)≥γ} on Z for various levels γ ∈R, and let 
{ ( ; ), }f v v V⋅ ∈  be a family of (discrete) probability densities on Z. We associate problem (1) with the following 
estimation problem for a given scalar γ *: 

{ ( ) }( ( ) )u uP S Z E I S Z γγ ≥≥ =  

where is some known initial parameter, P is the probability of event S(Z) ≥ γ under , and E is the 

corresponding estimator. We consider the event “cost is high” to be the rare event S(Z) ≥ γ of interest.  To estimate 

u );( uf ⋅

this event, the CE method generates a sequence of tuples , that converge (with high probability) to a small 
neighborhood of the optimal tuple

)}ˆ,ˆ{( tt vγ
*)*,( vγ , where *γ  is the solution of problem (1) and  is a probability *v

density function that emphasizes values in Z with a high cost. 

The following is the standard CE procedure. We initialize by choosing a not very small ρ , say . 210−=ρ
And we obtain the subsequent γt and vt as follows:  

1. Adaptive updating of γt 
For a fixed , let γt be a (1−ρ)-quantile of S(Z) under . That is, γt satisfies  1−tv 1−tv

 ργ ≥≥
−

))((
1 tv ZSP

t
 (2) 
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A simple estimator  of tγ̂ tγ can be obtained by drawing a random sample Z1,...,ZN from , calculating 
the performances S(Zi) for all i, ordering them from smallest to biggest: S (1)≤.. .≤S (N ) and finally  

);( 1−⋅ tvf

evaluating the sample (1−ρ)-quantile as 
  (4) ))1((ˆ Nceilt S ργ −=

Here N is acting like the population size in terms of traditional heuristics. 
2. Adaptive updating of vt 
For a fixed tγ  and , derive vt from the solution of the following CE program 1−tv

  (5) );(ln),;(max 1})({1
vZfvuZWIE tZSvv tt −≥− γ

where W(Z;u,v) is defined as the likelihood ration at Z between and . );( uf ⋅ );( vf ⋅
The stochastic counterpart of (5) is as follows: for a fixed  and , derive  from the solution of the  tγ̂ 1ˆ −tv tv̂

following program 
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As described above, the general CE framework depends on large amount simulation, which is very time 
consuming, especially on large scale problems. We refer readers to Ref.[2] for the detailed description of CE 
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method. 
Although, parallelization is one of the most promising ways to enhance the performance of CE algorithm, the 

general available parallel strategy is not well suited for CE algorithm due to the heavy communication cost. So in 
this paper, we design and implement a leader-based parallel strategy for tackling maximum clique problem. We call 
our algorithm MPICE-LS. MPICE stands for that we implement our CE algorithm using MPI, a parallel 
implementation on MIMD architecture. And LS means that we enhance our algorithm by a simple local search. 

The rest of the paper is organized as follows. The maximum clique problem is introduced in Section 2, and the 
MPICE-LS algorithm is then proposed in Section 3. Experimental results and comparison are presented in Section 
4. We finally conclude our paper in Section 5.  

2   Problem Statement 

The maximum clique problem (MCP) is a classical combinatorial optimization problem which is one of the 
first problems proved to be NP-complete[3]. Because of computational intractability, it has been extensively studied. 
Besides its theoretical value, MCP finds a lot of important applications in different fields, such as, Coding theory, 
Fault Diagnosis, Information Retrieval, Computer Vision and so on[4]. More recently, MCP can be found to be 
applied in bioinformatics[5,6]. 

For a given undirected graph, let G=(V,E) be an arbitrary undirected graph, V={1,2,...,n} its vertex set or nodes 
set, and E⊆V V its edge set. A clique of a graph G is a set of pairwise adjacent nodes. A maximal clique is a clique 
which is not a proper subset of any other clique. A maximum clique is a clique with maximal cardinality. The 
maximum clique problem is to find a clique with maximal cardinality in a given graph, which can be formulated by 

×

 VCCG ∈= |:|max)(ω   (7) 
where C is a clique, and )(Gω  is the cardinality of the maximum clique. 

Due to the inherent difficulty and importance of the MCP, several valuable attempts have been made to solve 
the MCP, especially with heuristics. Since there is no sound theory about how and why heuristics work, the 
comparison of the performances of different heuristics is mainly based on extensive experiments. A set of 
benchmark graphs from different applications have been collected for this purpose, available at Ref.[7]. Although 
quite a lot of algorithms have been proposed for the MCP, and most algorithms have been empirically evaluated on 
benchmark instances from the Second DIMACS Challenge[7], there is no single best algorithm based on the recent 
literature reports. Nevertheless, Reactive Local Search[8] (RLS), QUALEX-MS[9], Deep Adaptive Greedy Search[10], 
the k-opt algorithm[11], Edge-AC+LS[12] and Dynamic Local search[13] are state-of-the-art algorithms. GLS[14], 
Edge-AC+LS[12] and EA/G[15] are the best population-based algorithms known. 

3   The Design of MPICE-LS 

3.1   Applying CE to MCP 

We denote the solution by a sequence of vertexes, and use a 2-dimension float array to serve as the transition  
matrix. We need to supply the following two essential ingredients for solving MCP: 

y to specify how the samples of candidate cliques are generated. 
y to calculate the parameters according to the updating rules, based on cross-entropy minimization, so  

 that the candidate cliques sampled in the future generations will tend to get higher quality. 
3.1.1   Sampling strategy 

We use the following sampling method in this paper: 
1. Initialize the i-th row of transition matrix P with pij=1/deg(i), if j is adjacent to i; else pij=0. Here  
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deg(i) is the degree of vertex i. 
2. Generate the head Z0 vertex in a solution according to some heuristic information based on i, which  

indicates the probability of the i-th vertex being selected as the first vertex in the solution. 
3. Generate Zi+1 according to the distribution formed by the last selected row of P. 
4. Proceed with the trajectory generation through the nodes Z1,…,Zt till one node, say node Zt+1 is reached,  

which does not belong to the clique. 
5. Deliver the clique value S(Z)=t. 

3.1.2   Updating parameter 
We need updating the transition parameter matrix adaptively based on the generated samples. For the MCP  

problem, we have 

   (8) ∑∑
=

∈=
n

r ji
ijrZz pIpzf

ji
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,

where )(~
, rZ ji is the set of all paths from node i to j at the r-th row of the transition matrix. Using Lagrange 

multipliers, we obtain the corresponding estimator. As estimator is only useful for generating candidates, we can 
simplify the estimator as follows: 
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Considering that using the above parameter updating method may bring the 0-1 extreme problem[1,2], we use a 
smoothed updating procedure instead of updating the parameter vector directly. 
   (10) 1ˆ)1(ˆˆ −−+= ttt vwv αα
where  is obtained from the updating equation (9). tŵ

3.2   Parallel CE for MCP 

Our parallel strategy aims directly to reduce each iteration’s execution time by sharing the load among the 
processors. Assume that we have r parallel processors, we can speedup the algorithm by a factor of approximate r 
by assigning each processor to produce N/r cliques instead of N cliques. 

As far as we know, few references can be found about parallel implementations of CE at this time. And work 
that have been done in related study fields like GA[16] and ACO[17], are related to message passing MIMD 
architectures[18]. Ram et al. proposed a parallel SA algorithm combined with GA[19]. That paper shows that there 
exists a communication latency, which can not be ignored. Bullnheimer et al. proposed a synchronous parallel 
implementation of the Ant System for the message passing model[20]. Those authors outlined the considerable cost 
of communications encountered and the existence of synchronization procedure that cannot be neglected. In CE 
method, an even higher number of the communication operations are needed, which may result in a considerable 
loss in efficiency. 

Using the above parallel strategy, we would expect that the parallel algorithm converges much faster. But 
compared with its sequential counterpart, the parallel algorithm might give poorer quality of solutions, as the 
parallel executive objects search in a smaller search space. So taking solutions’ quality into account, the parallel 
strategy may not be very helpful. And if we collect all the generated samples, the communication cost would be 
terribly heavy on distributed system. In order to overcome such drawbacks, we use the following leader-based 
cooperation strategy. 
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3.2.1   Sharing the load between processors 
In CE method, the cliques’ generation step takes most of the computing time. Initially, the r processors run CE 

algorithm using the same parameter, and then each processor generates N/r cliques of the corresponding sequential 
version. After all the processors having finished generating cliques, the leader processor collects the follower’s best 
cliques and uses them for updating parameter. Using OpenMPI[21], the generation of cliques can be easily shared by 
different processors. However, when collecting the follower’s best cliques, we design a synchronized collecting 
function using MPI_Send and MPI_Receive. The best clique is collected using MPI_Allreduce with some 
user-defined data structures. 
3.2.2   Updating the parameter concurrently 

The most important parameters that are used by the CE method are the transition matrix P and γt. The 
parameter γt is computed at the leader node, and then is distributed to the followers. All the nodes update the local 
transition matrix according to the received γt. In this way, the leader node knows all the global best cliques 
information, and can update the transition matrix based on all the best generated cliques. And in the next iteration, it 
can generate cliques in a more free way. For the follower’s part, the follower only knows the cliques generated by 
its own, and has to drop some cliques according to γt. The follower can only update the local transition matrix based 
on some local best cliques. 

3.3   Local search for MCP 

Basically, local search searches for a locally optimal solution in the neighborhood of a given constructed 
solution. Using a local search method to enhance the population based algorithm is a useful technique in literature. 
And in fact, the best-performing population-based algorithms are basically hybrid ones by combining with specific 
local search method. There are quite a lot of local search methods that can be used. But we should search for a 
proper tradeoff between the result’s quality and the performance. Taking account of the fact that the sampling 
procedure of CE method is very time consuming, we adopt the local search from Ref.[14], with the looping cycle 
removed due to the speed consideration. The local search procedure is listed in the following: 

y Firstly, we try to find any possible vertexes missing from the solution. If any, just add to the solution. 
y Then, we try to perturb the solution by a (2-1)-exchange, that is to find two adjacent vertexes, which do 

not belong to the current clique, to replace a vertex in the current clique. 
The method is both efficient enough and practical enough for the very large scale problems. 

3.4   The outline of MPICE-LS for MCP 

Now summarizing the above descriptions, we give the outline of MPICE-LS for MCP in Algorithm 1. 
Algorithm 1 will terminate when there is no improvement of γt after predefined iterations. And cliques are 

generated by Algorithm 2. Please note that in Algorithm 2, in order to get better population quality and give more 
chance to escape from local minima, we introduce the local search at the end of the sampling procedure. As for 
parameter updating, we follow the general CE approach. 

4   Experimental Results 

Our goal of the experimental study is to evaluate the performance of the parallelization strategy in terms of 
computational effort and solution quality, as well as to compare with some of the best heuristics in literature. 

The MPICE-LS algorithm has been implemented with an object-oriented high-level language(C++) and tested 
on all problem instances from the Second DIMACS Implementation Challenge (1992~1993)[7], which have also 
been used extensively for benchmarking purposes in the recent literature on MCP algorithms. All experiments for 
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this paper were performed on a 4-processor IBM p550 system; each processor has two cores, which means we can 
think the parallel architecture as an 8-processor SMP platform. 

Algorithm 1.  MPICE-LS for MCP 
InitProgram 
While Termination condition not met do 

All processors generate N/r cliques 
{  

Clique-Sampling 
Sort Samples 

} 
MPI_Allreduce(best-clique) 
If node is leader then 

notify the follower to send some cliques 
start receiving the followers' top best cliques 

Else 
Wait for send signal 
send top best cliques 

End if 
If node is leader then 

Compute gamma based on sorted samples 
Distribute gamma 

Else 
receive gamma 

End if 
Parameter-Updating 

End while 
 

Algorithm 2.  Clique-Sampling 
num=0, Population=0 
While num<n do 

C=φ 
∀i=1,…,n, set Ui=1 
Choose a head vertex i according to heuristic 

information H(i) 
∀j such that aij=0, set Uj=0 
k=i 
While |U|>0 do 

C=C∪{k} 
Choose a vertex k according to Pk−1 
∀j such that aij=0, set Uj=0 

End while 
Apply the local search 
Population=Population∪{C} 
num=num+1 

End while 

In the following tests, we set the population size N=n2, where n is the vertex number of the test problem. 

4.1   Speedup and efficiency results 

Tables 1, 2 and 3 show the different performance aspects of our parallel implementation on 1, 2, 4 and 8 
processors. Brock200_2, Brock400_2 and Brock800_2 instances are selected as target problems. 

Table 1  Results on Brock200_2 problem 
CPUS Time (s) Speedup Efficiency

1 2.206 − − 
2 1.106 1.996 0.998 
4 0.638 3.457 0.864 
8 0.323 6.829 0.854 

 
Table 2  Results on Brock400_2 problem 
CPUS Time (s) Speedup Efficiency

1 27.219 − − 
2 14.806 1.838 0.919 
4 8.623 3.156 0.789 
8 4.692 5.801 0.725 

 
Table 1 (the time column indicates the time used in each iteration) shows that we get speedups of 1.996, 3.457 

and 6.829 on 2, 4 and 8 processors correspondingly, and the efficiency are 0.998, 0.864 and 0.854 respectively. 
From the data we can know that the efficiency on multiple processors is affected by the communication latency. 

Table 2 shows that we get speedups of 1.838, 3.156 and 5.801 on 2, 4 and 8 processors correspondingly and the 
efficiency are 0.919, 0.789 and 0.725 respectively. Compared with Table 1, we get no better results. This indicates 
that communication latency is bigger on medium size problem. 
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Table 3  Results on Brock800_2 Problem 
CPUS Time (s) Speedup Efficiency

1 164.754 − − 
2 86.956 1.895 0.947 
4 50.746 3.247 0.812 
8 25.318 6.507 0.813 

 
Table 3 shows that we get speedups of 1.895, 3.247 and 6.507 on 2, 4 and 8 processors correspondingly and the 

efficiency are 0.947, 0.812 and 0.813 respectively. Compared with Table 2, we get better results on all columns. 
This indicates that communication latency in larger scale problem is less important compared to medium size 
problem, although the communication latency is even bigger. 

4.2   Comparative results 

As our algorithm acts much like population-based algorithms, we choose three recent and best performing 
population-based algorithms, which are GLS, Edge-AC+LS and EA/G as our compared targets. And we also take 
RLS, which is a LocalSearch-based heuristic, as our compared target, because it has been considered as 
state-of-the-art algorithm for MCP. 

We take the target results from the corresponding published papers. We list the comparative results only on 25 
classical problem instances because those are the maximum common results published by all those papers. For our 
algorithm, the average results are from not less than 10 independent runs. And in each run, our algorithm terminates 
before 5 (|C| −γ 0) iterations, where γ 0 equals the (1−ρ)-quantile of the initial population. The compared results are 
shown in Table 4, where br column stands for the best record for the corresponding problem instance. 

Table 4  MPICE-LS results compared with other algorithms 
Graph  MPICE-LS GLS Edge-AC+LS EA/G RLS 

 br Avg.   Best Avg.    Best Avg.    Best Avg.     Best Avg.    Best 
DSJC500.5 13  13      13  12 .2     13   13       13  13       13   13      13 

DSJC1000.5 15  14.5    15  13.5     14   14.3      15  14.5      15   15      15 
C2000.5 16  15.7    16  14.2     15   15.3      16  14.9      16   1 6      1 6 
C4000.5 18  16.7    17  15 .6     16   16.8     18  16.1      17   1 8      1 8 

MANN_a27 126  126    126  126     126   126     126  126     126   126    126 
Brock200_2 12  12     12  12      12   12       12  12       12   12      12 
Brock200_4 17  17      17  15.7     17   16.8      17  16.5      17   17      17 
Brock400_2 29  28.6    29  23 .2     25   24.8     25  24.7     25   26.063   29 
Brock400_4 33  33     33  23.6     25   27.1      33  25.1      33   32.423   33 
Brock800_2 21  21.4    24  19.3     20   20.1     24  20.1     21   2 1     2 1 
Brock800_4 21  22.5    26  1 9      2 0   2 0      2 6  19.9     21   2 1     2 1 

Hamming8-4 16  16     16  16      16   16       16  16       16   16      16 
Hamming10-4 40  38.8    40  38.2     40   39.3     40  39.8      40   4 0      4 0 

Keller4 11  11      11  11      11   11       11  11       11   11      11 
Keller5 27  27     27  26.3     27   27       27  26.9      27   27      27 
Keller6 59  58     59  52.7     56   55.1      57  53.4      56   59      59 

P_hat300-1 8  8       8  8       8   8        8  8        8   8        8 
P_hat300-2 25  25     25  25      25   25       25  25       25   25      25 
P_hat300-3 36  36     36  35.1     36   36       36  36       36   36      36 
P_hat700-1 11  11      11  9 .9      11   11       11  11       11   11      11 
P_hat700-2 44  44     44  43.6     44   44       44  44       44   44      44 
P_hat700-3 62  62     62  61.8     62   62       62  62       62   62      62 

P_hat1500-1 12  11.1    12  10 .8     12   11.1      12  11.1      12   1 2      1 2 
P_hat1500-2 65  64.6    65  63 .9     65   65       65  65       65   6 5      6 5 
P_hat1500-3 94  93.2    94  9 3      9 4   94       94 93.7     94   94      94 

 
Considering the best results found, MPICE-LS is competitive with GLS, EA/G, Edge-AC+LS and RLS. 

MPICE-LS is able to find better solutions than GLS on 8 instances of all 25 test problems; and better solutions than 
Edge-AC+LS on 2 instances; and better solutions than EA/G on 4 instances; and better solutions than RLS on 2 
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instances. It only get 1 worse solution on C4000.5 instances than Edge-AC+LS and RLS. Please note that 
MPICE-LS outperforms on problem instances Brock800_2/4. 

On the average, MPICE-LS is even more competitive with GLS, EA/G and Edge-AC+LS. MPICE-LS gets 19 
better solutions than GLS, and no worse than GLS. For Edge-AC+LS, MPICE-LS gets 8 better solutions and only 4 
worse solutions. Compared with EA/G, MPICE-LS gets 9 better solutions and 3 worse solutions. Compared with 
RLS, MPICE-LS gets 4 better solutions and 8 worse solutions. 

For those uncommented instances, all the comparative algorithms behave almost equally well. 

5   Conclusions 

In this paper, we propose a leader-based parallelization approach to a CE algorithm for solving the MCP. We 
design and implement the parallel algorithm on an MIMD architecture using OpenMPI. We also enhance the general 
approach by adopting the simple and fast local search, in order to enhance the convergence speed and give more 
chance to escape from the local minimum. The key contribution of the leader-based parallel strategy is to create a 
leader who actively moves around the parallel processors to collect what should be collected. In this way 
communication between processors can be reduced to a minimum, and the load of processors can be shared as 
balanced as possible. 

Our method is comparatively evaluated with 25 selected benchmark problems from DIMACS. Overall result 
shows that our parallel implementation for the MCP leads to significant speedups, though not as we had expected. 
The efficiency obtained is rather convincing, and the efficiency degradation is normal as expected. The results 
obtained are compared with those obtained by four other best heuristic algorithms, GLS, Edge-AC+LS, EA/G and 
RLS. It is shown that the MPICE-LS algorithm works better than other 3 population-based heuristics: GLS, 
Edge-AC+LS and EA/G, in terms of the best solution found and the average solution quality. And it is also 
competitive with the trajectory-based heuristic: RLS. On two problem instances, it even gets better results than 
RLS. 

However, for MPICE-LS there still are some issues which should be improved, such as how to improve the 
solution quality with smaller cliques and so on. We intend to modify and improve the leader based parallel strategy, 
and apply it to other combinatorial problems in heterogeneous environment. 

Acknowledgement  With the free submission permission from the Association for Computing Machinery, this 
paper is the revised version of the paper published on the 2007 Genetic and Evolutionary Computation Conference 
(GECCO’07) Late Break Paper section. The authors want to send great thanks to the reviewers from both 
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