ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.18, No.9, September 2007, pp.2271-2282 http://www.jos.org.cn
DOI: 10.1360/jos182271 Tel/Fax: +86-10-62562563
© 2007 by Journal of Software. All rights reserved.

-

— A RSN TS A
W RY, FEF ZRE

Yy RIE TRER 2 (5 A e TR, BoJpyT iy /R{E 150001)
(M R Tl k2 Ll‘ﬁﬂmfﬁ—%ﬁﬁﬁ%&?ﬂﬁﬁEP!L),ﬁ’i‘iI W RIE 150001)

Techniques of Building a Scalable, Efficient Intrusion Monitoring Architecture

YANG Wu'*, FANG Bin-Xing?, YUN Xiao-Chun?

(Information Security Research Center, Harbin Engineering University, Harbin 150001, China)
?(Computer Network and Information Security Technique Research Center, Harbin Institute of Technology, Harbin 150001, China)
+ Corresponding author: Phn: +86-451-82589638, Fax: +86-451-82589638, E-mail: yangwu@isrc.hrbeu.edu.cn, http://isrc.hrbeu.edu.cn

Yang W, Fang BX, Yun XC. Techniques of building a scalable, efficient intrusion monitoring architecture.
Journal of Software, 2007,18(9):2271-2282. http://www.jos.org.cn/1000-9825/18/2271.htm

Abstract: To perform effective intrusion analysis in higher bandwidth network, this paper studies the data
collecting techniques and proposes a scalable efficient intrusion monitoring architecture (SEIMA) for network
intrusion detection system (NIDS). In the architecture of SEIMA, scaling network intrusion detection to high
network speeds can be achieved using multiple sensors operating in parallel coupled with a suitable load balancing
traffic splitter. High-performance data transfer is achieved through asynchronous DMA without OS’s intervention
by using efficient address translation technique and buffer management mechanism. Multi-rule packet filter based
on finite state machine technique is implemented at user layer to eliminate overhead for processing redundant
packets. The simulative and actual experiment results indicate that SEIMA is capable of reducing the using rate of
CPU while improving the efficiency of data collection in NIDS, so as to save much more system resources for
complex data analysis in NIDS. The method of SEIMA is very practical for network security.

Key words: intrusion monitoring; load balance; data collection; address translation; packet filter; security analysis

H E ATEEZFREAOREFIITH BEINZAR R DM AR T AZAE M 69 245 R AR #3287 —FF+T
¥R S HANZ B MAESR SEIMA(scalable efficient intrusion monitoring architecture). 2 SEIMA 5 #A2A! & 3@ id 45
B MG RE R B B S N FHAT TAEGARAS ML B BABLE S i T A ANARAS YR B) 31 25 6 W %
WP B AR R B RO A EIF R AR Fe G RF REAH I T TR ARG SR P AR %EJU%A%T?F%& VA
124 5 AL A B IR R B A R A A TR A SR 7 kM T R%)ﬂ F Eéﬁy%/ W3R ALE B AR Z
affc#)% Q0 2L B T4 ARIIRS A K FRIRIL T 49 MK 45 R AU SEIMA JE 3R 3 W 45 NAZAR M 2 Lo 48 IR IR F éé rvﬂ
T, 8895 AR A& 46 CPU 69 AR 3 M TR £ % 6 24K R A ﬂ"ﬁa\ﬂtéﬁéﬁ%h\#ﬁﬁﬁi
%ﬁéiﬁ: AR R BI BT IE e B R T I8 S 2 5T

« Supported by the National High-Tech Research and Development Plan of China under Grant No.2002AA142020 ([5 & 5 AR5 &
J# 11 %1(863)); the National Information Security 242 Program of China under Grant No.2005A33 ([5 242 {5 B 2 4= 4)
Received 2005-01-24; Accepted 2006-03-31

HAFIIFEF http:/ www. jos. org. cn

2272 Journal of Software 3kfFZ4% Vol.18, No.9, September 2007

FEESZES: TP393 XHERFRIRED: A

1 Introduction

With the rapidly growing connectivity of the Internet, networked computer systems are increasingly playing
vital roles in our modern society. While the Internet has brought great benefits to this society, it has also made
critical systems vulnerable to malicious attacks. Network security is more and more important. Since a preventive
approach such as firewall is not sufficient to provide sufficient security for a computer system, NIDS is introduced
as a second line of defense and becomes a research hotspot in the fields of network security.

Generally, NIDS captures and filters network packets by monitoring the key network segment passively, and
then uses all kinds of detecting algorithms to find the proof of intrusion from these packets. Once the attacking
events are validated, NIDS either breaks the network connections initiated by the intruders by sending the packet
with flag of RST (FIN) or cooperates with firewall to stop intrusion from happening actively.

Effective intrusion detection requires significant computational resources: widely deployed systems such as
snort!™) need to match packet headers and payloads against tens of header rules and often many hundreds of strings
defining attack signatures. This task is much more expensive than the typical header processing performed by
packet forwarders and firewalls. With the rapid development of the network techniques, the switched network of
100Mbps and 1000Mbps has gradually replaced the traditional shared LAN of 10Mbps, and the network bandwidth
is also increased by many times. The constant increase in network speed and throughput poses new challenges to the
real-time processing performance of NIDS. Therefore, performing effective intrusion detection at high network
speeds (e.g. 1Gbit/s and beyond) requires further improvement on performance of data collection and data analysis
in NIDS.

This paper focuses on the process of data collection in NIDS, presents a scalable efficient intrusion monitoring
architecture (SEIMA) for NIDS. In SEIMA, multiple node machines operate in parallel, fed by a suitable traffic
splitter element to meet the requirement of different network traffic. A high-performance user-level messaging
mechanism (ULMM) and a user-level packet filter (ULPF) are presented and implemented in order to improve the
packet capture performance and packet processing efficiency on a single machine. The intrusion monitoring
platform designed in this paper is highly applicable and deserves popularizing not only for NIDS in a heavy traffic
network but also for other network applications such as firewalls and network charging systems, etc.

2 Related Work

Research on network intrusion detection has been ongoing for many years for producing a number of viable
systems. But with the increasing network throughput in recent years, it is becoming a very important problem how
to split network traffic for reducing payload on a single machine, improve packet capture performance and packet
filter efficiency for eliminating unnecessary packets in high traffic network.

Kruegel, et al.[?) presented a parallel cluster intrusion detection model based on traffic partition. This approach
adopts a slicing mechanism that divides the overall network traffic into subsets of manageable size and accordingly
reduces the traffic load on a single machine.

The traditional endpoint packet capture systems generally use Libpcap (library of packet capture)®® based on
in-kernel TCP/IP protocol stack, but the slow network fabrics and the presence of the OS in the critical path (e.g. the
system call overheads, in-kernel protocol implementations, interrupt handling and data copies) are the main
bottlenecks on every packet sending and receiving. Therefore, inefficient Libpcap cannot adapt to the environment

http:/ www, jos. org. cn

MR F AT R SENEL TS H AR 2273

of heavy traffic network.

Based on the loadable kernel module technique (LKM), Libpacket™ reduces the system overhead of context
switch by saving certain numbers of packets in the allocated kernel buffer and reading multiple packets in a single
system call. In essence, the layered structure of user-kernel in Libpacket doesn’t remove the kernel from the critical
path of data transfer. The main performance bottlenecks are still in existence.

To eliminate main performance bottlenecks during communication completely, zero-copy protocol
architectures for cluster systems were presented, including U-Net/MM™!, VIA®! and VMMCI. These architectures
adopt the flat structure of user-hardware, fully bypassing in-kernel protocol stack in OS and allowing applications
of the direct access to the network interface. The Virtual Interface Architecture (VIA) is connected oriented: each VI
instance (V1) is specially connected to another VI and thus can only send to and receive from its connected VI. The
U-Net/MM and VMMC architectures integrate a partial virtual address translation look-aside buffer into the
network interface (NI) and allow network buffer pages to be pinned and unpinned dynamically, coordinate its
operation with the operating system’s virtual memory subsystem in case of a TLB miss. This definitely increases the
implementation complexity of network card firmware and causes the great overhead because of frequent
pinning/unpinning buffer and requesting pages. In addition, VMMC commonly requires customized high-speed
interconnection network and NI hardware. Whereas, the NIDS passively monitor the TCP/IP network. So the above
communication architectures are not suitable for high-speed network intrusion detection systems.

The traditional packet filter such as BPF® is commonly implemented in OS kernel. When the received packets
are not interesting to the user application, BPF will dropt these packets so as to save system overhead for copying
them from kernel to application. BPF matches packets with multiple filter rules one by one in checking packets,
thus BPF’s processing efficiency is low when the number of rules is many.

3 Key Techniques in Designing and Implementing SEIMA

At high-speed network monitoring spot, data processing performance of a single machine may reach threshold
so as not to meet the need of real-time intrusion analysis. We make use of load balance technique to build a scalable

para||e| intrusion monitoring arcl*]it(.:.cturel which [SOO000000000000000000000000 \'_L]
adopts the computing mode of SPMD to extend or

. . . . n- Node intrusign monitoring platform
shrink by network traffic. The scalable intrusion st toring p
monitoring model is shown in Fig.1, which mainly D% Uit el cizey |
consists of three parts: IDS load balancer, packet ~—————=7 [-——t-—— -~ ——7 |
. Node 1 Node 2
transfer module and packet filter module. : |ohete | l
< g ! Packet o Packet o Packet 1
The IDS load balancer is a custom-built device : tran‘sfer : : traqsfer :.--_.: transfer :
that connects to high-speed network through optical : Pfalcket : : Pfa_li:ket : : Pfqi:ket :
splitter. To split network data stream entering load lL Hter (| Hter JI ll ihter |
—— [—— | L - ——— (R ——
balancer into each processing node of parallel cluster \ \
monitoring architecture, load balancer needs being Fig.1 Scalable intrusion monitoring model

configured with Ethernet network interface of

100Mbps/1000Mbps. A user-level messaging mechanism based on zero-copy technique is employed in packet
transfer module, in concert with which a user-level multi-rule packet filter is implemented in packet filter module.
The number of processing nodes varies with the actual network traffic, one-node machine can also satisfy the
requirement of performance in the common network traffic.

© hEE

HAFIIFEF http:/ www. jos. org. cn

2274 Journal of Software 3kfF2 4% Vol.18, No.9, September 2007

3.1 Connection round robin based load balance algorithm

Since load balancer commonly needs the processing of a large number of network packets, complex algorithm
will reduce the processing efficiency of load balancer. Thus load balancer adopts a simple efficient load-balancing
algorithm for data splitting. The majority of network packets are based on TCP protocol in current heavy traffic
backbone network. For network traffic of TCP connection, an ideal load balance algorithm should meet the
following requirements: 1) data is almost evenly split into every node to ensure approximate load balance among
node machines; 2) bi-directional data of any TCP connection is split into single node to ensure data independence
among node machines. So a load balance algorithm based on connection round robin is employed in the load
balancer, which makes rational and nearly even data splitting with granularity of connection.

For the TCP protocol, a four-tuple with the form of (source IP, destination IP, source port, destination port)
uniquely defines a connection. The connection round robin scheduling algorithm is described in Fig.2.

Given: N is the number of node machines;
m is one-node machine number distributed recently, me[1,N];
A is one-node machine number obtained currently, Ae[1,N];
Initialize m=1;
For every packet p of TCP protocol {
If p is the first packet of a connection (SYN packet)
the entry address obtained A=m mod N+1;
split p into node machine A;
record four-tuple of this new connection and A in HASH table;
m=A;
Else
look up HASH table to find entry address A;
split p into node machine A;
if p is the last packet of a connection or connection is overtime
remove this connection record from HASH table;

}
Fig.2 Load balance algorithm based on connection round robin

For other protocol type (e.g. UDP, ICMP), the entry address may be computed by the simple and direct hashing
of two-tuple (source IP, destination IP). The detailed formula is as follows:

Destination node number=(source IP@®destination IP) mod N.
3.2 Efficient user-level messaging mechanism-ulmm

For improving packet-processing performance of one-node machine and reducing the cost of hardware
resource, a zero-copy, bypass-OS user-level messaging mechanism (ULMM) for intrusion detection is presented and
implemented. In ULMM, the critical path of data communication is removed from OS kernel, thus messages can be
transferred directly to and from the user-space applications by the network interface without any intermediate steps.
The performance of message sending and receiving is greatly improved.

The operation mode of passively monitoring in NIDS indicates that both sides of communication are not
requested to resend packets, even if there are errors in the received messages by NIDS. In this case, error control is
a useless time-consuming operation. In addition, it is unnecessary that ULMM uses the means of flow control to
adjust message transfer speed. ULMM eliminates the system overhead of dynamic allocating/releasing buffer and
pinning/unpinning buffer by allocating a continuous static user-space buffer and pinning corresponding physical
memory pages. Caching the whole virtual-to-physical address table in the kernel space removes the overhead from
the necessary address translation operation of the operating system’s virtual memory subsystem in case of partial
virtual-to-physical address table miss in U-Net/MM.

© R

http:/ www, jos. org. cn

MR F AT R SENEL TS H AR 2275

Message transfer model of ULMM is compared with that in the traditional NIDS, which is shown in Fig.3.
Fig.3(b) clearly shows the architecture of ULMM in three gray modules: Kernel Agent (K-agent), New NIC Driver,
and User-Level Network Interface (ULNI). The block arrows describe the data flow, while the line arrows describe
the control flow. The module of ULNI provides the API library for the application, in which API functions are
defined in Table 1. Kernel Agent and New NIC Driver do all the real work to copy the data from NIC memory to
user process’s memory. Specifically, Kernel Agent obtains the physical addresses of the application’s memory range
and then creates the buffer ring. This buffer ring holds all the packets copied from NIC waiting to be filtered by the
packet filter in Section 3.3. And the New NIC Driver asks Kernel Agent for the physical address table of this buffer
ring which is used by asynchronous DMA of NIC and initiates DMA to transfer packets between the application’s
buffer ring and the on-chip memory of NIC. In comparison with the traditional message transfer model in traditional
NIDS, ULMM greatly improves the packet capture performance bypassing the system kernel, which makes packet
capture more practical in high-speed network.

Intrusion detection application Intrusion detection application
User space Libpcap ‘ Libnet ULNI User space
Kernel space Tr JL Kernel space
b
Raw socket
Kernel Agent
Kernel protocol ¥
Old NIC driver New NIC driver
__ I i .
Network interface card (NIC) Network interface card (NIC)
(a) Message transfer model in traditional NIDS (b) Message transfer model in ULMM

Fig.3 Comparison of two message transfer models

Table 1 API library for ULMM

ULMM_OPEN Open ULNI and do initialization
ULMM_LOOP Callback function for application
ULMM_GETDATABLOCK Read packets from user buffer in ULNI
ULMM_SENDDATABLOCK Send packets in user buffer in ULNI
ULMM_FREEDATABLOCK Release used buffer block

3.2.1 Translation mechanism for virtual address in user space

ULMM directly transfers packets between the application’s buffer and the on-chip memory of NIC by
asynchronous DMA. The use of DMA transfer between host and network interface memory introduces two
problems. First, most systems require that every host memory page involved in a DMA transfer be pinned to prevent
the operating system from replacing that page. Second, typically the network interface’s DMA engine must know
the physical address of each page it transfers data to or from. Since the DMA facility accesses the physical memory
address space, whereas application uses virtual address space, one main difficulty in designing ULMM is the
translation between virtual address of user buffer and physical address accessed by DMA. In addition, if each
message transfer involves pin-down and release kernel primitives, message transfer bandwidth will decrease since
those primitives are quite expensive. So, how to pin/unpin physical pages is another problem to consider.

The user application allocates a continuous user-space memory as message buffer statically (we call it
UserBuff) and coordinates with a loadable kernel module (K-agent) to inform it about the starting virtual address
(UserBuffAddr) and size of user buffer through API library provided by ULMM. Linux kernel currently uses a three

© hEE

HAFIIFEF http:/ www. jos. org. cn

2276 Journal of Software 3kfF2 4% Vol.18, No.9, September 2007

level page table for virtual address translation. K-Agent completes translation from virtual address to physical
address and pins physical pages by means of related kernel functions operating on the page table. The translated
physical addresses are cached in kernel space in the form of the virtual-to-physical address table (PhyAddressTable)
and PhyAddressTable covers all the physical addresses of the user buffer blocks accessed by network interface,
which avoids unnecessary address translation operation of the operating system’s virtual memory subsystem in case
of the partial physical address table miss in U-Net/MM. The method to acquire some virtual address’s physical
address and pin it is described as follows, in which page_num is the pre-computed number of pages, the initial value
of vir_addr is UserBuffAddr.
For (i=0; i<page_num; i++, vir_ddr+=PAGE_SIZE)
{
[*physical address translation for user buffer*/
pgd_t*pgd=pgd_offset(current—mm, (unsigned long) UserBuffAddr);
pmd_t*pmd=pmd_offset(pgd, (unsigned long) vir_ddr);
pte_t*pte=pte_offset(pmd, (unsigned long) vir_ddr);
PhyAddressTable[i]=(pte_val(*pte) & PAGE_MASK);
[*lock the user buffer page*/
page=pte_page(*pte);
set_bit (PG_locked, & page—flags);
atomic_inc(& page—count);
}
3.2.2 Message buffer management mechanism supporting multi-thread
High performance user-level communication architecture generally requires a large memory to cache messages,
which can achieve a very high throughput. ULMM saves packets in a big buffer allocated in user space statically,
buffer management mechanism of which is shown in Fig.4. This figure indicates that the user buffer is divided into
sending buffer and receiving buffer that are separately used during packet sending and receiving, which makes
ULMM support full duplex communication mode and avoid mutex lock operation.

Receiving buffer Sending buffer
| Block1 | Block2 | .| | Block1 |Block2 | ... |

User space

Kernel space F

Rech.\ RFrete' '. SendQ" SFreeQ

- hd b

‘ Kernel Agent ‘

¥

‘ ‘ | PhyAddressTable | \ |

———» Data pointer = « «p- Control flow

Fig.4 Message buffer management mechanism of ULMM

© PEBREBAIHTUR hupy/www. jos. org. en

MR F AT R SENEL TS H AR 2277

Every user buffer is also divided into many buffer blocks with size of 2KB, each of which is for saving a
network packet frame. For supporting application’s multi-thread access to message buffer without data copies on
SMP processor so as to improve application’s packet processing efficiency, K-Agent allocates four buffer rings to
manage the user buffer in kernel space: sending busy ring (SendQ), receiving busy ring (RecvQ), sending free ring
(SFreeQ) and receiving free ring (RFreeQ), each of which includes descriptor items for buffer blocks. The item of
data block to be sent is put in SendQ ring, the item of the received data block is put in RecvQ ring and the item of
the free data block is put in SFreeQ or RFreeQ ring.

Each item structure consists of two fields (index,size): 1. Index corresponds to block number; 2. Size
corresponds to size of packet in data block. ULMM maps four kernel rings into user space by virtue of mmap
function provided by memory mapping mechanism in Linux, so as to make user process and kernel module share
buffer management rings.

3.2.3 Efficient packet sending and receiving mechanism

Message transfer process in ULMM is shown in Fig.5. Packet receiving process is O—-@—-@—->@—->B—-®,
and a detailed description of which is as follows: When a new packet arrives, new NIC Driver gets the item of a free
data block from the head of RFreeQ ring and acquires pinned physical address of this free data block from the
physical address table (PhyAddressTable) according to the block number (index) of the item, and then initializes
asynchronous DMA to transfer packets. When DMA transfer is finished, an interrupt is generated. New NIC Driver
puts the item of the data block just filled with packet at the tail of RecvQ ring in interrupt handler. When the
application needs to process packets, application gets the item of a busy data block with packet from the head of
RecvQ ring and reads the packet in this user buffer block in terms of index of the obtained item. After application
processes the packet, it puts the item of the data block just used at the tail of RFreeQ ring. In a similar manner, the
packet sending process is (1)—(2)—(3)—>(4)—(5)—(6) in turn.

User receving ®) User sending
buffer buffer
/
— — 3
8 5 S
S 3 2
3
>
%% o
—_ = — S D . = . B == —

) PR s |®
1 .
= PhyAddress ==]
o
3 Table 3|3 @
X / 2
(ORN @) N

¢ | DMA | [Eﬁj

_ controller

Rx ring Tx ring

— —» Sending — Receiving

) Data flow = Control flow

Fig.5 Packet sending and receiving process in ULMM

http:/ www, jos. org. cn

2278 Journal of Software 3kfF2 4% Vol.18, No.9, September 2007

3.2.4 Simulative testing for ULMM

For high-performance network intrusion detection systems, packet capture is the main consideration. In the
following, we focus on testing the packet capture performance of ULMM and compare with those of the existent
packet capture models.

Simulative experiment environment is as follows: Two machines are connected with each other by Ethernet in
the same local domain. One is special for packet sending (configuration: Router Tester GbE/4 1000Base); the other
is special for packet capture (configuration: CPU-PIII1G*2, Memory-2G, Network card-Intel 1000Mbps Ethernet
card). The packet capture mechanism is separately Libpcap, Libpacket and ULMM.

We test peak throughputs of Libpcap, Libcapture, Old NIC Driver and ULMM on different packet sizes and the
results are shown in Fig. 6. Peak throughput of ULMM increases with the packet size and reaches its threshold at
the point of about 1500B because of zero-copy technique that eliminates the memory copy between the kernel and
the user applications, which shows that ULMM is a high-performance packet capture library. Peak bandwidth of
Libpcap does not vary too much with packet size and reaches peak value of 196.38Mbps at the point of about 512B,
this is the result of the traditional kernel protocol used by Libpcap. For each different packet sizes the throughput of
ULMM is much greater than that of Libpcap or Libpacket. Fig. 6 also indicates that there is a crossover between the
curves of ULMM and OId NIC Driver, and this is because Old NIC Driver uses the limited kernel buffer
allocated/released dynamically to cache packets, ULMM employs a big static buffer in the user space for saving
packets in order to eliminate the overhead of frequent allocating/releasing buffer, whereas the overhead of Old NIC
Driver’s allocating/releasing buffer declines with the gradual increment of the packet size.

Figure 7 shows the results of the average CPU idle rates of Libpcap, Libpacket and ULMM with different
packet sizes at peak throughput. The CPU idle rate of ULMM increases with the packet size because the system
overheads of interrupt handling and DMA initialization declines continually. The CPU idle rate of Libpcap reaches
the lowest value at the point of 256B, and this is the result of the tradeoff between the overhead of hard interrupt
handling and that of data memory copy. For each different packet size, the average CPU idle rate of ULMM is much
greater than that of Libpcap or Libpacket, which indicates that NIDS will save more CPU cycles for other
computing tasks besides the packet capture.

1000 1 T T T T T — 90
900 g —~ 804
4 L o
7 800 / S
T Q
'§ 700 + . B 704
S 500 / —-—Lillépcap] @]
5] —#—0Ild NIC driver S 60 .
% 500 - . ULMM > | / —_— .
S 4001 / —w—Libpacket S 50l / —
e] ® .-
= 3001 / '/_rqfv 1 g 40' < / ___
g 200] [A a] g / e Liboeti®
& 1 S e z ibpcap
100 1 !/ J 30 .AH‘W ULMM
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Packet size (Byte) Packet size (Byte)
Fig.6 Peak throughput of libpcap, libpacket, old Fig.7 Average CPU idle rates of libpcap, libpacket and
NIC driver and ULMM with different packet sizes ULMM with different packet sizes at peak throughput

3.3 Multi-Rule user-level packet filter-ULPF

The packet filter is a subsystem to reduce the volume of data to be analyzed by the security analysis module by
removing non-interesting network packets, and at the same time protects the NIDS itself from hostile attacks such

http:/ www, jos. org. cn

MR F AT R SENEL TS H AR 2279

as DOS/DDOS. To keep away from packet dropping, the packet filter simply analyzes some fields of the packet
header, such as IP address, TCP/UDP port number and TCP flag. After this filter, the number of the packets left for
the detection analysis is largely decreased. Based on the zero-copy user-level messaging mechanism, a multi-rule
packet filter-ULPF (user-level packet filter) is implemented at the user layer.

The traditional packet filters, e.g. BPF, are often implemented in the system kernel and drop those
non-interesting packets according to the application’s requirements. Different from the traditional packet filters,
ULPF has to be implemented in the user processes to work with the zero-copy ULMM in Section 3.2.

ULPF uses a rule description language to define fields to be checked in the packet headers, and the action is
followed once the packet satisfies a precondition. A precondition is composed of equations and logical operators in
ASF-like grammar. The filtering rules are the form of “packet|precondition—action”. For example, a rule is defined
as follows: packet(p)|(p.e_type=ETHER_IP) && (p.protocol!=IP_TCP) && (p.protocol!=IP_UDP) &&
(p.protocol!=IP_ICMP) && (p.protocol!=IP_IGMP)—Drop, means that Ethernet packet will be dropped if its
protocol type of IP layer is unknown.

In practice, the packet filter often uses a larger number of filter rules. To satisfy the requirements of both the
performance and multi-rule filter, ULPF is designed for the following goals:

1) Single scan of the packet. That is, a packet can be processed only once and all the rules satisfied by the
packet should be found.

2) Changeless time. That is, the system execution time is insensitive to the number of rules. For example, when
the number of rules doubles, the matching time is much less than double.

We build the multi-rule packet

. . - . . .
filter model in ULPE as a DFA void Build (struct node v) {/* v is a node in automaton, extra information are attached

to each node: p is the field offset to be inspected, m is the set of already

(deterministic finite automata). At first, matched rules and c is the set of candidate rules */
. If (v.c is empty)
all the filter rules are prEprOCESSEd and return; /* if no candidate rule, terminate the procedure */
a DFA is built from all the equations, v.p=select(v.c); I* select the field offset to inspect in the node v */
buildbranch (v.p); /* create all the possible branches of node v, each branch

and then the header fields of the

analyzed packet are scanned from the for (each rule r in v.c){
if (r has test relevant to v.p) {
if (test for equality) {

has a edge to it from v, with corresponding value */

left to the right and go through the

DFA. During the scanning, the if (r can be matched after this test)

. . . dd r int tched rule set of the b h with di lue;
unrelated fields are skipped as an idea e|sz r into matched rule set of the branch with corresponding value;
of adaptive pattern matching presented add r into candidate rule set of the branch with corresponding value;

}

in Ref.[9], which speeds up the packet if test for inequality) {

filter. The algorithm for automata if (r can be matched after this test)

- . - - add r into matched rule set of the branch with corresponding value;
construction is shown in Fig. 8. else
Function Build() is recursive and the add r into candidate rule set of all the branches except the branch

. . ith di lue;
entire automata can be established by with corresponding value;
invoking Build(root), where the root is }
else

add r into candidate rule set of all branches;

}

associated with an empty matching set
and a full candidate set containing all }
L for (each branch v’)
of the specified rules. Build (v'); /* recursively call Build for v/ */
We capture packets from the }
actual network environment with

Fig.8 Algorithm for automatic construction of ULPF
Tcpdump tool and save them in

© hEE

HAFIIFEF http:/ www. jos. org. cn

2280 Journal of Software 3kfF2 4% Vol.18, No.9, September 2007

test.tcpdump file. We test packet-filtering time of ULPF and BPF with different number of filter rules on
test.tcpdump and the results are shown in Fig.9. The processing time of BPF gradually increases with the increment
of the number of filter rules, because BPF checks rules one by one for every packet. ULPF uses an automatic
algorithm to build packet filter model, so its processing time is nearly invariant with the number of rules. For each
number of filter rules, the processing efficiency of ULPF is much greater than that of BPF.

354

254 /
20: /

151 —a—ULPF
1 —e—BPF

10+

Packet filtering time (s)

5_

0+ T T T T T T
0 5 10 15 20 25 30 35

The number of rules

Fig.9 Time of packet filtering with different number of filter rules
4 Testing Results in Actual Environment

1. To validate the scalability of SEIMA, we test the relation between the actual connecting network bandwidth
and the minimal number of node machines that is needed. The results are shown in table 2. The traffic load on each
node machine is almost even and each node machine seldom loses packets in every group of experiment. From this
table, we can include that SEIMA is capable of processing the ever-increasing data volume in a high-speed network
at the cost of certain hardware resources.

Table 2 The results of experiments on SEIMA

Actual network bandwidth (Mbps) 612 2192 4656
The number of node machine 2 8 16

2. ULMM based on zero copy is the core component in SEIMA, and performance of ULMM decides the cost
and practicability of monitoring platform. To further validate the practicability of SEIMA, we test ULMM and
compare it with other models in the actual environment. The actual testing environment is described in Fig.10, in
which the connecting optical fiber is from the ISP (internet service provider) of China Telecom and the bandwidth is

Testing machine 1 about 1.6Gbps. Three testing machines are of
45 the same configuration: CPU-PIII1G*2,
Memory-2G, Network card-Intel 1000Mbps

Ethernet card. We separately run ULMM,

Testing machine 2 Lib d Libpack . hine 1
f i ibpcap and Libpacket on testing machine 1,
| B —

Optical splitter

Connecting optical fiber

testing machine 2 and testing machine 3. The

results of experiments are shown in Fig.11 and

Testing machine 3 g 12 which indicate that packet capture

E performance and the CPU idle rate of ULMM

Fig.10 The actual testing environment are the highest of the three packet capture
models in actual environment. So SEIMA

http:/ www, jos. org. cn

BR F AT R HEAZRNTFEH AR 2281

which adopts ULMM can save much more system resources for the complex data analysis in NIDS.

900 -
] 1201 —=—Libpcap
800+ — —o—Libpacket
— 1 S ULMM
w700+ —m—Libpcap > 100+
o T —o—Libpacket T
2 6007 ULMM > g0l
- =
2 500 g
%” 400t 2 60
£ 300+ ©
% 200 & p' y .W' l_f q ! g 407
& 1 & S
1004 i < 90
0 r T T T T T T T 1
0 50 100 150 200 0 50 100 150 200
Sampling point Sampling point
Fig.11 Processing performances of three packet Fig.12 CPU using rates of three packet
capture models in actual environment capture models in actual environment

3. We use snort 2.0 as an intrusion detection experiment system, modify the source code of snort 2.0 and
separately use Libpcap and ULMM as its packet capture interface. Thus we separately run snort+Libpcap and
snort+ULMM on testing machine 1 and testing machine 2 described in Fig.10. The results of experiments are shown
in Fig.13 and Fig.14, which can be drawn that ULMM can indeed greatly improve packet processing performance
and the CPU idle rate of the intrusion detection system.

100 T T T

110 -
904 —m—Snort+Libpcap | 100-f= --3’
— —o—Snort+ULMM <
g 807 1 S 90 L
s 70 s g 1 £ 80
*g_ 60+ 1 g 704
£ 504 3 604
S] o] |
£ 40 g 501 == Snort+L|bpcap
o 304 > 404 [—o— Snort+ULMM
S 20 g 301
- g 2
10- z 1
0 T T T 10 T T T
0 50 100 150 200 0 50 100 150 200
Sampling point Sampling point
Fig.13 Processing performances of two intrusion Fig.14 CPU using rates of two intrusion
detection systems in actual environment detection systems in actual environment

5 Conclusion

To meet the need of real intrusion analysis in high traffic network, this paper designs and implements a
scalable efficient intrusion monitoring architecture (SEIMA) for intrusion detection. In SEIMA, the load balance
algorithm based on connection round robin scheduling is employed to split network data; an efficient zero-copy
user-level messaging mechanism (ULMM) is implemented by means of the statically allocated message buffer,
static address translation table and special buffer management mechanism; a multi-rule user-level packet filter at the
user layer (ULPF) is built by using an automatic algorithm. The application in an actual environment indicates that
SEIMA is very practical for network security applications.

© hEE

HAFIIFEF http:/ www. jos. org. cn

2282 Journal of Software 3k#33R% Vol.18, No.9, September 2007

References:

[1] Meoch R. Snort-Lightweight intrusion detection for network. In: Valian P, Toddk K, eds. Proc. of the 13th System Administration
Conf. Seattle: USENIX Association, 1999. 229-238.

[2] Kruegel C, Valeur F, Vigna G, Kemmerer R. Stateful intrusion detection for high-speed networks. In: Abadi M, Bellovin S, eds.
Proc. of the 2002 IEEE Symp. on Security and Privacy. Berkeley: IEEE Computer Society, 2002. 266—274.

[3] Libpcap. 2002. http://www.tcpdump.org/release/libpcap-0.7.2.tar.gz

[4] Yang W, Fang BX, Yun XC, Zhang HL. Research and improvement on the packet capture mechanism in Linux for high-speed
network. Journal of Harbin Institute of Technology (New Series), 2005,12(5):494—499.

[5] Welsh M, Basu A, von Eicken T. Incorporating memory management into user-level network interfaces. Technical Report,
TR97-1620, Cornell University, 1997. http://www.cs.cornell.edu

[6] Eicken V, Vogels W. Evolution of the virtual interface architecture. IEEE Computer, 1998,31(11):61-68.

[71 Dubnicki C, Iftode L, Felten EW, Li K. Software support for virtual memory-mapped communication. In: Anderson T, Culler D,
eds. Proc. of the 10th Int’l Parallel Processing Symp. (IPPS’96). Washington: IEEE Press, 1996. 372—-381.

[81 McCanne S, Jacobson V. The BSD packet filter: A new architecture for user-level packet capture. In: Begel A, McCanne S,
SLGraham, eds. Proc. of the 1993 Winter USENIX Technical Conf. San Diego, 1993. 259-269.

[9] Sekar RC, Ramesh R, Ramakrishnan IV. Adaptive pattern matching. SIAM Journal on Computing, 1995,24(6):1207-1234.

YUN Xiao-Chun was born in 1971. He is a
professor of the Harbin Institute of
Technology and a CCF member. His
current research areas are computer
network, etc.

YANG Wu was born in 1974. He is an
associate professor of Harbin Engineering
University. His current research areas are
network security, etc.

FANG Bin-Xing was born in 1960. He is a
professor of the Harbin Institute of
Technology and a CCF senior. His research
areas are computer network and
information security, etc.

© PEBREBAIHTUR hupy/www. jos. org. en

	Introduction
	Related Work
	Key Techniques in Designing and Implementing SEIMA
	Connection round robin based load balance algorithm
	Efficient user-level messaging mechanism-ulmm
	Translation mechanism for virtual address in user space
	Message buffer management mechanism supporting multi-thread
	Efficient packet sending and receiving mechanism
	Simulative testing for ULMM

	Multi-Rule user-level packet filter-ULPF

	Testing Results in Actual Environment
	Conclusion

