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Abstract:  Traditional visual data mining relies on visualization techniques to disclose implicit information and 
relationship among data through utilizing human capability of pattern recognition. As an important step in data 
clustering, noise removal is a challenging topic as domain-specific noise is not well defined and cannot be removed 
by generic process of data cleaning. This paper addresses two conjugated and reciprocal issues in the use of 
visualization in noise removal׃ choosing appropriate visualization techniques based on data removing methods, and 
designing processing algorithms that suit visualization. The goal is a synthesis of visualization techniques and data 
mining methods to enhance the overall performance while reducing the subjective factor in visual mining procedure. 
A visual data cleaning approach called CLEAN is proposed to assist spatial data clustering in four important aspects׃ 
removal of domain-specific noise, visualization of data quality, selection of algorithm parameters, and measurement 
of noise removing methods on parameter sensitiveness. Experiments show that the visualization models in CLEAN 
do assist effective discovery of natural spatial clusters in a noisy environment. 
Key words:  information visualization; data mining; clustering; noise removal 

摘  要: 可视化技术的发展极大地提高了传统数据挖掘技术的效率.通过结合人类识别模式的能力,计算机程序

能够更有效的发现隐藏在数据中的规律和信息.作为聚类分析的重要步骤,噪音消除一直都是困绕数据挖掘研究者

的问题,尤其对于不同领域的应用,由于噪音的模型和定义不同,单一的数据处理方法无法有效而准确地去除域相关

的噪音.本文针对这一问题,提出了一个新型的可视化噪音处理方法 CLEAN.CLEAN 的独特之处在于它设计的噪音

处理技术和提出的可视化方法有机地结合在一起.噪音处理算法为可视化模型生成所需数据,同时针对噪音处理算

法选择可视化方法,从而达到提高整个数据处理系统性能的目的.这样不仅降低了噪音去除过程中主观因素的影响,
还可以帮助数据挖掘程序去除领域相关的噪音.同时源数据的质量,算法参数的选择和不同噪音去除算法的精确性

都可以在所使用的可视化模型中反映出来.实验表明 CLEAN 能够有效地帮助空间数据聚类算法在噪音环境下发

现数据的自然聚类. 
关键词: 信息可视化;数据挖掘;聚类;噪音消除 
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1   Introduction 

The importance of handling a rapid growth of data has been recognized since the wide application of database 
technology and large-scale data collection mechanisms. Computer-aided data processing techniques have proved 
their utilities in managing large amount of data from various perspectives. Among these techniques, data mining or 
knowledge discovery in database (KDD), which refers to the non-trivial process of discovering interesting, implicit, 
and unknown knowledge from large databases[1], has been widely applied to many communities. While the purpose 
of data mining is still primarily concerned with extracting knowledge from very large databases[2], its techniques 
evolves to be more user-oriented. Users are allowed to get insights from data during the mining process. The 
extracted patterns, models, or relationships among the data are becoming easily interpreted and understood. Many 
of the benefits come from effective data visualization, an important component of visual data mining (VDM)[3], 
which emphasizes the human-computer interaction in mining process to deliver intuitive mining results. 

The goal of visualization is to provide qualitative insight into data, processes, and concepts through using 
visual pattern recognition ability humans possess[4]. Visualization could bridge the two most powerful 
information-processing systems׃ human and computer. While humans are capable of providing overviews of 
patterns and detecting outliers, they are limited in the ability of handling scale and are easily overwhelmed by the 
volumes of data. Data mining could complement human abilities through processing large amount of data 
automatically. Combining the two approaches for knowledge discovery is clearly promising[5]. Visualization plays a 
key role in the combination as transforming and presenting problems visually could provide new insight and pave 
the way to their solutions[6]. 

As a primary data mining technique, clustering is the process of grouping a set of objects into classes or 
clusters so that objects within a cluster have high similarity in comparison to one another, but are dissimilar to 
objects in other clusters[7]. Since the definition of similarity varies in different domains, clustering usually relies 
heavily on the application and the database at hand, which leads to a trade-off between using automated algorithms 
that rely on statistical properties or implicit heuristics for the clustering process and allowing the user to influence 
the results through his/her domain knowledge[8]. This paper attempts to explore the complementary roles of 
visualization techniques and mining methods so that a balance can be struck in-between. On one hand, through 
visualization, users become active participants in the clustering process by providing domain-specific information 
and tuning algorithm parameters. On the other hand, the characteristics and properties of data mining methods and 
features of data are visualized as feedbacks to the user. While traditional visual data clustering focuses on inventing 
visual representations of source data that allow users to group data directly through visual inspection, our approach 
still relies on mining techniques to find clusters, in which visualization is not directly applied to source data but 
used to guide the mining techniques to produce final clusters. This leads to a fundamental difference between our 
approach and previous work because the data to visualize in our approach reflects characteristics of the mining 
algorithm or the impact of the algorithm on the source data, e.g., parameters, internal data flow etc., while 
traditional approaches visualize source data or its transformed forms directly and consider less the connections 
between mining algorithms and the data to be processed. The role of visualization plays in our approach is bridging 
the user not to source data but to the mining techniques that process the source data, which not only reduces the 
subjective factor involved in manual operations performed on source data but also connects the human capability of 
pattern recognition and the mining power of computers. 
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The means of visual support for a data clustering method may vary for different user requirements. It, however, 
must serve in one of the three stages of the overall clustering process׃ preprocessing, grouping, and post-processing. 
Since domain-specific requirements and knowledge are usually involved in the preprocessing stage in guiding the 
grouping process, we are particularly interested in supporting user decisions in this stage. We propose two 
visualization models for noise removal, a crucial preprocessing step for many clustering algorithms. The first model 
visualizes raw data in a 3D colored space so that users can see the impact of algorithm parameters directly, while 
the second model visualizes results of different parameter selections abstractly and therefore can serve 
high-dimensional data sets, if necessary.  

There have been many non-visual clustering methods for discovering patterns of different shapes, densities, 
and sizes in spatial databases[9−11]. There are also some visual approaches for high dimensional data clustering[12,13]. 
None of them, however, addresses the domain-specific noise removal problem: noise cannot be defined or removed 
without the support from domain users because noise in one case may not be noise in another. This paper aims at 
improving the situation. The visualization models presented in this paper are integrated into a visual data cleaning 
approach called CLEAN (CLeaning by Eliminating Ambiguous Noise) to address the issue of domain-specific noise 
removal. CLEAN provides users with a layered and colored 3D visualization so that noise can be defined and 
identified with domain knowledge. The key difference between the visualization models in CLEAN and a direct 
plotting of 2D or 3D data is in our data preparation method before producing the visualization. Although direct 
plotting allows users to judge which data is noise through visual inspection, users cannot “tell” the computer their 
judgments unless they specify noise points one by one, which is unfeasible in large databases. In contrast, the data 
preparation method used in this paper is designed to ease the burden of visualization through separating data points 
into small groups. Each data point has obtained a group-ID before visualization so that users can specify noise 
points using their group-IDs. For 2D data points, their group-IDs are used as their third coordinates to deliver a 3D 
visualization. For 3D data points, different groups will be represented with different colors in the direct plotting. 
Users can judge which groups are noise easily through visual inspection and specify the corresponding group-IDs or 
colors to the algorithm to allow customizable noise removal. The assignment of group IDs is not a random 
procedure and relies on the K-core algorithm[14], which partitions a given graph into many groups called “cores”. 
The cores preserve the density information of the given graph and therefore can be regarded as an initial separation 
of noise from true data. The K-core method is well-studied in literature. A core with a small K is usually more 
possible to be noise than a core with a big K. Another advantage of using “cores” as groups is that the “cores” are 
inherent to the given graph as they are defined as subgraphs with maximum node degree smaller than K. That is, the 
granularities of these groups (cores) are predefined by the graph connections, i.e., the data itself, and have nothing 
to do with how we visualize them. Based on the definition, the number of cores is always equal to or smaller than 
the largest node degree in the graph. Thus the number of groups (cores) is much smaller than the number of data 
points. Therefore our approach is much more efficient than removing noise points one by one. The way of 
generating core-IDs will be introduced in Section 2 and its utility will be explained in Section 3. 

For high-dimensional data, we propose another visualization model to assist noise removal. The proposed 
model, called Waterfall, typically represents the resulting profiles of different parameters in noise removal in a 
waterfall-like pattern. The waterfall model does not visualize higher dimensional data directly. It instead visualizes 
the relation between the output of the data preparation method and the two algorithm parameters in a 3D coordinate 
system. Since the data preparation method separates the given data and removes noise, visualizing its output 
provides an approximate overview on the data distribution. Further, the relationship between the two method 
parameters can be reflected through a 2D projection of the produced 3D graph on the surface decided by the two 
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axes corresponding to the two method parameters. If different combinations of the two parameters produce similar 
noise removing results, the noise removing method might not be sensitive to parameter selection; otherwise, the 
noise removing method is parameter sensitive. Thus we can evaluate the parameter sensitivity of a noise removing 
method. Also parameter tuning becomes easy. The appropriate pair of the two parameters can be selected through 
checking the visualization of the algorithm output and the relationship between the two parameters. Compared with 
a direct plotting of raw data, the waterfall model has several features: firstly, it is independent from dimensionality 
of raw data. Secondly, it allows a quick and approximate overview on data distribution. Thirdly, it discovers the 
relationship between algorithm parameters. Lastly, it can measure the parameter sensitivity of a noise removing 
method. 

According to Han, et al.[7], clustering algorithms can be classified into hierarchical method, partitioning 
method, density-based method, and grid-based method. Visualization models introduced in this paper are designed 
to suit representative density-based clustering algorithms. This is based on our observation that most representative 
density-based approaches use a similar pair of parameters on noise removal. Since the axes of the visualization 
models are method parameters, a reassignment of the axes can provide visual support for different noise removing 
methods, as long as these methods use parameters in a similar way. While noise removal can help clustering, some 
clustering methods can be used to output data items that do not belong to any cluster as noise, such as Birch[15], and 
scale-space filter method[16]. A main difference between our approach and clustering filter methods is that they do 
not employ visualization to encode domain knowledge and therefore is incapable of facilitating customized noise 
removal. The purposes and applications of these methods are also different. 

The CLEAN approach has been used in the data clustering framework FACADE[17] to provide effective visual 
support for noise removal and parameter tuning. Some of the visualization models in CLEAN have also been 
applied to assist post-classification of remote sensing images[18], with results significantly outperforming those of 
conventional methods. 

The rest of the paper is organized as follows. Section 2 describes the data preparation method we use to 
preprocess the given data so that visualization can be easily applied. Section 3 presents the visualization model for 
ambiguous noise removal. The waterfall model is introduced in Section 4. Section 5 illustrates how CLEAN and the 
visualization models are used in effective spatial data clustering. Section 6 concludes the paper. 

2   Data Preparation 

As mentioned in Section 1, our approach explores the interacting roles of data mining methods and 
visualization techniques. This section will introduce our noise removing method, which prepares the data for 
visualization through a two-step approach׃ first modeling the given data set with a k-mutual neighborhood graph; 
then applying a fast graph partitioning method, the k-core algorithm[14], to decompose the k-mutual neighborhood 
graph into small groups of data points. Then a 3D layered visualization of the small groups will be provided to the 
user for customizable noise removal. Section 2.1 will introduce the graph construction process. The decomposition 
of the graph will be described in Section 2.2. 

2.1   K-mutual neighborhood graph 

 There are two commonly used graph structures for data clustering׃ k-nearest neighbor graph and k-mutual 
neighbor graph. As illustrated in Fig.1, each vertex of a k-nearest neighborhood graph represents a data item. For 
each pair of data items, if either of them is among the k-most similar data items of the other, there exists an edge 
between the two corresponding vertices. Compared with a k-nearest neighborhood graph, for the same data set and 
k, a k-mutual neighborhood graph contains fewer edges: for each pair of data items, only if both of them are among 
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Generally, the advantages of representing data 
using a k-nearest/mutual graph include׃ first, data 
points that are far apart are completely disconnected 
from the graph. Also the constructed graph is able to 
represent the natural density dynamically. In a dense 
region, the neighborhood radius of a data point is 
determined narrowly, and in a sparse region, the 
neighborhood radius becomes wide. Thirdly, the 
number of graph edges is linear to the number of 
vertices. The first two advantages ensure that the graph structure can be used to distinguish noise and true data. In 
particular, our experiments will show that a k-mutual graph suits our noise removing approach. 

(a)   (b)     (c) 

Fig.1  (a) a 2D data set; (b) its 4-nearest neighborhood 
graph; (c) its 4-mutual neighborhood graph 

2.2   The k-core algorithm 

The main task of the data preparation is to divide the data into different groups. In our study, the task is 
accomplished through partitioning the constructed k-mutual graph into small sets of vertices called cores. The 
notion of a core was introduced by Seidman[14]. Let G = (V, E) be a graph, where V is the set of vertices and E is the 
set of edges. A sub-graph Hk= (W, E | W) induced by the set W is a k-core or a core of order k iff ∀ v in W: degree 
(v) ≥ k and Hk is the maximum sub-graph with this property. The core of maximum order is also called the main 
core. The cores have the following properties׃ 

• They are nested׃ ∀ i<j→ Hj ⊆Hi. 
• There exists an efficient algorithm to determine the core hierarchy. 
• A core is not necessarily a connected sub-graph. 

The algorithm for determining the core hierarchy is simple׃ from a given graph G=(V, E), recursively delete 
all vertices of degrees less than k and lines incident with them, the remaining graph is the k-core. Known as the 
k-core algorithm, it costs only O(m) time, where m is the number of edges for the given graph[14]. The purpose of the 
k-core algorithm is to determine a core-ID for each vertex. Since cores are nested, a vertex may belong to multiple 
cores. The core-ID of a vertex is defined as the biggest order of these cores. After applying core-decomposition, the 

vertices are divided into different groups according to their core-IDs. The k-core 
algorithm has previously been used to produce layouts for very big graphs[19] in 
which its efficiency and effectiveness are verified. The combination of k-mutual 
graph and k-core algorithm has been shown very effective for spatial noise 
removal[18]. To avoid confusion, we will hereafter use kc as the k used in k-core 
algorithm and km as the k used in k-mutual graph. For a k-mutual graph with n 
vertices and m edges, we have m≤km n/2 if n is the number of vertices ∗∗ , so 
applying k-core algorithm to a k-mutual graph requires only linear time. 

Fig.2  Example sketch
map of core hierarchy

A sketch map of the core hierarchy is shown in Fig.2. Given a dataset D, suppose that the corresponding 
k-mutual graph is G=(V, E), |V|=n and |E|=m. Apply the k-core algorithm to G, and obtain the set of cores, denoted 

 

∗∗ Given a data set, the corresponding k-nearest neighborhood graph G=(V, E), and the k-mutual neighborhood graph G′=(V′, E′), we 
have |V|=|V′|, |E′|≤ |E|≤ k|V|, and |E|+|E′|=k|V|, so |E′|≤ k|V′|/2. 
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by H0, H1, ..., Hx−1, Hx, where Hi represents the core of order i. The higher the order is, the darker the area is. To 
understand the concept of core-ID, let Sx = Hx, Sx−1=Hx−1–Hx,…, S1 = H1 –H2, S0 = H0 – H1, and Sx = Hx is the main 
core, a core-ID of a vertex is i if and only if the vertex belongs to Si. 

So far there have been two parameters that would affect the result of noise removal: km and kc. While choosing 
kc through visualization will be discussed in Section 3, Section 4 will provide a visual support for the selections of 
both of them. Applying the core decomposition on the k-mutual neighborhood graph constructed on the given data 
set will be referred to as core-based noise removal in this paper. Then we visualize the core hierarchy to allow an 
overview on the data distribution and customizable noise removal. Section 3 will also describe this idea. 

3   Separating Noise from True Data 

This section presents the visualization model that assists noise removal through the application of the k-core 
algorithm. The model visualizes the output of the k-core algorithm and plots the data points in their original scale 
and dimension so that users can recognize and specify domain-specific noise through the system. 

3.1   Motivation 

Spatial databases usually store and manage geometric, geographic, or spatial data that describes natural or 
man-made space. They may contain various types of noise in different sizes, shapes, and densities. Defining what 
noise is becomes a domain-related problem so that no general method can be applied. Figure 3 shows a benchmark 
data set used by CHAMELEON[11], where the thick horizontal line crossing “GEORGE” is domain-specific: it 
should be regarded as noise in area of letter recognition; but it could also be true data representing a style or 
decoration, depending on different applications. No general definition of noise based on density or size can be 
applied in such a case. Besides, since the thick line not only overlaps the true data but also has a similar density, it 
poses a challenging problem for existing noise removing methods. Therefore, user participation becomes inevitable. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Using core decomposition to 
remove noise (km=100) 
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Fig.3  Benchmark data set DS1 that 
contains domain-specific noise 

Fig.4  Visualization of the 
core hierarchy of DS1 

3.2   The 3D layered visualization model 

Given that we have two or three (for 3D data) data dimensions and four graphical dimensions: x-axis, y-axis, 
z-axis, and color, the coordinate assignment is as follows. For 2D data sets, the two data dimensions are mapped to 
x- and y-axis, respectively, and the core-ID is mapped to z-axis. Besides, the core-ID is mapped to color in a 
multiple to one manner10 ׃ continuous core-IDs correspond to one kind of color. For a 3D data set, the three data 
dimensions are mapped to x-, y-, and z-axis, respectively, and the core-ID is mapped to a color in the same manner 
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Figure 4 illustrates the 3D layered visualization of the core hierarchy of the 2D data set shown in Fig.3. Points 
of different cores are represented in different layers and with different colors. While different cores mean different 
densities or sizes, the data set is “segmented” into many small groups. Users can judge which groups are noise 
easily by visual inspection. As shown in Fig.4, the thick line crossing “GEORGE” has been separated into a layer 
far below the true data and the 3D visualization allows the user to select an appropriate threshold to remove noise 
easily and intuitively. There are two operating modes available to the user through the visualization. The basic mode 
accepts a user input defining the boundary layer, i.e., kc, and then the layers above kc will be regarded as true data 
and kept while other layers will be removed as noise. In the advanced mode, the system can accept a set of user 
inputs to specify which layers are true data and which are noise. Thus noise removal becomes a customizable 
process. For example, in Fig.4, the user can keep the thick line by setting its layer as true, or the user can even 
remove the right foot of the letter “R” if he/she thinks the correct word should be “GEOPGE”. 

For a 3D data set, the system assigns the three data dimensions of the given data set to x-, y-, and z-axis, 
respectively, and uses color to represent the fourth dimension of 
core-ID in distinguishing different cores. Users can specify noise 
groups by assigning different colors. As shown in Fig.5, the 
synthetic 3D data set consists of 10000 3D vectors which form a 
sphere and three lines penetrating through the sphere. The three 
data dimensions correspond to the three system coordinates 
respectively. The k-mutual neighborhood graph constructed on the 
data set consists of two different cores
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 the first one includes the ׃
vectors that form the three blue lines and the second core includes 
those that form the sphere. Users can distinguish them by their 
colors. Either the line or the sphere could be domain-specific noise 
for different applications. Users can choose to remove the lines or 
the sphere based on their domain requirements. 

0 10.5−0.5−1 0−1

Fig.5  3D example visualized in cores 

3.3   Rotation and slicing 

Both the basic and advanced modes in the layered display allow users to use the rotation and slicing operations 
of the 3D visualization to remove noise interactively. Rotation helps users to see the exact layered structure of the 

data. Users can obtain the core-ID of the data group in which 
they are interested by changing the angle of view to bring the 
group to the front and clicking the mouse on it. Then a simple 
query can be used to extract the group according to its 
core-ID. To illustrate the process, suppose the correct word is 
“GEOPGE” for a domain user A, who first discovers the 
core-ID of the right foot of “R” is 52 through rotation. Then 
he/she can use the following query to get the desirable data׃ 
((coreID>52) and (coreID<70)) or ((coreID>45) and 
(coreID<52)). The query result includes two slices: the slice 
between 53 and 69 and the one between 46 and 51. The 

system will return the query result in a 2D surface, as depicted in Fig.6. 
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Fig.6  Data slice of DS1 for one user 

Suppose there is another user B who thinks “GEORGE” is what he/she needs. He/she only needs to change the 
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above query to include the slice with core ID=52, i.e., the right foot of “R”, to get the desirable result, which is 
shown in Fig.7. 

3.4   Visual comparison of different noise removing methods 

Another desirable feature of the layered model is its applicability to other data clustering methods, so that it 
can be used to compare the results of our core-based noise removing technique and any other technique in an 

integrated view. This feature works only for 2D data sets. The idea is to 
apply the k-core algorithm before applying the other noise removing 
method to be compared. The results of the two techniques are thus 
merged into a single view. For core-based noise removal, true data and 
noise are separated into different levels. For the other method to be 
compared, different colors are assigned to true data and noise. Since 
both the colors and the levels of the data points are shown in a single 

view, it becomes immediately clear which method is more effective than the other. The display, therefore, provides 
intuitive comparison and quality measurement between different noise removing methods. The comparison between 
different results in an integrated view is more accurate and convenient than the visual comparison on two separate 
views. 

Figure 8 visualizes the noise removing result of DBSCAN[20], 
a well-known density-based clustering algorithm. The data is still 
presented in multiple layers according to the core-IDs of data 
points. Color is used to represent the result of DBSCAN: The red 
points mean true data and the black points are noise. Such an 
integration view shows the difference clearly between the 
core-based noise removal and the method used for testing and 
comparison. 

Although the layered model can help removing 
domain-specific noise, it cannot visualize higher dimensional 
(over 3) data. Also it can intuitively guide the user on selecting kc 
but not km. The following section introduces another visualization technique to assist users in such parameter tuning. 

Fig.7  Different data slice of DS1 
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Fig.8  Visual comparison of results of 
DBSCAN and core-based removal 

4   Parameter Tuning 

This section will propose a waterfall visualization model to allow an intuitive parameter tuning for 
representative clustering methods. The basic idea of the waterfall model is to visualize the relationship between the 
algorithm output and the parameters so that the user can select right parameters intuitively. This model not only 
avoids direct visualization of higher dimensional data but also provides an overview of the data characteristics 
useful for noise removal.  

4.1   Motivation 

Parameter tuning has always been a challenging issue in data clustering. Many current data clustering 
algorithms hardwire some algorithm parameters to the values that are identified through ad hoc and try-and-error 
experiments. For example, DBSCAN[20] uses two parameters: Eps and MinPts for its noise removal. The 
neighborhood within a radius Eps of a given object is called the Eps-neighborhood of the object and an object with 
at least MinPts of objects within its Eps-neighborhood is called a core object. Then noise is defined as non-core 



 

 

 

钱宇:数据聚类中基于浓度噪音消除的可视化参数选择方法 1973 

objects which do not lie within the Eps-neighborhood of any core object. It is easy to understand that the selection 
of Eps and MinPts would be difficult for unknown data sets while the selection would affect the result of noise 
removal significantly. Other clustering methods that use similar parameters include OPTICS[9], DENCLUE[21], and 
SNN[10]. All of these algorithms require two parameters to complete their noise removing processes and the two 
parameters appear to be related to each other on the output of the algorithm. If we can work out a visualization way 
to assist the parameter tuning for one of these methods, it can also be applied to other methods. 

With the core-based noise removing technique, two parameters affecting the result are km and kc, as described 
in Section 2.2. To study the relationship between the output of the k-core algorithm and the two parameters, we 
started our experiments also by try-and-error on many benchmarks. Our experiments reveal an important 
phenomenon׃ for a wide range of km, there exists a corresponding kc so that the pair (km,kc) removes noise 
effectively. This phenomenon, however, does not help solve the parameter selection problem completely because: 
first, this property may not be general enough for all kinds of data sets. Second, even if km can be chosen freely, it is 
difficult to select the correspondingly kc correctly when the data is high-dimensional, which the current 3D layered 
visualization does not support. 

We therefore propose the waterfall model to visualize the relationship between the parameters and the 
algorithm output. The two parameters are mapped to two axes of a 3D coordinate system. The ratio of the size of the 
data after noise removal to the original data size represents the third axis. An important property of this model is its 
independence from the dimensionality of the given data because it visualizes the noise removing method instead of 
data. 

4.2   The waterfall visualization model 

The coordinate system of the waterfall model has four graphical dimensions: x-axis, y-axis, z-axis, and color, 
corresponding to km, kc, the ratio of the data sizes before and after noise removal (denoted by r), and the five colors 
simulating a waterfall. The colors, from light green to dark blue, correspond to the amount of true data. The more 
true data identified, the bluer the graph appears. This allows a quick capture of the data quality, i.e. if the waterfall 
appears to be blue, it means the data set contains little noise. 

Figure 9 shows the resulting visualization 
for the benchmark data set shown in Fig.3. To 
save computation time, each time we increase the 
value of km by ten or kc by five and find how 
many data points are removed. The increment of 
km and kc determines the size of the mesh grid, as 
shown in Fig.9. The relationship between the 
algorithm parameters and the output can be 
described as follows. When fixing km, the size of 
the remaining data decreases as kc increases. The 
dropping of the size of the remaining data 
becomes dramatic when the true data has been 
removed, which produces a waterfall style of 
visualization. The sudden dropping can be justified as follows. Because true data usually are of large size and have 
similar properties on distance or shape, the parameter change will make either few of them or most of them 
removed, which will not be a gradual process. When km increases, the connections among both noise and true data 
will increase, thus a corresponding bigger kc is required for the removal of the same size of noise. 

Fig.9  Waterfall model for DS1 with the core-based removal 
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The waterfall visualization, on one hand, supports our hypothesis that for a wide range of km there is a kc to 
remove noise effectively, on the other hand, detects the noise ratio in this data set is about 15% because the 
waterfall drops down dramatically at z=0.85. This is very useful for data mining methods as prior knowledge about 
the given unknown data. The visualization can also measure the quality of a noise removing method. If a noise 
removing algorithm is not sensitive to its parameters, for a wide range of one of the parameter, there should be a 
value for the other parameter so that the pair can remove noise correctly. Shown in the visualization, the waterfall 
should drop at similar place if the algorithm is insensitive to parameter selection because the noise ratio is a fixed 
value for a given data set. For example, in Fig.9 all lines drop at about 0.85.  

Generally, the shape of the waterfall is affected by both the 
method and the data set. Figure 10 shows DS2, another benchmark data 
set. Its waterfall model, illustrated in Fig.11, shows a different waterfall 
outline from that of DS1. The comparison between Fig.9 and Fig.11 
indicates that DS2 has a little higher noise ratio than DS1. 

All the above features of waterfall can be seen clearly through two 
2D projections on the back surface and on the bottom surface, which 
will be presented in the following section. Fig.10  DS2: Another benchmark 

4.3   2D projections 

We first project the 3D waterfall of DS1 to the 
surface decided by z-axis (r) and y-axis (kc), i.e., the 
back surface, as illustrated in Fig.12. Similarly, DS2 also 
has the projection, as shown in Fig.13. From the 
comparison between Figs.12 and 13, we can discover 
information about the DS1 and DS2. Firstly, the graph of 
DS1 has a bigger blue area than that of DS2, so DS1 
contains less noise. Secondly, the waterfall of DS1 drops 
at about z=0.85 while that of DS2 drops at about z=0.77, 
which represents the approximate noise ratio of them. 
Thirdly, all lines of the waterfall of DS1 drop at similar 
place while those of DS2 vary a little, which means the 
parameter selection for DS2 is harder than for DS1. 
Lastly, the waterfall of DS2 drops twice, implying that there exists a large amount of noise in DS2 that differs 
greatly from the true data on distribution, which makes the noise removal a sudden drop instead of a gradual process 
as kc increases. This matches the generation process of DS2 exactly because DS2 is a combination of the true data of 
DS1 and 3500 random noise points which has a much smaller density compared with the true data. Thus the first 
drop represents the removal of these noise points totally and the second drop removes the true data. In contrast, DS1 
contains the thick line which reduces the density difference between noise and the true data, so the removing 
process is a gradual one. 

Now let us study the relationship between the two algorithm parameters through another 2D projection on the 
surface decided by x-axis (km) and y-axis (kc), i.e., the bottom surface. The 2D projection is obtained through cutting 
the waterfall horizontally at the dropping position. For example, for DS1, we cut the waterfall with the horizontal 
surface z=0.85 and get the slice, as shown in Figure 14, in which we can find that the relationship between km and kc 
is very close to the function km =2kc. This relationship can be used to select the parameter when the other parameter 
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Fig.11  Waterfall model for DS2 
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can be fixed. All pairs (km, kc) satisfying km =2kc would remove the 15% noise effectively. By checking the slice of 
the waterfall model, users are freed from the complicated parameter tuning job. 
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Fig.12  2D projection of DS1 on the back surface       Fig.13  2D projection of DS2 on the back surface 

4.4   Visual comparison of different clustering methods 

Using similar coordinate assignments, the waterfall 
visualization model can be applied to most density-based noise 
removing methods. We produced one for DBSCAN through the 
following mappings: Eps and MinPts are mapped to x-axis and 
y-axis, respectively, and z-axis still represents the ratio of the size 
of the remaining data to the original data. The 3D waterfall 
visualization for DS2 with DBSCAN is shown in Fig.15 while the 
2D projection on the back side is in Fig.16. A comparison between 
the visualizations of the two different methods leads to the 
measurement of the methods on the parameter sensitivity. The 
inconsistent dropping position shown in Figs.15 and 16 indicates 
that DBSCAN is more parameter-sensitive than the core-base 
noise removing approach. 
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Fig.14  Relationship between km and kc for 
DS1: A projection on the bottom surface 
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In summary, the waterfall visualization has four advantages:  
• It supports high-dimensional data because it does not show the data directly but the method parameters and 

results.  
• It shows the approximate noise ratio for a given data set, which makes later knowledge discovery and 

information understanding effective.  
• It measures the quality of a noise removing method on parameter sensitiveness. 
• It produces a relationship graph between the two algorithm parameters to assist parameter tuning. Users can 

choose the appropriate pair of parameters based on the visualization and the approximate noise ratio. 

5   Visualized Data Clustering 

This section demonstrates how visualization models are used in producing user-oriented clustering results with 
CLEAN. Each clustering step will be visualized to allow users to evaluate the whole process. Section 5.1 will 
introduce the preprocessing stage where CLEAN is used. The group merging is described in Section 5.2. 

5.1   Visualized noise removal and data compression 

The preprocessing includes two operations: data cleaning, and compression. Data cleaning, i.e., noise removal, 
is used to guarantee a correct clustering, while data compression aims at accelerating the later steps. The benchmark 
data set[11] used in this section is shown in Fig.17. 

Fig.17  DS3: Benchmark data 
set to be clustered 

Fig.18  20-Mutual 
neighborhood graph from DS3

 
The noise removing process consists of three steps:  

• Constructing a k-mutual neighborhood graph on the 
data set, as illustrated in Fig.18.  

• Applying the k-core algorithm to decompose the 
graph into smaller groups. 

• Choosing an appropriate kc to remove noise with the 
help of 3D visualization of core hierarchy, shown in 
Fig.19. 
The layered visualization model is applicable only if 

the data set is 2D or 3D. For higher dimensional data, we 
apply the waterfall model to discover the relationship 
between the parameters so that the appropriate pair of 

parameter can be chosen. The resulting DS3 after noise removal is shown in Fig.20. A data compression method 
called GraphZip[22] is applied on the clean data to produce a compact representation of the data so that the later 
clustering process can be accelerated, as shown in Fig.21. 

60 

50 

40 

30 

20 

10 

0 
0 
−50 

−100 
−150 

−200 
−250 

5.2   Animated group merging and result visualization 

After preprocessing, each data point of the compressed data set represents a small group of the original data 
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Fig.19  Core hierarchy of DS3 
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points. The final clusters can be produced through merging small groups in a pair by pair way until the total group 
number decreases to a desirable value. Such a process is called hierarchical merging. Figure 22 shows the different 
groups represented with different colors. When two groups are merged, their colors will become the same. We 
implement the merging process through animation so that users can find which pair of groups is being merged and 
decide to terminate the merging process. 

      
Fig.20  DS3 data after noise removal Fig.21  Compressed result of DS3 

      
Fig.22  Subgroups before merging   Fig.23  Final clustering result of DS3 

During the hierarchical merging process, a criterion is needed to judge which pairs of groups should be 
merged, as described in following: we continuously choose the most appropriate pair, from the initial groups, to 
merge until user termination or reaching one cluster. At each hierarchical level a value M is computed for each pair 
of groups, denoted by M(i,j) for groups i and j. The hierarchical process merges the pair of groups that maximizes M 
at each hierarchical level until all the groups have been merged, and there is a combination criterion to specify how 
to compute M. The value M is computed based on the k-mutual graph constructed on the original data set. Each data 
point of the initial groups has its corresponding vertex in the k-mutual graph. Suppose the k–mutual graph is G=(V, 
E) and S1, S2, …, St are sets of vertices corresponding to t initial groups, we denote the number of edges between Si 

and Sj as E(i,j), and the size of Si is defined as the number of vertices in Si, denoted by |Si|. The combination 
criterion is defined as follows: 
 M(i,j)=E(i,j)2/MIN(|Si|,|Sj|)       (1) 

Formula (1) favors the number of connections between two groups over their sizes. The more connections, the 
more likely the two groups will be merged. On the other hand, if the connection is the same for two pairs of groups, 
formula (1) will merge the pair containing the smallest group first. Formula (1) favors adding points to a big group 
as long as the number of the points being added is small enough. Thus formula (1) can add small groups of points to 
the clusters continuously. According to the definition of formula (1), small groups will be merged into big groups in 
an order according to the number of connections. Using formula (1) will not merge two natural clusters until all of 
their sub-clusters have been merged.  

The final clustering result of DS3 is shown in Figure 23 after merging the number of groups into 6. The 6 
natural clusters contained in DS3 have been discovered successfully. Apart from DS3, we have also applied the 
visualized clustering approach to two other benchmark data sets used in CHAMELEON[11] that contain noisy spatial 
data. Figure 24 shows the data sets in (a) and (c) and their corresponding clustering results in (b) and (d), 
respectively. 
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5.3   Result comparison 

The final clustering results of the three data sets DS3, DS4, and DS5 are illustrated in Fig.25. Each produced 
cluster has its own gray level. Figure 25 (a) shows the clustering results of CHAMELEON while Fig.25 (b) lists the 
results of CLEAN. Since CHAMELEON experimentally outperformed previous systems on cluster quality, this 
section compares the experimental results of CLEAN with CHAMELEON only. Although the clusters in Fig.25 (b) 
appear very similar to those in Fig.25 (a), CLEAN runs faster than CHAMELEON, requires less user-supplied 
parameters, and most importantly, is able to remove noise. 

Then we compare different noise removing methods. The methods to compare include the core-based noise 
removal in CLEAN and the degree-based noise removal proposed in SNN[10]. The comparison result is shown in 
Fig.26, which shows that the ambiguous noise cannot be completely removed by SNN. Besides, with the support of 
the visualization models, the parameter selection of CLEAN is much easier than that of SNN. 

 
(a)       (b) 

 
(c)       (d) 

Fig.24  (a) DS4; (b) clustering result of DS4 with 9 clusters discovered; (c) DS5;  
(d) clustering result of DS5 with 8 clusters discovered 
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Fig.25  Clustering results of (a) CHAMELEON; (b) CLEAN  Fig.26  Noise removal with (a) SNN; (b) CLEAN 

6   Conclusion 

For existing data clustering algorithms, noise removal is a necessary but challenging process. This paper 
presents a visualization-based approach to parameter tuning and domain-specific noise removal problem. We 
devised two visualization models, which allow customizable noise removal and can assist discovery of relationship 
between the algorithm output and its parameters. In particular, the waterfall model can be used to measure the data 
quality by outputting the noise ratio of the data set. Also, different noise removing methods can be measured and 
compared at the same time by applying the waterfall model on them. Based on these visualization models and 
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core-based processing techniques, this paper described a visualization-based data clustering procedure. The 
experiments demonstrate that the visualization techniques and core-based methods are complementary to each other 
and the natural clusters can be identified effectively. Future work will be focused on utilizing visualization 
techniques to address challenging mining problems including high-dimensional data clustering. At the same time 
properties of the waterfall model will be further studied to evaluate whether it can be applied to more data analysis 
methods. 
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