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Abstract:  Based on the de Casteljau algorithm for triangular patches, also using some existing identities and 
elementary inequalities, this paper presents two kinds of new magnitude upper bounds on the lower derivatives of 
rational triangular Bézier surfaces. The first one, which is obtained by exploiting the diameter of the convex hull of 
the control net, is always stronger than the known one in case of the first derivative. For the second derivative, the 
first kind is an improvement on the existing one when the ratio of the maximum weight to the minimum weight is 
greater than 2; the second kind is characterized as being represented by the maximum distance of adjacent control 
points. 
Key words:  rational; triangular Bézier surface; de Casteljau algorithm; upper bound; intermediate weight; 

intermediate point 

摘  要: 基于 Bézier 三角曲面的 de Casteljau 算法,同时运用一些恒等式和基本不等式,给出了两类有理 Bézier 三
角曲面片低阶导矢的上界.第一类上界是用控制顶点凸包直径表示的,在一阶偏导的情况下,它是对已有上界的改

进;在二阶偏导情况下,当最大权因子与最小权因子比值大于2时,它也是对已有上界的改进.第二类上界是用相邻控

制顶点间距离的最大值来表示的. 
关键词: 有理;Bézier 三角曲面;de Casteljau 算法;上界;中间权因子;中间点 
中图法分类号: TP391   文献标识码: A 

1   Introduction 

Rational Bézier curves and surfaces are well established as a convenient way to represent Computer Aided 
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Design Geometry. In some applications, it is important to have a measure of the size of the lower (first and second 
order) derivatives. For example, in order to detect the inflection points or singularities (cusps or loops) of curves or 
the flatness of surfaces, the magnitude scope analysis of the curves or surfaces’ derivatives is inevitable. The 
efficiency of various algorithms for CAD models, e.g., the algorithms about collision detection or rendering, can be 
enhanced if the upper bounds on the curves and surfaces’ lower derivatives can be calculated in advance. In 
practical applications, the stronger the upper bounds are, the more useful it will be. 

So far, the calculation and the bound estimation of the derivatives of parametric curves and surfaces have been 
studied widely[1−6]. However, in case of rational parametric curves and surfaces, the results included in these papers 
only focus on the calculation and bound estimation of the first derivative. For rational surfaces, the calculation 
formulas and bound estimations are only derived on the tensor product patches, i.e., rectangular patches. The 
evaluation formulas and bound estimations for the rectangular patches, however, are ineffective for rational 
triangular patches, since the three parameters of triangular patches are not independent. Recently, by using the 
direction operator, Zhang[7] has obtained the lower derivatives and bound estimations of rational triangular Bézier 
surfaces. 

Rational triangular Bézier surfaces are used wildly in CAGD and CAD nowadays because these surfaces take 
advantage over rectangular patches in many ways. For example, rational triangular Bézier surfaces are suitable for 
geometry modeling based on irregular and scattered data. By using surfaces constructed over non-degenerate 
triangular parameter domains, we can also avoid the degeneracy of rectangular patches[8−11]. Since rational 
triangular patches are playing an important role in CAGD and CAD, we are motivated to improve the magnitude 
upper bounds on their lower derivatives. 

According to the de Casteljau algorithm for triangular patches, any point in the triangular Bézier surface can be 
obtained from repeated linear interpolation of control vertices. In this paper, we investigate the properties of the 
intermediate weights and intermediate points in the de Casteljau scheme by using some existing identities and 
elementary inequalities. Based on these properties, we obtain two kinds of upper bounds on triangular patches’ 
lower derivatives. The first kind of bound estimations, which exploit the diameter of the convex hull of the control 
net, improve the corresponding result in Ref.[7] in the case of first derivative. For the second derivative, the first 
kind of bounds are stronger than the corresponding results in Ref.[7] when the ratio of the maximum weight to the 
minimum weight is greater than 2. The second type of bound estimations are characterized by using the local 
distance of the control net, namely, the maximum length of the edge of the triangles, to express the upper bounds. In 
applications, we can compute both kinds of bounds for each partial derivative, and choose the smaller one as the 
ultimate upper bound estimation. An application of surface rendering shows that the bounds obtained in this paper 
are useful in practical applications. 

2   Preliminary 

A rational triangular Bézier surface of degree n is defined as 
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functions, and T:{(u,v,w)|u+v+w=1, 0≤u,v,w≤1} is the parametric domain. Since the three parameters are not 
independent, we represent the rational triangular Bézier surface equivalently as follows to ensure the partial 
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derivatives make sense 
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this paper, we still write w instead of 1−u−v. Based on the de Casteljau algorithm for the rational Bézier triangular 
patches[12], we can obtain some identities as follows 
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in the r-th step of de Casteljau algorithm respectively. It follows that , , 
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Compute the ratios of the maximum weight to the minimum one for every triangle and every four adjacent 

triangles (see Fig.1) of the control net respectively, then V1 and V2 represent the maximum ratios respectively;  rL1

represents the maximum distance between arbitrary two adjacent intermediate points in the r-th step of the de  

Castetljau algorithm. Particularly,  represents the maximum distance between arbitrary two adjacent control  0
1L

points;  represents the maximum distance between arbitrary two intermediate points in each four adjacent  rL2

triangles in the r-th step of the de Casteljau algorithm (see Fig.1). 
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Fig.1  Four adjacent triangles in the r-th step of the de Casteljau algorithm 
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The identities derived in the rest of this section will be useful in the later discussion. 
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Substituting , , Eqs.(3), (4) and (5) into the first and second derivatives of nvu 00),( PR = nwvuW 00),,( ω=

Eq.(1) respectively, we obtain 
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3   Properties of Intermediate Weights and Intermediate Points 

As a preparation work for the bound estimations of rational triangular Bézier surfaces’ lower derivatives in the 

next two sections, herein, we investigate the properties of intermediate weights  and intermediate points . r
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The others can be obtained analogously. 
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Property 2. For intermediate weights of the r-th step and (r−2)-th step of the de Casteljau algorithm, we have 
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Property 3. For intermediate weights of the r-th, (r−1)-th, (r−2)-th step of de Casteljau algorithm, we have 
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In the rest of this section, we derive the properties of the intermediate points. 
Property 4. For intermediate points of r-th and (r−1)-th step of de Casteljau algorithm, we have 
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Applying Lemma 1 and Property 3, we have 
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This property implies that the maximum distance between any two adjacent intermediate points of the r-th step 
of de Casteljau algorithm can be bounded by that of the (r−1)-th step multiplying a constant factor V1. 

Property 5. For the intermediate points of the r-th and (r−2)-th step of de Casteljau algorithm, we have 
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Substitute them into Eq.(11), we have 
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By applying Lemma 1 and Property 3, we have 
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Similarly, we have 
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The combination with Property 4 completes the proof. 
This property implies that the maximum distance between arbitrary two points of all four adjacent triangles 

(see Fig.1) of the r-th step of de Casteljau algorithm can be bounded by that of the (r−2)-th step multiplying a 
constant factor V2. 

4   Bound Estimation by Using Control Net’S Convex Hull Diameter 

In this section, we estimate the size of the derivatives by using the diameter of the control net’s convex hull, 
which is denoted as PM. We have the theorems as follows: 

Theorem 1. For the first derivative of any rational triangular Bézier surface of degree n, we have 
|Ru|≤nmax{A1,C1}PM≤nV1PM. 

Proof:  From Eq.(7) and Lemma 1, it follows that 
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Hence from Property 1, we have 
 |Ru|≤nmax{A1,C1}PM≤nV1PM (12) 
  □ 

Similarly, from the last parts of Eq.(8), Eq.(9) and Lemma 1, we have: 
Theorem 2. For the second derivative of any rational triangular Bézier surface of degree n in Eq.(1), we have 

|Ruu|≤[n(n−1)(A2+2E2+C2)+2n2(A1+C1)max{A1,C1}]PM, 
|Ruv|≤[n(n−1)(G2+F2+E2+C2)+n2(A1+C1)max{A1,C1}+n2(B1+C1)max{B1,C1}]PM. 

These results can also be simplified as 

 |Ruu|, |Ruv|≤4n[(n−1)V2+n 2 ]P1V M (13) 

5   Comparison 

In this section, we compare the results proposed in previous section and the ones obtained in Ref.[7]. The 
upper bounds of the magnitudes of the first and second derivative proposed in Ref.[7] are showed as follows 
 |Ru|≤nM2PM (14) 
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It is obvious that bound (12) is an improvement on bound (14). 
When M≥2, we have 
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Therefore, we conclude that when M≥2, Eq.(13) gives a stronger bound than Eq.(15). Similarly, when M≥2, 
Eq.(13) also gives a stronger bound than Eq.(16). We denote the right parts of inequalities Eq.(13), Eq.(15), Eq.(16) 
as M2, M2, M3 respectively. All together, by using the control net’s convex hull diameter to estimate the size of the 
rational triangular Bézier surfaces’ lower derivatives, we obtain the upper bounds as follows 
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6   Bound Estimation by Using Local Distance 

In this section, we establish another type of upper bounds, which only depend on the largest distance between 
the adjacent control points. 
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Theorem 3. For the first derivative of any rational triangular Bézier surface of degree n, we have 
0
1

1
1| LnV n

u
+≤R| . 

Proof:  Let r=n in Eq.(2), we get two identities corresponding to representing and  respectively. r
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Inserting them into Eq.(7), we have 
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Hence 
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By repeatedly using Property 4, we complete the proof.  □ 
Theorem 4. For the second derivative of every rational triangular Bézier surface of degree n, we have 
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Proof:  From Eq.(8), we have 
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By using Lemma 1, Property 2 and Property 5, we have 
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Hence, from Property 5, when n=2m, we have 
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The proof of the bound of Ruv can be similarly completed.  □ 

7   An Application 

In previous sections, we obtained two kinds of upper bounds, both of which could be computed. In 
applications, for each partial derivative, we can choose the lesser kind as the ultimate derivative bound estimation. 
As mentioned, derivative bounds of rational Bézier surfaces are useful in many areas. Here, we take the application 
in surface rendering as an example. 

Triangular Bézier patches are commonly used to represent models for computer graphics, geometric modeling 
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and animation. Large scale models, which are composed of tens of thousands of such surfaces, are commonly used 
to represent shapes of automobiles, building architectures, sculptured models and so on. They are also used in the 
applications involving surface fitting over scattered data or surface reconstruction. Many applications like 
interactive walkthroughs and design validation need to interactively visualize these surface models[13]. Hence, it is 
required to render these surfaces quickly and precisely. To this end, the choice of the global rendering step size 
becomes a crucial work, since unduly step size may result in excessive segments and defect further computations. 
However, step size is sometimes determined by the derivatives bounds. For example, suppose the step size 
in u and directions are the same, we can compute the step size as follows by using Eq.(1) inv  Ref.[14] 
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where δ is the tolerance, I is the set of the triangular patches and i is one patch with second derivative bounds 
being . It is obvious that the adoption of tighter bounds estimated in this paper can speed maxmaxmax || ,|| ,|| i

vv
i
uv

i
uu RRR

up the rendering process. 

8   Conclusion 

In this paper, we obtain two kinds of new upper bounds on triangular patches’ lower derivatives by using the 
properties of the intermediate weights and intermediate points of the de Casteljau scheme as well as some existing 
identities and elementary inequalities. We get the first kind of bounds by using of the diameter of the convex hull of 
the control net. They are always stronger than the bounds obtained in Ref.[7] in the case of first derivative. In the 
case of second derivative, when the ratio of maximum weight to minimum weight is greater than 2, the first kind of 
bounds are more precise than the results in Ref.[7]; we compute the second kind of bounds by using the control 
net’s local distance, i.e., the largest distance between arbitrary two adjacent points. In practical application, we can 
compute both kinds of upper bounds for each partial derivative, and choose the smaller one as the estimation of the 
derivative magnitudes. Example shows that the bounds estimated in this paper are useful in the practical 
applications. 
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