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Abstract:   In order to enhance the search results of keyword search in relational databases, semantic relationship 
among relations and tuples is employed and a semantic ranking function is proposed. In addition to considering 
current ranking principles, the proposed semantic ranking function provides new metrics to measure query 
relevance. Based on it, two Top-k search algorithms BA (blocking algorithm) and EBA (early-stopping blocking 
algorithm) are presented. EBA improves BA by providing a filtering threshold to terminate iterations as early as 
possible. Finally, experimental results show the semantic ranking function guarantees a search result with high 
precision and recall, and the proposed BA and EBA algorithms improve query performance of existing approaches. 
Key words:  Top-K; keyword search; relational databases; information retrieval; semantic similarity 

摘  要: 为了增强关系数据库中的关键字搜索查询结果,考虑了多表之间以及元组之间的语义关系,提出了一种

语义评分函数.该语义评分函数不仅涵盖了当前的评分思想,并且加入新指标来衡量查询结果与查询关键字之间的

相关性.基于该评分函数,提出两种以数据块为处理单位的 Top-K 搜索算法,分别为 BA(blocking algorithm)算法和

EBA(early-stopping blocking algorithm)算法.EBA 在 BA 基础上引入了过滤域值,以便尽早终止算法的迭代次数.最
后实验结果显示语义评分函数保证了搜索结果的高查准率和查全率,所提出的 BA 算法和 EBA 算法改善了现有方

法的查询性能. 
关键词: Top-K;关键字搜索;关系数据库;信息检索;语义相似度 
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1   Introduction 

Integration of IR and database technologies has been a hot research topic. One of the driving forces is the fact 
that more and more data is stored in relational databases[1,2]. Two advantages for integrating keyword search into 
relational databases are users need to neither understand the underlying database schemas and structures in advance 
nor complex query languages like SQL. Instead, users are only required to submit a list of keywords, and search 
engines will return ranked answers based on their relevance to query keywords. 

However, due to the inherit nature of relational databases, information retrieval (IR) techniques in text 
databases cannot be straightforwardly applied to relational databases (DBs). Figure 1 shows an example of four 
relations: author, writes, paper, and cites. Relations are related with each other through reference constraints. For 
instance, cites→paper represents two foreign key constraints cites[Cited]⊆paper[Pid] and cites[Citing]⊆ 
paper[Pid]. 
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Fig.1  An example of tables in conference domain 

Table 1 lists examples of three keyword queries and their results. Query Qry1 contains two keywords “John” 
and “Tom.” Assume the search engine returns three results R11, R12, and R13 to answer Qry1. R11 is a tuple containing 
one of the keyword “John,” and R12 is a tuple containing another keyword “Tom.” Whereas, R13 is a tuple tree[3], in 
which tuples are related with each other through reference constraints and the non-free tuples cover all the query 
keywords (“John” and “Tom”). The size of the tuple tree R13 is the number of tuples in R13, i.e. |R13|=5. R11 and R12 
can be regarded as tuple trees such that |R11|=|R12|=1. 

1.1   Drawbacks of current ranking functions 

Ranking functions and search algorithms are two core aspects in IR technologies. Current ranking functions in 
relational databases can be classified into two categories: tuple tree size based ranking function and IR-style 
relevance ranking function. Tuple tree size based ranking function[3−6] is a simple and straightforward ranking 
measurement, which roughly considers inverse proportion between the size of a tuple tree and the score that tuple 
tree gets. IR-style relevance ranking function[1,3,5,7] makes further exploration and incorporates into DB’s ranking 
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field the relevance-ranking strategies developed by IR community over the years. Specifically, it treats each 
attribute text as a document, all attribute texts in a database as the document collection, and leverage state-of-the-art 
IR ranking functionality[8] to compute a tuple tree’s relevance to query keywords. 

Table 1  Keyword search instances and their search results 

Queries Results Size of results 
 R11: author.t2 1 

Qry1: {John, Tom} R12: author.t4 1 
 R13: author.t2 ← writes.t3→ paper.t2 ← writes.t5→ author.t4 5 
 R21: paper.t1 1 
Qry2: {XML} R22: paper.t3 1 

 R23: paper.t4 1 
 R31: author.t1  1 

 R32: author.t2 1 
Qry3: {Jane, John} R33: author.t3 1 

 R34: author.t1 ← writes.t1→ paper.t1 ← writes.t6 → author.t2 5 
 R35: author.t3 ← writes.t4→ paper.t2 ← writes.t3 → author.t2 5 

 
Current search algorithms can also be classified to two categories: Candidate Networks (CN)-based search 

algorithm[1,3,4,6,7] and graph-based algorithm[5,11,12]. Both of the two types of algorithms start from tuples that 
contains partial or all keywords, discover shortest paths that could connect those tuples according to database 
schemas or pre-created data models, and finally return ranked joining networks of tuples (tuple trees) as answers. 

However, the existing keywords search approaches[1,3,4,6,7,13−15] cannot capture semantic relevant to the query 
due to overlooking the following two cases. 

Case (1) Indirect containment of query keywords. For instance, consider the query Qry2 in Table 1. Tuple trees 
paper.t1, paper.t3, and paper.t4 are returned as query answers because at least one of their respective attribute text 
contains query keyword “XML.” The tuple paper.t5 is not an answer since none of its attribute text contains 
“XML.” However, relation cites in Fig.1 shows that paper paper.t5 (with Pid=p5) is cited by paper.t1 (with Pid=p1), 
paper.t3 (with Pid=p3), and paper.t4 (with Pid=p4), which means there is a high probability that the topic of paper.t5 
is related to Qry2. Fig.2(a) shows the indirect containment relationship between paper.t5 and {paper.t1, paper.t3, 
paper.t4}, which describes the semantic correlation between paper.t5 and the query Qry2. 

p.t5

p.t1 p.t3 p.t4

c.t1 c.t4 c.t5

 

p.t2

a.t2 a.t3 a.t4

w.t3 w.t4 w.t5

 

p.t1

a.t1 a.t2

w.t1 w.t6

 
(a) Indirect containing Qry2 (b) R35 partially matches an answer to Qry3 (c) R34 completely matches an answer to Qry3 

Fig.2  Semantic relevance (p stands for relation paper, c for cites, w for writes, and a for author in Fig.1) 

Case (2) Semantic correlation. The existing approaches do not distinguish the difference between partial 
matching and complete matching among non-free tuples. For example, consider the query Qry3 in Table 1. The tuple 
trees R34 and R35 have the same size and contain both the query keyword {Jane, John}. Using the existing ranking 
function, R34 and R35 have the same scores. However, further investigation would reveal that the scores of R34 and 
R35 should be different. Figure 2(b) and (c) show the reason. The authors of paper.t2 are author.t2, author.t3, and 
author.t4 (shown in Fig.2(b)), in which, two of them construct R35 to answer query Qry3. Figure 2(c) shows authors 
of paper.t1, where all of them construct R34 to answer the query Qry3. Apparently, the score of R34 should be higher 
than the score of R35. 
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1.2   Our contributions 

In this paper, a semantic ranking function is proposed to solve the above problems. It measures semantic 
relevance between tuple trees and query keywords. In addition, two Top-k search algorithms supporting the new 
ranking function namely BA (Blocking Algorithm) and EBA (Early-Stopping Blocking Algorithm) are proposed. BA 
and EBA process data in block, minimize database probes, and perform effectively as a result. Additionally, they 
can discover not only tuple trees that actually contain query keywords but those related with query keywords in a 
less obvious fashion. EBA improves BA by providing a filtering threshold to terminate iterations as early as 
possible. Our main contributions are as follows:  

1) The concepts of semantic relevance as well as a novel ranking function to encompass this concept are 
proposed. 

2) Two efficient algorithms namely BA and EBA in support of the new ranking function are presented. 

2   Related Work 

Keyword search in structured or semi-structured data has attracted a lot attention. DBExplorer[6], 
DISCOVER1[4], BANKS[5], DISCOVER2[3], and SPARK[1] support keyword search in relational databases[7]

 and 
return ranked tuple trees as answers[9]. The former three systems require answers to cover all query keywords while 
the latter ones[1,3,7]

 support searching out answers that partially contain query keywords. Current keyword search 
algorithms can be classified into two categories: Candidate Networks (CN)-based search algorithm and graph-based 
search algorithm. BANKS models a database into a tuple graph, where nodes denote tuples and edges represent key 
and foreign key constraints in the database. Based on the tuple graph, BANKS starts from tuples that actually 
contain query keywords, carries out heuristic search, and halt until it finds out a sub-graph that can connect all 
initial tuples containing query keywords. DBExplorer, DISCOVER1, DISCOVER2, and SPARK are divided into 
two steps: (1) determine appropriate CN-based on database schemas; and (2) evaluate CNs produced in the first step 
and sort the results in a descending order according to their respective ranking function. CN-based search 
algorithms use similar methods to fulfill the first step but diverge with respect to the second step. Specifically, 
DBExplorer directly uses SQL to evaluate CNs, obtains the results and return those results in a descending order. 
However, DBMSs are required to process a huge amount of data, therefore, jeopardize search performance. 
DISCOVER1 is an improvement of DBExplorer in that it stores some temporary data to avoid repeated evaluation 
of some joining networks of relations. DISCOVER2 and SPARK use different strategies such as Top-K or skyline to 
further improve search performance. When it comes to ranking functions, DBExplorer and DISCOVER1 explore the 
structure of an answer and favor tuple trees of small size over those with a large size. BANKS measures a tuple 
tree’s relevance in terms of two aspects: the weight of each tuple member (similar to Google’s PageRank), and the 
weight of each edge member. BANKS, DBExplorer, and DISCOVER1 do not leverage state-of-the-art IR ranking 
methods. Reference [7] and DISCOVER2 use IR-style relevance ranking methods to compute relevance. 
Specifically, they treat each attribute text as a document, and each column text as a document collection, and then 
apply the classic equation tf×idf or its variants to score research results. SPARK proposes similar ranking function. 
Different from the above methods, it treats each tuple tree produced by CN as a document. Therefore, all possible 
tuple trees are regarded as a document collection. Those ranking functions share the same ground that if and only if 
a tuple actually contains some query keyword, can it be called relevant to the query keyword. Kaushik et al. in 
Ref.[15] extend the term “relevance” to another dimension: if a tuple is referenced by another which actually 
contain a query keyword, the referenced tuple is relevant to the query keyword[10]. However, they do not consider 
tuples that actually contain query keywords as relevant[10]. 
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3   Problem Definition 

Given a set of keywords Q={w1,w2,…,wn}, design a ranking function score, so that score considers not only 
tuples that actually contain keywords but also those semantically contain keywords in Q. Based on the ranking 
function score, determine k results R(Q,k). For any tuple tree T∈R(Q,k), there does not exist a tuple tree T ′ ∈R(Q,k) 
such that the score of T is less than the score of T ′ .  This paper bases on the following two assumptions: 

(1) For any keyword wi, all tuples actually containing wi can be achieved in a descending order w.r.t. a given 
ranking function score. 

(2) Tuple trees that contain partial query keywords in Q are also useful. 
Definition 1. (Directly containing query keywords) Given a tuple tree T. Let t be a tuple in T, A(t) be the set of 

attributes of t, and w be a query keyword. T directly contains the query keyword w, if for any tuple t in T, ∃ a∈A(t) 
and the value of t for attribute a, denoted t[a], contains w. 

Definition 2. (Indirectly containing query keywords) Given two tuple trees T and T ′ . Let wi be a query 
keyword. T indirectly contains the query keyword wi, if for any t′∈T ′ , ∃t∈T, such that t′→ t. 

Definition 3. (Semantic relevance) Given a tuple t and a query keyword w. The tuple t is semantically relevant 
to w, if t directly contains w or indirectly contains w. 

For the sake of simplicity, Table 2 displays notations and their descriptions used in the rest part of the paper. 

Table 2  Notations used in this paper 
Notations Descriptions 

Q = {w1, w2, …, wn} A query Q containing a set of keywords {w1, w2, …, wn} 
R(Q, k) Results to the top-k query Q 
A(t) = {a1, a2, …, am} The set of attributes of a tuple t 
scoreD(t, wi) The direct contribution ratio for a tuple t to the query keyword wi (will be discussed in Section 4.1.1) 
scoreI(t, wi) The indirect contribution ratio for a tuple t to query keyword wi (will be discussed in Section 4.1.2) 
score(t, Q) The overall contribution ratio for a tuple t to a set of query keywords {w1, w2, …, wn} 
scores(T, Q) The semantic similarity between a tuple tree T and query keywords Q 

4   Semantic Ranking Function 

Our semantic ranking function considers both cases of directly and indirectly containing query keywords, use 
direct contribution ratio and indirect contribution ratio, respectively, to quantify the relevance between a tuple t and 
a query keyword w. We show how to quantify the contribution ratios in Section 4.1 and how to compute the 
semantic correlation in Section 4.2. Based on the discussions in Section 4.1 and Section 4.2, we propose a semantic 
ranking function in Section 4.3. 

4.1   Containment relationship between query and tuples 

4.1.1   Direct contribution ratio 
Direct contribution ratio measures the degree of which that a tuple tree directly contains a set of query 

keywords. In this paper, we adopt the ranking method in DISCOVER2[5] to compute direct contribution ratio. 
Let t be a tuple, Q={w1,w2,…,wn} be a query, and A(t)={a1,a2,…,am} be the attributes of t. Let t directly 

contains a keyword w∈Q. The direct contribution ratio for an attribute value t[ai] to w is given in Eq.(1). 

 

1 ln(1 ln ) 1( [ ], ) ln( [ ])(1 )
_

D i
i

tf Nscore t a w len t a df
avg len

α α

+ + +
= ⋅

− + ×

   

(1)
 

where, tf is the frequency of w in t[ai], df is the number of tuples in ai’s relation with word w in this attribute, N is 
the total number of tuples in ai’s relation, len(t[ai]) is the size of t[ai], avg_len is the average attribute-value size, 
and α is a parameter with a range of [0, 1]. 
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Therefore, the direct contribution for t to w is given in Eq.(2). 

 ( )
( , ) ( [ ], )D D

a A t
score t w score t a w

∈

= ∑
  

 (2) 

Accordingly, the direct contribution ratio for t to the query Q is shown in Eq.(3). 

 

( , ) ( , )D D
w Q

score t Q score t w
∈

= ∑
 

   (3) 

4.1.2   Indirect contribution ratio 
Indirect contribution ratio measures the degree of which a tuple tree indirectly contains a set of query 

keywords in Q. Considering the scenario that a tuple t is referenced by other tuples directly containing the query Q. 
Tuple t is also relevant to Q. 

In order to clearly describing how t is related to other tuples using foreign-key constraints, we employ a matrix 
M. We use S(t) to represent a tuple set {t1,t2,…,th}, such that for each ti∈S(t), t[key] = ti[fkey] and ti directly contains 
query keywords in Q, where key is the key attribute of t, and fkey is the foreign key attribute of ti. 
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The row of M denotes a query Q = {w1,w2,…,wn}, the column of M denotes S(ti), and mij represents the direct 
contribution ratio for ti to wj. When ti does not directly contain wj, mij=0. 

First, consider the indirect contribution ratio for ti to a single keyword w. We obtain the indirect contribution 
ratio scoreI(ti, w) by using Eq.(5).  
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The indirect contribution ratio defined in Eq.(5) satisfies the following two properties: 
(1) Given a tuple ti and a query keyword w, the larger size of S(ti) is, the larger value of scoreI(ti, w) should 

be; 
(2) Given two tuples t1 and t2. Let 1t′  and 2t′  be tuples such that 1 1( )t S t′ ∈ and 2 2( )t S t′ ∈ . If 1( , )Dscore t w′ ≥  

2( , )Dscore t w′ , then 1 2( , ) ( , )I Iscore t w score t w≥ . 

When it comes to multi-term keyword search, Q={w1,w2,…,wn} say, the indirect contribution ratio for t to Q is 
shown in Eq.(6). 
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Lemma 1. Given a tuple t and its related tuple set S(t) = {t1, t2, …, th}. Let w be a query keyword, and Dscore  

1 2( , ) ( , ) ... ( , )D D ht w score t w score t w≥ ≥ ≥ , then ),(),( 1 wtscorewtscore DI ≤ . 
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as 0)(
2

1 ≤−⋅∑
=

h

i
ii ttt . Since )1(1 hitti ≤≤≤ , we conclude ),(),( 1 wtscorewtscore DI ≤ .       

4.1.3   Overall contribution ratio for a tuple tree to query keywords 
As mentioned before, Eq.(3) computes the direct contribution ratio for t to Q and Eq.(6) computes the indirect 

contribution ratio for t to Q. We use Eq.(7) to combine the direct and indirect contribution ratios to quantify the 
overall contribution ratio for t to Q, denoted score(t, Q). 

 

),(),()1(),( QtscoreQtscoreQtscore ID ⋅+⋅−= θθ
  

(7) 

where, θ is a coefficient to balance the two contribution ratios, θ < 0.5. When θ equals 0, we do not consider the 
indirect contribution ratio. 

Example.  Consider the query Qry2 and its results in Table 1. The direction contribution ratio for paper.t5 to 
“XML” is scoreD(paper.t5, “XML”)=0, since it does not directly contains “XML.” However, paper.t5 is cited by 
paper.t1, paper.t3, and paper.t4, which directly contain “XML,” therefore, the indirection contribution ratio for 
paper.t5 is a non-zero value. Suppose scoreD(paper.t1,“XML”) = 0.9, scoreD(paper.t3, “XML”) = 0.7, scoreD  

(paper.t4, “XML”) = 0.2, and θ=0.4, then the indirect contribution scoreI(paper.t5, “XML”) =
2.07.09.0
2.07.09.0 222

++
++

= 

0.744, and the overall contribution ratio score(paper.t5, “XML”)=(1−0.4)×0+0.4×0.74=0.296. 
The overall contribution ratio for a tuple tree T to a query Q is defined in Equation(8). 

 
∑
∈
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Tt

QtscoreQTscore ),(),(
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4.2   Semantic correlation between query and tuples 

In this subsection, we take care of Case (2) discussed in Section 1.1. Consider a two-keyword query Q = {w1,  
w2}. Suppose a tuple tree T: t1←t→ t2, where t1, t2, and t are tuples of R1, R2, and R, respectively, )( 11 11

Rt wa =∈δ , 

)( 22 22
Rt wa =∈δ  and t∈R. Let S1 and S2 be subsets of R where all tuples connect with t1 and t2 through foreign key  

constraints among R, R1, and R2, respectively.  
 )})((|{)},)((|{ 2)(21)(1 2211

RRttSRRttS waRAwaRA ∞∈=∞∈= == δπδπ  (9) 

Here, A(R) denotes the set of all attributes of relation R. The intersection of S1 and S2 denotes tuples connecting with 
both t1 and t2 through foreign key constraints. For instance, a1 and a2 are coauthors to a paper, then S1 means all  
papers written by a1, S2 means all papers written by a2, and 21 SS ∩  is a collection of the papers in which both a1 
and a2 join. The semantic correlation between tuples in the tuple tree T w.r.t. Q can be expressed using the 

similarity between the two sets S1 and S2, i.e. 
21

21
SS
SS
∪
∩

. Futhermore, for a multi-keywords search Q = {w1, w2,…, 

wn}, let Si be ( ){ | ( ( ) )}
i ii A R a w iS t t R Rπ δ == ∈ ∞ , then the semantic correlation between tuples in T w.r.t. Q is shown in 

Eq.(10). 
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For instance, the semantic correlation between tuples in R34 w.r.t. the Qry3 in Table1 is correlation (R34, “Jane, 
John”)=1/(1+2)=1/3, correlation (R35, “Jane, John”)=1/2, therefore, we conclude that author.t2 cooperates more 
closely with author.t3 than with author.t1. 

4.3   Semantic ranking function 

As discussed above, semantic ranking function should take into consideration three aspects: (1) the total 
contribution ratio for a single tuple to keywords, (2) semantic correlation between non-free tuples, and (3) the size 
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of the tuple tree. Therefore, the semantic ranking function is defined in Equation (11), where |T| is the number of 
tuples in T. 

 
||

),(),(),(
T

QTncorrelatioQTscoreQTscore s ⋅=
 

(11) 

5   Semantic-Based Search Algorithms 

Our semantic-based search algorithm (SSA) is based on that of the DISCOVER2 systems, that is, it first 
creates the tuple set graph from the pre-defined database schema graph and the tuple sets returned by the IR Engine 
module. Figure 3 shows an example of the tuple set graph derived from relations in Fig.1.  

writes{}authorQ cites{}paperQ

author{} paper{}

 

Fig.3  An example of tuple set graph 

SSA first generates a set of candidate CNs. Each CN consists of the non-free tupes sets to the query, e.g. 
authorQ and paperQ in Fig.3. Differently from the existing approaches, SSA progressively adds a CN by expanding 
non-free tuples by using a tuple set adjacent to the CN in the tuple set graph. For instance, when a keyword in Q is 
“XML,” it firstly identifies “XML” in the relation paper, then it expands all terms that directly contains the 
keyword “XML.” SSA uses paper’s adjacent relation cites to do the expansion. Since all papers in the relation paper 
cite paper.t5, SSA expands values of non-free tuples to “DB” (the title of paper.t5) to construct a new CN. 

In this section, we first propose a pre-processing approach to extending non-free tuples in CNs that indirectly 
contain query keywords, we then discuss that the proposed semantic ranking function satisfies the tuple 
monotonicity property[5], so that the existing approach can be employed by using the ranking function. We finally 
present two improved algorithms in Section 5.3. 

5.1   Expanding Non-Free tuples in CNs 

Given a query keyword w, the search algorithm expands w to a term set indirectly containing w. Firstly, the 
algorithm identifies relation R that contains the query keyword w, then it finds relations S1, S2, …, and Sm that have 
foreign key constraints with R, i.e. Si.ai ⊆ Sm.am )1( mi <≤ , the attribute R.key has the same domain with the 

attributes S1.a1 and Sm.am. Equation (12) shows the set of terms Ts(R,w) that indirectly contain w in relation R. 

 
1 1 1 1

. 1. . . . . .
( , ) ( ( ( ) ... ))

m m
m m m m m m

s S a w mR key S a R key S a S a S a
T R w R R S Sπ δ

− −= = =
= ∝ ∞ ∞ ∞

   
(12) 

Different from the existing approaches, non-free tuples in CNs can be terms in either Q or Ts(R,w). For 
example, in Fig.1, papers with ids p1, p3, and p4 cite paper p5 in relation cites, thus Ts(R, “XML”)= {paper.t5}. Given 
a query Q={Jane, XML}, under indirect containment semantic, we can get two results: R1= author.t1← writes.t1→ 
paper.t1 and R2= author.t1← writes.t2→ paper.t5, while the existing approaches can only get one result R1. 

5.2   Tuple monotonicity 

A naive algorithm to get semantic top-k results includes the following two steps: (i) calculate candidate CNs 
using non-free tuples R∪Ts(R,wi), and (ii) for each candidate tuple tree T, calculate scores(T,Q) using Equation (11) 
and choose k tuple trees with largest ranking values. Obviously, the naive approach calculates many tuple trees that 
do not belong to the top-k results. Literature[3] uses sparse algorithm to calculate top-k results. In this section, we 
first prove that the sparse algorithm[3] can also be employed under our semantic-based scenarios. That is, semantic- 
based ranking function satisfies tuple monotonicity property[3]. 
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Theorem 1. Given a CN, the semantic ranking function score(T,Q) satisfies the tuple monotonicity property, if 
for every query Q and joining trees of tuples T and T ′  derived from the same CN such that (i) T consists of tuples  

mtt ,...,1  while T′ consists of tuples 1 ,..., mt t′ ′ , and (ii) ( , ) ( , )D i D iscore t Q score t Q′≥  for all i, it follows that  
( , ) ( , )score T Q score T Q′≥ . 

Proof:  We consider the cases that the non-free tuples in T and T ′  directly and indirectly contain the query 
keywords in Q respectively. 

(1) We start from the non-free tuple set R1
Q,…, Rm

Q. Suppose that mtt ,...,1  are non-free tuples in the tuple tree 
T that directly contain )(,...,1 Qwww im ∈ , respectively. If non-free tuples in T ′  also directly contain keywords in Q, 

then it follows that the same observation with[4,5], i.e. score(T,Q)≥score(T ′ ,Q) holds. If non-free tuples in T′ 
indirectly contain keywords in Q, then we prove for each i, (1 ) ( , ) ( , ) (1 )D i I i Dscore t Q score t Q scoreθ θ θ− ⋅ + ⋅ ≥ − ⋅  

( , ) ( , )i I it Q score t Qθ′ ′+ ⋅ .  

According to Equation (5), 
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From Lemma 1, we get ( , ) (1 ) ( , ) ( , ).i D i D iscore t w score t w score t wθ θ′ ′≤ − ⋅ + ⋅   

Now we prove 1(1 ) ( , ) ( , ) (1 ) ( , ),D i D i Dscore t w score t w score t wθ θ θ′− ⋅ + ⋅ ≤ − ⋅  i.e.  
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Furthermore, ( , ) ( , ) 0.5.
2( ( , ) ( , )) ( , )

D i D i
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θ
′−
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 It is consistent with the definition  

of the score function in Equation (7), i.e. ( , ) ( , )score T Q score T Q′≥  holds. 
(2) Suppose that mtt ,...,1  are non-free tuples in the tuple tree T that indirectly contain )(,...,1 Qwww im ∈ , 

respectively. Obviously, when we construct a CN using terms that indirectly contain the query keywords, the 
algorithm SSA already calculated the score value score(T,Q) in the current CN. That is, it follows the same 
observation with[4,5], i.e. score(T,Q)≥score(T ′ ,Q) holds.  

Theorem 2. Given a set of CNs. Let C be a CN such that its scores(T,Q) is the k-th largest score. For any CN 
C′, if its score(T ′ , Q) is less than scores(T,Q), then the remaining tuple trees in C′ are not candidates. 

Proof:  From Equations (10) and (11), we know ),(),( QTscoreQTscoreS ≤  So, if a tuple tree T ′  whose  

score(T ′ ,Q) is less than scores(T,Q), then its semantic score score(T ′ ,Q) must be less than scores(T,Q). Since T is 
the k-th closest CN to answer the query Q, the tuple tree T′ can be safely pruned.  

5.3   Semantic Top-k algorithm 

For each CN, the existing approaches probe the database to evaluate tuples one by one and generate k 
candidate tuple trees. The final top-k results are chosen from the candidate tuples trees of all CNs. In order to 
improve query performance in a single CN, the tuples can be grouped into blocks to save the times of probing the 
database. Two algorithms namely BA (Block Algorithm) and EBA (Early-stopping Block Algorithm) are proposed 
in this paper.  
5.3.1   Block algorithm (BA) 

Given a CN C. For each query keyword wi, we rank tuples in R∪TS(R,wi) in descending order. In order to avoid 
frequently probing database, we divide tuples in R∪TS(R,wi) into several equal-sized data blocks. In each iteration 
step, a data block, which contains tuples with highest scores are fetched from R∪TS(R,wi) to generate candidate k 
tuple trees with k largest semantic scores.  
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Figure 4 shows the BA algorithm. BA fetches a data block B from each Ri that directly contains the query 
keyword wi. It obtains tuples TS(B,wi) that indirectly contain wi by joining with other relations in the tuple set graph. 
A temporary relation STi is used for storing all the tuples that provide either direct contribution ratio or indirect 
contribution ratio to wi. STi is defined as a triple 〈id, scoreD, scoreI〉, where id is the identifier attribute of tuples in B, 
scoreD records the direct contribution ratio to wi, and scoreI records the indirect contribution ratio to wi. STi ranks its 
tuples according to the descending order of score(t,{wi}) shown in Eq.(7), where t is a tuple in B∪TS(B,wi). BA then 
invokes the function GenCandidate() to generate candidate tuple trees.  

Algorithm 1.  BA 
Input: Query Q = {w1, w2, …, wn}; tuple set graph G; a CN C; k; 
Output: A queue containing top-k results Res in C; 
  
1. FOR (each wi in Q)  {                //find all tuples that directly or indirectly contain wi 
2. B = next block from Ri; 
3. Calculate Ts(B, wi) using Equation (12);  
4. Order tuples in Ts(Bi,wi) in descending order using their semantic ranking scores; 
5. Generate STi such that tuples in it are ranked in descending order according to score(t, {wi}); 
   } 
6. Res = GenCandidate(Q, G, C, k, ST1,…, STn); 
7. Return Res; 

Fig.4  BA algorithm 

Function:  GenCandidate 
Input: Relations R, S1, …, Sm; query Q = {w1, w2, …, wn}; a CN C; k; 
Output: A queue containing top-k results Res in C; 
  
1. Res = ∅; 
2. FOR (each wi in Q) 
3. checkedi = ∅; 
4. WHILE (|Res| < k) { 
5. checkedi = checkedi ∪ STi;          // checkedi is a set of checked tuples that contain wi 
6.  Construct a tuple tree T such that its non-free tuple contains tuples in checkedi; 
7. Res.push_back(T); 
 } 
8. Return Res; 

Fig.5  GenCandidate() function in BA algorithm 

For each CN, the function GenCandidate() joins adjacent relations with Ri in the tuple set graph, and calculates 
the semantic ranking function scores(T,Q) for each tuple tree T. The tuples trees with the first k largest semantic 
scores are candidate tuple trees. 
5.3.2   Early-Stopping block algorithm (EBA) 

It is unnecessary to generate all k results for each CN. EBA enhances the BA algorithm by providing a filtering 
threshold to prune non-candidates. At the beginning of the search algorithm, the threshold is set to be 0. During the 
processing of all CNS, EBA always keeps the k-th maximal possible score value as a filtering threshold. Only a 
candidate tuple tree whose score larger than the threshold, it can be returned as a candidate. 

Figure 6 shows the GenCandidate() function in EBA algorithm. Differ from the function in Fig.5, EBA stores 
the filtering threshold. In Line 4, EBA generates a candidate only when there is no enough results generated and the 
semantic score is larger than the filtering threshold Tk. The value of Tk increases when more tuples in CNs are 
processed, which saves more iterative steps. 

For example, given 5 CNs. BA algorithm chooses 5 tuple trees within each CN and chooses the top-5 results 
among these candidate CNs. EBA also chooses 5 tuple trees within the first processing CN. Then, it uses the 
semantic score of the 5th tuple tree as the filtering threshold Tk. When processing the second CN, only a tuple tree 
whose score is larger than Tk and is ranked within top-5 tuple trees can be regarded as candidate. Therefore, the 
filtering threshold increases when more CNs are processed. 
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Function:  GenCandidate 
Input: Relations R, S1, …, Sm; query Q = {w1, w2, …, wn}; filtering threshold Tk; a CN C; 
Output: A queue containing top-k results Res in C; 
…  
4. max_score = 0;  flag = TRUE; 
5. WHILE (|Res| < k && flag) { 
6. checkedi = checkedi ∪ STi;          // checkedi is a set of checked tuples that contain wi 
7.  Construct a tuple tree T such that its non-free tuple contains tuples in checkedi; 
8. max_score = scoreS(T,Q);          // calculate semantic ranking function as the maximal possible score 
9. IF (max_score > Tk) { 
10. Res.push_back(T); 
11. Tk = the (k−1)-th semantic score in the candidate tuple trees; 
     }  
     ELSE flag = false; 
 } 
11. Return Res; 

Fig.6  GenCandidate() function in EBA algorithm 

6   Experimental Results 

 In order to evaluate the effectiveness of the proposed semantic ranking function and the efficiency of BA and 
EBA algorithms, we have conducted extensive experiments on large-scale real datasets. 

We used two real data sets. The first one was about course information of University of Washington, 
download from the data archive in University of Illinois. The second data set was from DBLP. All the algorithms 
were implemented using JDK 1.5 and JDBC to connect database Oracle 9i. The experiments were run on a PC with 
an Intel Pentium 3.0 GHz CPU and 512M memory with a 160GB disk, running a Windows XP operating system.  

 Experiments are conducted to test two aspects: (i) quality of search results, and (ii) performance of the search 
algorithms. In the remaining of the paper, search time includes time cost to generate CNs (Candidate Networks) 
without considering the time of obtaining tuples directly containing wi. The primary reason of ignoring the time of 
fetching tuples from DBMS is that we can employ the DBMS search engine to do exactly search and get all tuples 
directly contain the keyword wi. In this paper, we focus on the following orthogonal issues: expanding terms that 
indirectly contain wi, choosing candidate CNs, and using filtering threshold to stop iterations in a single CN. 

We manually constructed two sets of queries (Q1,Q2,…,Q20) for DBLP dataset and the third set of queries (Q21, 
Q22,…,Q30) for courses dataset. The first set of queries include ten queries (Q1,Q2,…,Q10), which involve single CNs 
that derived from the DBLP tuple set graph, while the second set of queries include another ten queries (Q11,Q12,…, 
Q20), which involve multiple CNs, i.e. a wide variety of keywords and their combinations. The queries (Q21,Q22,…, 
Q30) were involved multiple CNs derived from the courses tuple set graph. We implemented the global pipeline 
(GP) algorithm[3] to generate top-k results without considering semantic correlation, and compared BA and EBA 
algorithms with the GP algorithm. We manually determined 150 tuples as one block for DBLP and 200 tuples as one 
block for course according to their different data distributions. 

6.1   Effective of semantic ranking function 

In order to test the effectiveness of the proposed semantic ranking function, we used recall and top-k precision 
to do the evaluation. Recall is a ratio of the number of relevant tuple trees searched over the overall number of 
relevant tuple trees in the database. Recall=1 means search algorithm can successfully retrieve all relevant tuple 
trees. Top-k precision is a ratio of the number of returned results that are among tuple trees of top-k highest scores 
over k results. 

We compared the recall and top-10 precision between GP and EBA algorithms using queries Q1, Q2,…, and 
Q10 (The test results of queries Q11, Q12,…, and Q20 are similar). We used 0.2 as the coefficient θ. Figure 7(a) shows 
the recall values of GP and EBA, respectively. Since BA and EBA always have the same recall values, the recall of 
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BA is not plotted. As the figure shows, the recall values of EBA values are all exceed 0.7, and among which the 
recall values of four queries reached 1. On the other hand, the highest recall value of GP was 0.8. Therefore, EBA 
can search more relevant results. The reason of achieving high recalls is that the proposed semantic ranking function 
can discover answers that indirectly contain query keywords and considers the semantic correlation, while GA only 
gets answers directly containing query keywords. 

Figure 7(b) shows the top-10 precisions of GP and EBA. 90% of top-k precisions of EBA were higher than 
GA. Using EBA, 90% queries achieved more than 0.8 top-k precisions, while using GP, only 30% queries exceeded 
0.8 top-k precisions. The results show that GP determines the top-k results merely based on their direct contribution 
ratio, therefore, it runs the risk of missing answers with lower direct contribution ratios but higher indirect 
contribution ratios. Instead, EBA strikes a balance between the direct contribution ratios, indirect contribution 
ratios, and semantic similarity. It determines the relevance of answers to queries more accurately and 
comprehensively. Figure 8(a) and (b) show the similar results on courses dataset. 
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Fig.7  Recalls and top-10 precisions on DBLP dataset 

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Q30Q29Q28Q27Q26Q25Q24Q23Q22Q21

R
ec

al
l

Queries

GP
EBA

GP
EBA

Queries
Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 

1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

R
ec

al
l 

 

 GP
EBA

Queries 
Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 

1.2
1.0
0.8
0.6
0.4
0.2
0.0

To
p-

k 
pr

ec
is

io
n 
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Fig.8  Recalls and top-10 precisions on courses dataset 

6.2   Effect of k values on query performance 

Figure 9 shows the execution time when varying k values from 1 to 20. We choose query Q7 to test the 
execution time of different top-k queries. Figure 9(a) shows the running time of query Q7. When k was small, GP 
performed quicker than BA and EBA. The reason is that GP only needs small number of iterations to get tuple trees 
with highest scores, whereas BA and EBA accessed one data block at each iteration, which produces much more 
number of tuple trees that cannot answer the query. However, when k increased, GA needed more iterations than BA 
and EBA, which result in more frequent database probes. Furthermore, EBA and BA required the same running time 
when k was small (e.g. k=1) for additional computations. As k increased, EBA performed better than BA and GP 
algorithms, since EBA used filtering threshold to saves more iterative steps. Figure 9(b) shows average running time 
of queries Q1,Q2,…, and Q10 when varying k from 1 to 20. The test results were similar with the result of Q7. 



 

 

 

2374 Journal of Software 软件学报 Vol.19, No.9, September 2008   

 

 
GP
BA

EBA

450
400
350
300
250
200
150
100

50

k values
0  2   4  6 8  10  12 14  16 18  20

Ti
m

e 
(m

s)
 

 

 
GP
BA

EBA

450
400
350
300
250
200
150
100

50

k values 
0  2   4 6 8  10  12  14  16  18  20

Ti
m

e 
(m

s)
 

 

(a) Effect on k on query time (for Q7) (b) Effect on k on average query time (for Q1, Q2,…, Q10) 

Fig.9  Effect of K on execution time 

6.3   The effect of queries on query performance 

Figure 10 shows how the effect of different queries (Q11,Q12,…,Q20) on the running time. Figure 10(a) is the 
running time of top-5 queries and Fig.10(b) is the running time of top-15 queries. We can see that EBA performs 
better than BA and GP for all the queries that involved in multiple CNs. EBA retrieved all desirable top-5 results 
within 200ms and top-15 results within 300ms, compared with other algorithms, EBA sustained a high query 
performance. Different queries led to generate various CNs with different sizes as well as time complexity, which 
plays a major role in the overhead of a single database probe. That is, more complex and larger a CN is, more 
overhead it needs for a database probe. 
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(a) Top-5 query (b) Top-15 query 

Fig.10  Effect of queries (Q11,Q12,…,Q20) on execution time 

7   Conclusions 

In this paper, we studied semantics-based Top-k keyword search over relational databases. We proposed a novel 
semantic ranking function, which not only adapts the state-of-the-art IR ranking function and more importantly, it 
encompasses semantic features. We also studied search methods tailored to support our ranking function. Two Top-k 
algorithms namely BA and EBA are proposed which process data in block, minimize database probes and can more 
comprehensively and effectively search out relevant results. We have conducted extensive experiments on 
large-scale databases. The experimental results show that the semantic ranking function is adequate and proposed 
algorithms are effective and efficient. 
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