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Abstract:  The paper proposes a smooth schedule algorithm to render terrain data out-of-core. The terrain data is 
organized as a quad-tree with Z-order filling curve, which preserves the data continuity and improved the schedule 
efficiency. A schedule strategy basing memory allocation is designed to support the stable frame rate terrain 
rendering. Controllable schedule area, instead of the view frustum culling, is applied to achieve the balance between 
the in-core memory requirements and scheduling time. A pre-estimated approach is adopted to smooth the data 
exchange. The algorithm achieves a smooth schedule and successfully avoides the slow or jerky phenomena, usually 
caused by inefficient and unsmooth schedule. By compared with traditional methods, the algorithm proposed is 
feasible and efficient in out-of-core terrain visualization. 
Key words:  terrain rendering; level of detail; out-of-core; filling curve; stable frame rate 

摘  要: 提出一种适于大规模地形绘制的光滑调度算法.采用四叉树分块结构和 Z 型填充曲线组织地形数据,
利用地形数据的局部连续性提高调度效率;设计一种内存空间分配算法调度地形数据,实现对恒定帧速率绘制

算法的支持;通过可控调度区实现调度优先级计算,在内存空间需求和调度时间需求之间取得平衡;采取预估调

度的策略实现平滑调度并有效减少绘制中的缺块现象.算法实现了地形场景漫游中的数据平滑调度,有效地避

免了因内外存大数据量交换而引起的显示延迟和跳跃现象.实验结果表明,利用平滑调度算法,数据调度的准确

性和稳定性有了较大提高,在地形漫游过程中取得了很好的效果. 
关键词: 地形绘制;层次细节;外存;填充曲线;恒定帧速率 

Large-Scale terrain rendering is a challenging research and indispensable job of virtual outdoor environment 
visualization, as widely used in virtual battlefield environments, driving simulators, GIS (geographic information 
system), and flight applications. Due to the huge scope of the terrain, there are two issues: (1) the quantity of terrain 
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data exceeds the rendering capability of computer, which causes rendering too slowly for interactive rates; (2) the 
rendering process suffers from the limited size of memory and part of data have to be stored in external memory (for 
example, hard disk and other storage out-of-core), which results in slow data accessing and unacceptable rendering 
effect. 

LOD (Level of details) is a primary technique of in-core rendering for large terrain. By this way, the rendering 
is speed up with acceptable quality. But in most applications, large-scale terrain results in frequent data exchanges 
between the fast memory and slow external storage. Therefore the rendering efficiency suffers from the 
unreasonable schedule algorithm, which has become the bottleneck of large-scale data processing. 

There are several solutions [1−3] to deal with out-of-core visualization, such as the vertex-based LOD rendering 
and the batch-based LOD rendering. Stable frame rate rendering [4] is also a key research to guarantee high-quality 
roaming. To reach this target there are two conditions: stable output of in-core rendering, and smooth exchange of 
out-of-core scheduling. To achieve better interaction and quality, the in-core LOD simplifies terrain data to speed 
rendering, and out-of-core scheduling provides data for LOD rendering.  

As main contributions of this paper, we propose a smooth schedule algorithm supporting stable frame rate 
rendering and batch LOD simplification. The scene rendering speed and effect can be strengthened by following 
ideas: to improve the schedule efficiency, batch terrain tiles are deal as a schedule unit and re-organized in Z-order; 
memory allocation is adopt to terrain schedule instead of threshold-based schedule; a pre-estimation strategy is 
applied to alleviate tile-lacking phenomena and smooth data exchanges. 

The paper proceeds with a presentation of related work in Section 2. Section 3 introduces the terrain data 
pre-processing and organization. Section 4 describes the memory schedule algorithm in details, including memory 
allocation, priority computation and memory schedule with pre-estimation. In Section 5, comparison experiments 
are provided and the statistical results are analyzed. We make a discussion and present future work in Section 6. 

1   Related Work 

For large-scale terrain rendering, in-core LOD strategy and out-of-core data exchanges are respectively 
necessary to adjust a multi-resolution display and realize the smooth schedule. In this section, the research on 
large-scale terrain rendering is expatiated in two aspects: terrain rendering in-core and terrain scheduling out-of 
core. 

1.1   LOD in-core 

Traditional LOD simplification algorithm[5,6] was view-dependent LOD, which controlled the LOD levels 
based on viewpoint and reaches extra refinement. However, the triangulation computing was time-consumed and the 
capability of GPU accelerations wasn’t fully utilized. Batch LOD simplification algorithms[7−11] divided huge terrain 
into small tiles or batches. Triangles belong to the same tile were uniformly simplified and rendered. The method 
combined the virtues of static LOD and dynamic LOD. Methods above compute LOD by comparing with an error 
threshold. So they can’t satisfy the requirements of interactive frame rate rendering.  

The stable frame rate rendering[4,12−14] uses a heuristic to simplify by evaluating the complexity of scene and 
the capability of graphics hardware. There is no constant error threshold to control the LOD refinement. In 
rendering, the refinement of LOD levels can be adjusted adaptively. Thus, we can get constant frame rate rendering, 
which is independent of the software and hardware environment, scene complexity, roaming manners, etc. 
Therefore, the stable frame rate rendering is more likely to guarantee the immersion when roaming, and it is a 
potential research field. 
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1.2   Out-of-Core scheduling 

Classical out-of-core visualization algorithms[1,2,15,16] were proposed with vertex-based rendering method. 
Lindstorm[1,2] applied file mapping of Windows OS to setup the relations between files and memory, which cost too 
much resources. Bao[15] stored terrain LOD information in a special page structure, which improved utilization and 
reduced the tile-lacking. Pajarola [16] adopt the dynamical scene management and progressive mesh to realize 
out-of-core rendering. The methods mentioned above improve the memory usage. However, theses algorithms are 
not fit for batch-based rendering.  

The schedule algorithms based on batch [3,14,17−20] improved the render quality greatly as well as the memory 
utilization. Ulrich[3] proposed an asynchronous batched-based rendering method for out-of-core terrain data. 
Pouderoux[14] adopt a square area to make schedule for data. For this method need load the most refined data, 
accessing the great deal of data made it unsuitable for fast or flight roam. Other algorithms[17−20] directly calculate 
the terrain errors, and perform scheduling by comparing with a threshold. For the sake of the fixed threshold value, 
it is difficult to realize smooth schedule and stable frame rate rendering. 

2   Data Pre-processing and Organization 

In our approach, the large-scale terrain is organized as levels of pyramid, in which each level data is sampled 
from more refined level. Each level is partitioned into the same pixel-dimension tiled patches, and organized by 
quad-tree. As shown in Fig.1, each node of quad-tree refers to a piece of terrain tile. The quad-tree structure of 
terrain improves rendering efficiency, speeds data schedule and reduces rendering computation. 
 
 
 
 
 
 
 

Fig.1  A quad-tree organization of terrain data 
The terrain tiles are saved as implicit quad-tree, namely, all the nodes are saved in array instead of 

father-children pointers. According to the character of complete quad-tree, the relations between father and children 
can be fast computed. To improve the data continuity, terrain tiles are stored in Z-order, shown in Fig.2. In this 
manner, all the neighbor data can be accessed at one time. The Z-order filling curves preserve the local continuity, 
and reduce accessing time. 
 

 
 
 
 
 
 

Fig.2  The Z-order filling curves for terrain data storage 
In pre-process there are some variables to be computed, such as bounding box, object screen errors, normal 

vectors, etc. These variables are used in both scheduling process and rendering process. The static priorities, used to 
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estimate the object space errors for terrain tile, are computed by 
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The static priorities, presented by triangle area, are in direct ratio with terrain gurgitation and terrain level. 

3   Memory Schedule Out-Of-Core 

This section introduces an algorithm of memory schedule out-of-core in three aspects, including: (1) memory 
allocation strategy——which decides the principle of data exchanging; (2) priority computation---which decides 
data supposed to be loaded in memory with high priority; (3) pre-estimation schedule---which decides data 
candidate for exchanging. 

3.1   Memory allocation strategy 

In an ideal schedule algorithm, the data remaining in memory should contain both current rendering data and 
buffer data. In a roaming, to ensure proper levels of LOD can be loaded and rendered when need, there are two 
conditions required: (1) the data remaining in memory should be an enclosure of rendering data in different LOD; 
(2) extra data need to be rendered in few seconds should be included.  

General schedule algorithms[18] directly calculate the terrain errors, and perform scheduling by comparing with 
a threshold. They are not suitable for stable frame rate rendering for the sake of the fixed threshold value. Another 
kind of algorithms[14] uses a square or round as viewpoint-centered schedule area. Ignoring terrain gurgitation, it is 
difficult for such area to cover all required data. Further more, inaccurate schedule data will cause serious memory 
shortage. 

To improve the scheduling process, we propose a memory allocation schedule algorithm, in which the error 
threshold is unknown but the influence by terrain space error is considered. We can achieve accurate memory 
schedule without a fixed threshold.  

In the memory allocation algorithm, a terrain tile in-core or out-of-core is determined by the available memory 
size. In a limited memory space, the terrain tile with highest priority, namely with most possibility to be rendered, is 
selected to be loaded in-core. Thus the schedule area will be an enclosure of the rendering area. The strategy is as 
following. First, all the available memory CtargetMem is allocated to the root of quad-tree, and the root node allocate 
them to its children recursively. Secondly, make a judge for each node whether the allocated memory is enough to 
hold its data. If the allocated memory is not enough, the related terrain tile will not be loaded in memory. Else the 
related terrain tile will be loaded, and the rest memory will be allocated to its children. The allocate pseudo code 
can be described as follows: 

Algorithm allocate_memory(node,availMem) 
 if (availMem<tileNeedMem) 
   if (node_is_resident_in_memory(node)) 
    put_node_in_outTileSet(node); 
   ruturn; 
 if (node_is_not_resident_in_memory(node)) 
   put_node_in_scheduleTileSet(node); 
 availMem=availMem−tileNeedMem; 
 for (each childNodei∈child_of(node)) 
   childMemi=allocate_in_child(availMem,childNodei); 
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   allocate_memory(childNodei,childMemi); 
  return; 
The rest memory of each node is allocated to its children nodes according to their priority. The principle of 

allocation can be described as 
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Here, allocMemi is the memory allocated for node i, and availMemi is the available memory of its father, sib(i) is 
the sibling of node i, and priorityi represents the schedule priority. 

3.2   Priority computation 

For the sibling nodes, it is necessary to compute the priorities to determine the memory allocation. Priority of 
node manifests the importance of the terrain in view. It is computed as following: 

 2
i i

i
i

staticPriority angleScalepriority
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×
=  (3) 

Here, distancei is defined as the distance from patch i to viewpoint. staticPriorityi, computed in pre-process, is 
object error independent of viewpoint. angleScalei is a variable about the angle between terrain tiles and the sight. 

 MAX(1 ( ) ),0) ( 0)i angle angleangleScale view P V C C= + ⋅ − × ≥  (4) 

Here P is the center of the terrain, V is the viewpoint, P-V is the unit direction from viewpoint to terrain, and view is 
the direction of view. Cangle is a weight to determine the shape of schedule area. 

In the data schedule, we adopt direction angle to decide the shape of schedule area. Comparing with the view 
frustum (Fig.3(a)) or square area (Fig.3(b)) with the center of viewpoint, the direction angle strategy has two 
advantages: In one hand, the schedule data includes those terrain tiles out of the view frustum with high priority. 
When the view direction changes, There will not exist frequent data exchanges. And in another hand, the shape of 
schedule area is controlled by Cangle. It can be adjusted dynamically according to the roaming routes. When Cangle is 
close to zero, the schedule area presents a round shape, which no need make any schedule when direction varying, 
shown in Fig.3(c). When Cangle increases, the schedule area will contain more accurate terrain data of the view 
frustum, fully using of memory space, illustrated by Fig.3(d). In controllable scheduling area, the terrain has higher 
resolution when closer to the viewpoint. With the distance from viewpoint increases, the resolution will become 
low. Along with the view direction, the resolution decreases slowly, but it goes faster with larger direction angle. 

 
 
 
 
 
 

 (a) Schedule area of          (b) Schedule area of square   (c) Controllable schedule area Cangle=0  (d) Controllable schedule area  
view frustum                                                                               Cangle=0.5 

Fig.3  Rendering and scheduling area. V is the rendering area, and V+E is the scheduling area 

3.3   Pre-estimated schedule 

With the free moving of viewpoint, the terrain data in memory will change constantly. When a terrain tile, need 
to be rendered, is unavailable in memory, we call it tile-lacking phenomenon. When tile-lacking happens, rendering 
process will send a message to the scheduling process to perform data exchange. We call such schedule as 
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tile-lacking schedule.  
There are two ways to deal with tile-lacking. One way is the synchronous schedule. The rendering process 

waits the scheduling process reading data out-of-core, then renders. This method guarantees the rendering quality 
instead of the rendering speed. Another way is asynchronous schedule. The rendering process draws the father tile 
with low-resolution display after sending the tile-lacking request, so as to ensure the rendering speed. These two 
approaches cause the jerk phenomenon or low quality. To avoid the tile-lacking, a pre-estimated schedule is 
proposed in this paper.  

Pre-estimated schedule is a method to pre-estimate the data to be rendered after dt time, and to smoothly load 
in memory in time. It guarantees all data is available in memory when needed after dt time. In this way, the 
scheduling process reduces the tile-lacking phenomena and keeps smoothly.  

The pre-estimated view range can be obtained from current viewpoint moving-speed and angle-speed. We use 
dn to replace dt, in order to compute the viewpoint after dn frames as the pre-estimated viewpoint. The schedule is 
performed at each frame, so as to get smooth schedule procedure within dn frames. For a new pre-estimated 
viewpoint, the data for exchanging is denoted by scheduleTileSet = memTileSetnew−memTileSetlast. In order to realize 
smooth schedule, scheduleTileSet/dn of data, which need to be scheduled, is loaded averagely at each frame. The 
schedule order is determined by the needed urgency of tiles, denoted by 

 i
i

availMemurgency
tileNeedMem

=  (5) 

Pre-estimated schedule grantees that data in-core of each level contains data requiring to be rendered. There are 
two exceptions to cause tile-lacking schedule: (1) the schedule area is too small to contain all the rendering area;  
(2) dn is so large that the schedule area can’t cover all data need to be rendered in dn frames. If tile-lacking schedule 
happens in this occasion, we call this kind of schedule as urgent schedule. The scheduling process put lacking tiles 
in the schedule set and assigns them highest urgency priorities. This strategy ensures the priority of lacking tiles, 
and the same time smoothes the scheduling process. 

The set of terrain tiles, which need to be changed out of the memory after dn frames, is defined as outTileSet = 
memTileSetlast−memTileSetnew. However, outTileSet may be still within the rendering area in next dn frames, so these 
tiles can’t be changed out in one time. To avoid changing wrong data, LRU (Least Recently Used) strategy should 
be applied. The releasing order of tiles is determined by their rendering time lately. The searching set in improved 
LRU is confined in a smaller range outTileSet, so the algorithm is performing faster. The memory releasing is 
synchronous to the memory allocating, so as to avoid the second-time tile-lacking. 

Pre-estimated algorithm makes real-time revisal for schedule data when roaming in the whole scene. While the 
moving route departures from the pre-estimated route, the scheduling process will cancel last operation and make a 
new estimation. Using pre-estimated schedule can avoid tile-lacking phenomenon, on the other hand it realized 
smooth data-exchange. And in the mean time, the reduced computation cost help improve schedule efficiency. 

4   Experiments and Results 

We have implemented the smooth schedule algorithm with C++ and OpenGL, and performed on an Intel PIV 
2.8GHz computer with 1G RAM, 128M display memory. Our experiments were tested on the terrain data——Puget 
Sound area, which contains 163852 grids, and each terrain tile are 172. 

Fig.4 shows the path in the terrain for a fly-through. By the stable frame rate in-core rendering algorithm[4], 
20492 grids were rendered with stable output given by Fig.5. 
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Fig.4  Path for a fly-through       Fig.5  The statistics of render time 
First the comparison was made between the traditional schedule algorithm [3] and the proposed pre-estimated 

schedule algorithm to prove the high efficiency and quality. 
Fig.6 (a) shows the number of scheduled tiles at each frame of 2000 frames. Fig.6 (b) illustrates the total 

number of scheduled tiles while tile-lacking happens. Fig.7 (a) and Fig.7 (b) is the statistical results of our proposed 
schedule method with Cangle =0.1, CtargetMem =2000 tiles. As show in Fig.7 (a), since the pre-estimation is adopted, 
the scheduling is smoother and the number of scheduled tiles at each frame is less and keeping stable. In Fig.7 (b), 
the red curve presents the tile-lacking schedule, and the blue curve presents the pre-estimated schedule. From this 
figure, we can see that the lacking tiles are reduced greatly. By the pre-estimated schedule method, it is ensured that 
the rendering quality is keeping as high as possible and the rendering speed is guaranteed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We made frame rate statistics for unsmooth scheduling and smooth scheduling proposed, respectively 

illustrated by Fig.8(a) and (b). In Fig.8(a), the rendering quality and speed affected by unsmooth scheduling. We 
applied the schedule with pre-estimation to ensure the stable rendering with 30 fps in Fig.8(b). 

Normally the in-core simplification can get stable output (shown in Fig.5), however, affected by unsmooth 
terrain schedule, the rendering frame rates become unstable. Using proposed algorithm, we can get balanced 
rendering and scheduling with stable data supplied by schedule strategy. 

 

Fig.6  The statistics of unsmooth schedule 
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Fig.7  The statistics of smooth schedule 
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5   Conclusion and Discussion 

We demonstrated a pre-estimated schedule algorithm to achieve smooth exchanging and rendering large-scale 
terrain data. Comparing with other methods, the main contributions are following: (1) Efficient data structure. All 
terrain tiles are organized in quad-tree and stored as the manner of Z-order filling curves. The terrain data can be 
accessed efficiently and exchanged easily. (2) Memory allocation schedule. It supports stable rendering algorithm 
with unfixed error threshold. (3) Controllable schedule area. It gets the balance between the in-core memory 
requirements and scheduling time. (4) Smooth data exchange. A pre-estimated approach was adopted to smooth the 
data exchange. It guarantees the real-time rendering and interaction.  

Our presented work supplies an effective and smooth schedule algorithm for rendering terrains out-of-core. In 
the future work, we are looking forward to self-adjust the schedule parameters dynamically, so as to achieve more 
accurate and faster terrain rendering. 
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