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Abstract:  In this paper, the strength of AES-256 against the related-key impossible differential attack is examined. 
Firstly, a carefully chosen relation between the related keys is presented, which can be extended to 8-round (even 
more rounds) subkey differences. Then, a 5.5-round related-key impossible differential is constructed. Finally, an 
attack on 7-round AES-256 and four attacks on 8-round AES-256 are presented. 
Key words:  AES-256; cryptanalysis; related-key differential; impossible differential 

摘  要: 研究 AES-256 抵抗相关密钥-不可能差分密码分析的能力.首先给出相关密钥的差分,该差分可以扩展到

8 轮(甚至更多轮)子密钥差分;然后构造出一个 5.5 轮的相关密钥不可能差分特征.最后,给出一个对 7 轮 AES-256 的

攻击和 4 个对 8 轮 AES-256 的攻击. 
关键词: AES-256;密码分析;相关密钥差分;不可能差分 
中图法分类号: TP309   文献标识码: A 

1   Introduction 

AES[1] supports 128-bit block size with three different key lengths(128, 192, and 256 bits). In this paper, we 
examine the strength of 256-bit key version of AES (AES-256) against the related-key impossible differential 
attack, following the work of Refs.[2,3]. 

Related-key attacks[4] allow an attacker to obtain plaintext-ciphertext pairs by using related (but unknown) 
keys. The attacker first searches for possible weaknesses of the encryption and key schedule algorithms, then 
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chooses an appropriate relation between keys and makes two encryptions using the related keys expecting to derive 
the unknown key information. The complexity of the attack depends on the ability of the attacker to predict the 
propagation of the key difference during the key schedule. Related-key differential attacks[5] study the development 
of differences in two encryptions under two related keys. Impossible differential attacks[6,7] use differentials that 
hold with probability 0 (or non-existing differentials) to eliminate the wrong key material and leave the right key 
candidate. And in this case, the attack is called related-key impossible differential attack. 

Among the three variants of AES, the key schedule of AES-256 is a little different from those of AES-128 and 
AES-192. Let NK denote the number of words of the seed key, thus NK=4 for AES-128, NK=6 for AES-192 and 
NK=8 for AES-256. In the key schedule of AES-128 and AES-192, the non-linear transformation is applied only 
once every NK word. While for the key schedule of AES-256, non-linear transformation is applied twice every NK 
words. Thus, it seems that AES-256 is relatively more immune to related-key attacks compared with AES-128 and 
AES-256. The best known related-key attack on AES-256 uses boomerang cryptanalysis and it is applicable to a 
10-round variant of AES-256[8]. And the best known non-related-key attack on AES-256 uses integral 
cryptanalysis[9], and is applicable to 8-round AES-256, which needs almost the whole data of plaintext space. 

Because of the importance of AES, it’s very necessary to constantly reevaluate the security of AES under 
various cryptanalytic techniques. Concerning related-key impossible differential cryptanalysis, there has already 
several works against reduced-round AES-192[1,2,10,11], whereas few work on AES-256. In this paper, we will study 
the strength of AES-256 against related-key impossible differential attack. 

The work in this paper follows those in Refs.[1,2], and starts the attack from the very beginning. Firstly, we 
carefully choose an appropriate relation between the two related keys, which can be extended to 8-round (even more 
rounds) subkeys difference using the key schedule of AES-256. Next, we construct a 5.5-round related-key 
impossible differential characteristic. Using this characteristic, we then present an attack against 7-round AES-256 
and four attacks against 8-round AES-256. The results in this paper and other main results on AES-256 are 
summarized in Table 1. Compared with the results in Ref.[3], we can also see that AES-256 have a better resistance 
than AES-192 using the same cryptanalytic approach. 

Table 1  Summary of the attacks on AES-256 
Source Number of rounds Data complexity Time complexity Number of keys Attack type 

8 2128−2119 CP 2104 1 Integral attack Ref.[9] 
9 285 RK-CP 5×2224 256 RK attack 

Ref.[8] 10 2114.9 RK-CP 2171.8 256 RK rectangle 
7 252 RK-CP 287

8 253 RK-CP 2215

8 264 RK-CP 2191

8 288 RK-CP 2167
This paper 

8 2112 RK-CP 2143

2 RK Imp.Diff 

RK: Related-Key,  CP: Chosen plaintext, 
Time complexity is measured in encryption units. 

Here is the outline of the paper. In Section 2, we give a brief description of AES. In Section 3, we carefully 
choose a key difference between the two related keys, and present the corresponding 8-round subkeys difference. 
Then a 5.5-round related-key impossible differential is constructed. Section 4 gives an attack against 7-round 
AES-256. Section 5 presents four variants of the attacks against 8-round AES-256. Finally, Section 6 summarizes 
this paper. 

2   Description of AES 

The AES algorithm encrypts or decrypts data blocks of 128 bits by using keys of 128, 192 or 256 bits. The 
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128-bit plaintexts and the intermediate state are treated as byte matrices of size 4×4. Each round is composed of 
four operations: 

• SubBytes (SB): applyinging the S-box on each byte. 
• ShiftRows (SR): cyclically shifting each row (the i’th row is shifted by i bytes to the left, i=0,1,2,3). 
• MixColumns (MC): multiplication of each column by a constant 4×4 matrix M over the field GF(28), where 

M is 
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and the inverse of M is 
0 0 0 09
09 0 0 0
0 09 0 0
0 0 09 0

e b d
e b d

d e
b d e

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

• AddRoundKey (ARK): XORing the state and a 128-bit subkey. 
The MixColumns operation is omitted in the last round, and an additional AddRoundKey operation is 

performed before the first round. We also assume that the Mixcolumns operation is omitted in the last round of the 
reduced-round variants. 

The number of rounds is dependent on the key size, 10 rounds for 128-bit keys, 12 for 192-bit keys and 14 for 
256-bit keys. 

The key schedule of AES-256 is slightly different from those of AES-128 and AES-192. It takes the 256-bit 
secret key and expands it to 15 128-bit subkeys, and SubBytes operation is applied twice every 8 words. The 
expanded key is a linear array of 4-byte words and is denoted by G[4×15]. Firstly, the 256-bit seed key is divided 
into 8 words G[0],G[1],…,G[7]. Then, perform the following: 

For i=8,…,59, do 
If (i≡0 mod 8), then G[i]=G[i−8]⊕SB(G[i−1]<<<8)⊕RCON[i/8] 
Else if (i≡4 mod 8), then G[i]=G[i−8]⊕SB(G[i−1]) 
Else G[i]=G[i−8]⊕G[i−1] 
where RCON[ ] is an array of predetermined constants, <<< denotes rotation of a word to the left by 8 bits. 

Figure 1 exhibit the key schedule algorithm of AES-256. 

2.1   Notations 

In the rest of this paper, we will use the following notations: I
ix  denotes the input of the i’th round, while 

S
ix , R

ix , M
ix  and O

ix  respectively denote the intermediate values after the application of SubBytes, ShiftRows, 

MixColumns and AddRoundKey operations of the i'th round. Obviously, 1
O
ix − = I

ix  always holds. 

Let ki denote the subkey in the i’th round, and the initial whitening subkey is k0. In some cases, the order of the 
MixColumns and the AddRoundKey operation in the same round is changed, which is done by repalacing the 
subkey ki with an equivalent subkey wi, where wi=MC−1(ki). 

Let (xi)Col(l) denote the l’th column of xi, where l=0,1,2,3. And (xi)j the j’th byte of xi(j=0,1,…,15), here 
Column(0) includes bytes 0, 1, 2 and 3, Column(1) includes bytes 4, 5, 6 and 7, etc. 
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Fig.1  Key schedule algorithm of AES-256 

3   A 5.5-Round Related-Key Impossible Differential of AES-256 

We will choose the difference between the two related keys as follows: 
((0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(a,0,0,0),(a,0,0,0),(0,0,0,0),(0,0,0,0)). 

Hence, through the key schedule, the subkey differences in the first 8 rounds are presented in Table 2, which 
will be used in our attacks. Note that the subkey differences can be extended to more rounds and only one more 
unknown byte comes forth when one round is added. 

Table 2  Subkey differences required for the attacks in this paper 
Round (i) ∆ki,Col(0) ∆ki,Col(1) ∆ki,Col(2) ∆ki,Col(3)

0 (0,0,0,0) (a,0,0,0) (0,0,0,0) (0,0,0,0) 
1 (a,0,0,0) (a,0,0,0) (0,0,0,0) (0,0,0,0) 
2 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) 
3 (a,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) 
4 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) 
5 (a,0,0,0) (a,0,0,0) (a,0,0,0) (a,0,0,0) 
6 (0,0,0,b) (0,0,0,b) (0,0,0,b) (0,0,0,b) 
7 (a,0,0,c) (0,0,0,c) (a,0,0,c) (0,0,0,c) 
8 (0,0,d,b) (0,0,d,0) (0,0,d,b) (0,0,d,0) 

a, b, c and d are non-zero byte differences. 
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Throughout the attacks in this paper, we assume that the subkey differences are as presented in Table 2. And 
the attacks presented in this paper start from the very beginning, only two related keys are needed. 

In the following, we will present a 5.5-round related-key impossible differential as those in Refs.[2,3]. Firstly, 
we present a 4.5-round related-key differential with probability 1 in the forward direction, then a 1-round 
related-key differential with probability 1 in the reverse direction, where the intermediate differences contradict 
each other. The 5.5-round related-key impossible differential is: 

∆ 1
Mx =((a,0,0,0),(a,0,0,0),(0,0,0,0),(0,0,0,0)) ∆5.5 round−⎯⎯⎯⎯→ 6

Ox =((?,?,?,?),(?,?,?,?),(?,?,?,?),(0,0,0,b)) 

The above differential holds with probability 0, where a and b are non-zero values, ? denotes any value. 

The first 4.5-round differential is constructed as follows: the input difference ∆ 1
Mx  is canceled by the subkey 

difference of the first round. The zero difference ∆ 2
Ix  is preserved through all the operations until the 

AddRoundKey operation of the third round, as the key difference of the second round is zero. Thus, we can get 

∆ 4
Ix =∆k3=((a,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0)), where only one byte is active. Then the next three operations in 

the fourth round will convert the active byte to a complete column of active bytes, and after the AddRoundKey 

operation with k4, we will get ∆ 4
Ox =((N,N,N,N),(0,0,0,0),(0,0,0,0),(0,0,0,0)), where N denotes a non-zero byte 

(possibly distinct). Applying the SubBytes and ShiftRows of the 5th round, ∆ 4
Ox  will evolve into ∆ 5

Sx =((N,0,0,0), 

(0,0,0,N),(0,0,N,0),(0,N,0,0)), where only one byte is active in each of the four Columns. Hence, ∆ 5
Mx =((N,N,N,N), 

(N,N,N,N),(N,N,N,N),(N,N,N,N)). Finally, after the key addition with k5, we can get ∆ 5
Ox =((?,N,N,N),(?,N,N,N), 

(?,N,N,N),(?,N,N,N)). Hence, the input difference ∆ 1
Mx =((a,0,0,0),(a,0,0,0),(0,0,0,0),(0,0,0,0)) evolves with 

probability 1 into a non-zero difference in bytes 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14 and 15 of ∆ 5
Ox . 

The second differential ends after the 6’th round with output difference in any of the four columns 

(∆ 6
Ox )Col(i)=(0,0,0,b), where i=0,1,2,3. Take Column 2 for example, when rolling back this difference through the 

AddRoundKey and MixColumn operations, we get the difference in Column 2 of ∆ 6
Rx  as zero. Hence, 

∆ 6
Ix =((?,?,0,?),(?,?,?,0),(0,?,?,?),(?,0,?,?)). It’s obvious that ∆ 6

Ix =∆ 5
Ox  with probability 1. However, we can see 

that (∆ 5
Ox )2 is a non-zero byte in the first 4.5-round differential, while (∆ 6

Ix )2 is a zero byte in the second 

differential, this is a contradiction. 

Note that we can choose any of the four columns of ∆ 6
Ox  as (0,0,0,b). It’s possible to get better results by 

choosing one column other than others in a certain attack when the values of b, c and d are unknown, this is because 
the differential properties of the key schedule algorithm may be used to reduce the key material guess. But in this 

paper, we can choose any column in ∆ 6
Ox  as (0,0,0,b), and have no influence on the attack complexity. 

4   A 7-Round Related-Key Impossible Differential attack 

Using the above impossible differential, we present an attack on 7-round variant of AES-256 in this section. At 
first, we assume that the values of a, b, c and d are all known, ie., we have two related keys K1 and K2 with the 
required subkey differences listed in Table 2. We will deal with conditions on the related keys to achieve these 
subkey differences at the end of this section. 

In this 7-round attack, we will choose the impossible differential in which Column 3 (the last column) of ∆ 6
Ox  

is (0,0,0,b). 

4.1   The attack procedure 

Precomputation: For all the 264 possible pairs of values of the first two columns of 1
Mx  (ie., ( 1

Mx )Col(0) and 
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( 1
Mx )Col(1)) with difference (a,0,0,0), compute the 8 byte values in bytes 0,3,4,5,9,10,14 and 15 of plaintext P. 

Store the pairs of 8-byte values in a hash table Hp indexed by the XOR differences in these bytes. 
The attack procedure is as follows: 
1. Generate two pools S1 and S2 of m plaintexts each, such that for each plaintext pair P1∈S1 and P2∈S2, 

P1⊕P2=((?,0,0,?),(?,?,0,0),(0,?,?,0),(0,0,?,?)), where ? denotes any byte value. 
2. Ask for the encryption of the pool S1 under K1, and of the pool S2 under K2. Denote the ciphertexts of the 

pool S1 by T1, and the encrypted ciphertexts of the pool S2 by T2. 
3. Insert all the ciphertexts C1∈T1 and the values C2∈T2 into a hash table indexed by bytes 6, 9 and 12. 
4. Guess the value of the subkey byte (k7)3 and perform the followings: 

(a) Initialize a list A of the 264 possible values of the bytes 0, 3, 4, 5, 9, 10, 14 and 15 of k0. 

(b) Decrypt the byte ( 7
Ox )3 in all the ciphertexts to get the intermediate values before the subkey 

  addition in the 6’th round. 
(c) For every pair C1 and C2 in the same bin of the hash table derived in Step 3, check whether the 

corresponding intermediate values are equal. If no, discard the pair. 
(d) For every remaining pair C1 and C2, consider the corresponding plaintext pair and compute P1⊕P2 

in the eight bytes 0, 3, 4, 5, 9, 10, 14 and 15. Denote the resulting value by P′. 
(e) Access the bin P′ in Hp, and for each pair (x,y) in that bin, remove from the list A the values P1⊕x 

and P1⊕y, where P1 is restricted to eight bytes (plaintext bytes 0, 3, 4, 5, 9, 10, 14 and 15). 
(f) If A is not empty, output the values in A along with the guess of (k7)15. 

4.2   Analysis of the attack complexity 

There are m plaintexts each in S1 and S2, which can form m2 possible ciphertext pairs (C1,C2). In Step 3, the 
filtering is done using a 24-bit condition, thus there are about 2−24m2 pairs in each bin of the hash table. In Step 4, 
we have an additional 8-bit filtering (for every possible value of (k7)3 separately), so about 2−32m2 pairs will remain 
for a given subkey guess of (k7)3. Each pair deletes one subkey candidate on average out of the 264 candidates. 
Therefore, the expected number of remaining subkeys is 264(1−1/264)m′ in Step 4(f). And for m′=270, the expected 
number is about e−20=2−28.85, so we can expect that only the right subkey will remain. Hence, we get the value of 72 
subkey bits. In order to get m′=270, we need m=251 chosen plaintexts in each of the two pools. So the data 
complexity of the attack is 252 chosen plaintexts. 

The time complexity of the attack is dominated by Step 4(e). In this step, m′=270 pairs are analyzed, leading to 
one memory access on average to Hp and one memory access to A. This step is repeated 28 times (once for any 
guess of (k7)3. Therefore, the time complexity is 279 memory accesses, which is equivalent to about 273 encryptions. 
The precomputation requires about 262 encryptions and the required memory is about 269 bytes. 

In the above attack, we assumed that the values of a, b and c are known. Here, the value a can be chosen by the 
attacker. The value b is the result of application of SubByte operation, so there are 127 possible values of b given 
the value of a. Similarly, c is also the result of application of SubByte operation, so there are 127 possible values of 
c given the value of b. 

Hence, we need to repeat the attack for all the values of b and c. Therefore, the total time complexity is 
multiplied by 214, the data and memory complexity remain unchanged. 

To sum up, the total complexity of the above attack is as follows: The data complexity is 252 chosen plaintexts, 
the time complexity is 287 encryptions, and the required memory is 269 bytes. 
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5   Four 8-Round Related-Key Impossible Differential attacks 

In this section, we will give four variant attacks on 8-round AES-256. All the four attacks presented are based 
on the 7-round attack in Section 4. As in Refs.[2,3], the main difference between them is a data-time trade-off. In all 
the 8-round attacks, we guess part of the last round subkey k8, peel off the last round and apply the 7-round attack. 
In order to reduce the amount of key bits guess, we also change the order of the MixColumns and the 
AddRoundKey operations in the 7’th round, this is done by replacing the subkey k7 with an equivalent subkey w7. 

We use 7
Wx  to denote the intermediate value after the application of AddRoundKey operation with w7 in the 

7’th round. 

If (∆ 6
Ox )Col(1)=(0,0,0,b), then after the SubBytes and ShiftRows operations in the 7’th round, bytes 1, 4, 14 

must be zero. Next, applying the key addition with w7, we can get (∆ 7
Wx )1=(w7)1, (∆ 7

Wx )4=(w7)4 and 

(∆ 7
Wx )14=(w7)14. 

In order to satisfy the above conditions and make less subkey material guess, we treat only ciphertext pairs that 

have certain properties. Take for example, to make (∆ 7
Wx )4=(w7)4, we only choose ciphertext pairs that satisfy 

(∆ 7
Ox )Col(1)=(0,0,0,z7), where z7 is uniquely determined by (∆w7)4 to make the above condition hold, ie. 

MC−1(0,0,0,z7)=((∆w7)4,?,?,?). Similarly, we can decide the values of two bytes z0 and z12, which make 

(∆ 7
Wx )1=(w7)1 and (∆ 7

Wx )14=(w7)14 respectively. 

The attack can be performed in one out of four possible ways. 
The First Attack   Guess all the 16 bytes of k8, then peel off the 8’th round, and applying the above 7-round 

attack. 
Here we can use the differential properties of the key schedule algorithm. The value of c can be determined by 

b and (k6)15=(k8)11⊕(k8)15. Hence, we only need to repeat the attack for all the possible values of b and d 
respectively. 

Here we require m′=272, then the probability that some wrong subkey guess remains is about 264e−256=2−304. 
Therefore the expected remained data is approximately 2−3042136=2−168, thus we can expect that only the right 
subkey will remain. Hence, 253 chosen plaintexts is needed, and the time complexity is 214×273×2128=2215 
encryptions, and the required memory is 269 bytes. 

The Second Attack  Guess bytes 0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14 and 15 of k8, partially decrypt these bytes 
in the last round. These subkey bytes allow us to partially decrypt the last round in Columns 1, 2 and 3. And treat 
only ciphertext pairs that have zero difference in the remaining 3 bytes (before the key addition with k8, the same 

below). This condition allows us to use 2−24 of the possible ciphertext pairs. Then the difference ∆ 8
Ix  is known, we 

first check whether the difference in byte 0 is z0. This filtering is done using an 8-bit condition. Thus, the remaining 

ciphertext pairs satisfy the condition that byte 5 in ∆ 6
Ox  is zero. Next, calculate the difference in bytes 4 and 14 of 

∆ 7
Wx  and check whether it equals to (w7)4 and (w7)14 respectively. This filtering thus makes bytes 4 and 6 in ∆ 6

Ox   

zero too, and uses a 16-bit condition. Then, guess byte 11 of w7 and continue partial decryption to find out whether 

(∆ 6
Ox )7=b holds, which is done using an 8-bit condition. After this filtering, the remaining ciphertext pairs can be 

used to discard the wrong subkey guesses as in the 7-round attack. 
In this variant of the attack, we guess a total of 112 subkey bits. And a portion of 2−56 of the pairs can be used 

in the attack to discard the wrong subkey guesses. 
Here we can use the differential properties of the key schedule algorithm. The value of c can be determined by 

b and (k6)15=(k8)11⊕(k8)15. Hence, we only need to repeat the attack for all the possible values of b and d 
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respectively. 
Choose a structure of 264 plaintexts which differ only at the eight bytes 0, 3, 4, 5, 9, 10, 14 and 15, and having 

all the possible values in these bytes. Encrypt it under 2 related keys each, which is equivalent to 265 chosen 
plaintexts. One structure proposes about 264×264×1/2=2127 pairs of plaintexts. About 1 structure is needed to get 271 
data pairs for every guess of the 112 bits in the last two rounds, which can be used to delete the wrong subkey 
guess. Each pair discards one possible value for the eight byte guess of subkey k0 on average. Therefore, the 
probability that some wrong subkey guess remains is at most 264e−128≈2−120. Hence, the expected number of subkey 
suggestions is approximately 2−1202112=2−8. Hence, with a high probability only the right value remains. The data 
complexity of this attack is about 264 chosen plaintexts. The time complexity is about 214×271×2112/26=2191 and the 
required memory is about 269 bytes. 

The Third Attack  Guess bytes 0, 2, 3, 5, 6, 8, 9, 11, 12 and 15 of k8. And treat only ciphertext pairs that 
have zero difference in the remaining 6 bytes. This condition allows us to use only 2−48 of the possible ciphertext 
pairs. Then the difference ∆ 8

Ix  is known, we first check whether the difference in bytes 0, 7 are z0 and z7

respectively. This filtering is done using a 16-bit condition. Thus, the remaining ciphertext pairs satisfy the conditon 

that bytes 4 and 5 in ∆ 6
Ox  are all zero. Next, calculate the difference in byte 14 of ∆ 7

Wx  and check whether it 

equals to (w7)14. This filtering uses an 8-bit condition. Then, guess byte 11 of w7 and continue partial decryption to 

find out whether (∆ 6
Ox )7=b holds. This is done using an 8-bit condition. After this filtering, the remaining 

c i p h e r t e x t 
pairs can be used to discard the wrong subkey guesses as in the 7-round attack. 

In this variant of the attack, we guess a total of 88 subkey bits. But only a portion of 2−80 of the pairs can be 
used in the attack to discard the wrong subkey guesses. 

As in the first attack, the value of c can be determined by b and subkeys guess of k8. Hence, we only need to 
repeat the attack for all the possible values of b and d respectively. 

About 224 structures are needed to get about 271 data pairs which can be used to delete the wrong subkey 
guesses. Hence, the data complexity of this attack is about 288 chosen plaintexts. The time complexity is about 
214×271×288/26=2167. 

The Fourth Attack  Guess bytes 0, 2, 5, 8, 11, 12 and 15 of k8, partially decrypt these bytes in the last round. 
And treat only ciphertext pairs that have zero difference in the remaining 9 bytes. This condition allows us to use 

only 2−72 of the possible ciphertext pairs. Then the difference ∆ 8
Ix  is known, we check whether the difference in 

bytes 0, 7 and 12 are z0, z7 and z12 respectively. This filtering is done using a 24-bit condition. Thus, the remaining 

ciphertext pairs all satisfy that bytes 4,5,6 in ∆ 6
Ox  are all zero. Then, guess byte 11 of w7 and continue partial 

decryption to find out whether (∆ 6
Ox )7=b holds. This is done using an 8-bit condition. After this filtering, the 

remaining ciphertext pairs can be used to discard wrong subkey guesses as in the 7-round attack. 
In this attack variant, we guess only 64 subkey bits. But only a portion of 2−104 of the pairs can be used in the 

attack. This leads to a relatively high data complexity, but to a lower time complexity. 
The value of c can be determined by b and (k6)15=(k8)11⊕(k8)15. Hence, we only need to repeat the attack for all 

the possible values of b and d respectively. 
About 248 structures are needed to get about 271 data pairs which can be used to delete the wrong subkey 

guesses. Hence, the data complexity of this attack is about 2112 chosen plaintexts. The time complexity is about 
214×271×264/26=2143. 
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6   Summary 

Using related-key cryptanalysis, better results are achieved against the reduced-round AES compared with 
other traditional cryptanalysis approaches up to now. This fact reflects some weaknesses of the key schedule 
algorithm of AES. 

In this paper, we studied the ability of AES-256 against the related-key impossible differential attack. Among 
the results, we give an attack against 7-round AES-256, and four attacks against 8-round AES-256. The carefully 
chosen related-key difference makes our attack start from the very beginning, not from the third round as in Ref.[2], 
which reduces the attack complexity by a factor of 27 at least. Also the key schedule is used in key byte guessing to 
reduce the time complexity. The results are summarized in Table 1. 

We have conceived and tried to attack 9-round AES-256, but failed. As the subkeys difference presented in this 
paper can be extended to more rounds, so more research is anticipated on AES-256 against the related-key 
impossible differential attack, perhaps 9 or more rounds will be reached. 
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