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Abstract:  The existence of faulty sensor measurements in wireless sensor networks (WSNs) will cause not only a 
degradation of the network quality of service but also a huge burden of the limited energy. This paper investigates 
using the spatial correlation of sensor measurements to detect the faults in WSNs. Specially, (1) a novel approach of 
weighting the neighbors’ measurements is presented, (2) a method to characterize the difference between sensor 
measurements is introduced, (3) a weighted median fault detection scheme (WMFDS) is proposed and evaluated for 
both binary decisions and real number measurements. Theoretical analysis and simulation results show that the 
proposed WMFDS can attractively obtain the high detection accuracy and considerably reduce the false alarm 
probability even in the existence of large fault sets. It is demonstrated that the proposed WMFDS is of excellent 
performance in fault detection for WSNs. 
Key words:  wireless sensor network; fault detection; weighted median; spatial correlation; WMFDS (weighted 

median fault detection scheme) 

摘  要: 无线传感器网络中的错误测量数据会导致网络服务质量下降和能量浪费.提出了一种通过融合邻居节点
的测量数据来实现故障检测的策略.主要做了以下 3 项工作:(1) 提出了一种新颖的对邻居节点测量数据进行加权
的方法;(2) 提出了一种衡量测量数据之间差距的方法;(3) 提出了基于加权中值的故障诊断策略WMFDS(weighted 
median fault detection scheme),它同时适用于二进制决策和实数测量值.理论分析及仿真结果表明,即使节点发生故
障的概率很高,提出的诊断策略也能得到很高的检测精度和较小的误判率,这表明在无线传感器网络故障检测中应
用该方法具有很好的性能. 
关键词: 无线传感器网络;故障检测;加权中值;空间相关;WMFDS (weighted median fault detection scheme) 
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1   Introduction 

A wireless sensor network (WSN) consists of a large number of small sensor nodes, which are equipped with 
sensing, data processing, and communication components. Usually sensor nodes are densely deployed to monitor 
the environment. During the lifetime of network, the measured data or the detected decisions are transmitted to a 
base station[1−4]. 

The resource constraint devices are confronted with the challenges of ensuring accuracy of observations while 
conserving power resources. Sensor data is subject to several sources of faults, such as hardware crash, security 
attack, or environment disturbance[5−7]. The faulty data is negative for the networks: (1) it decreases the judgment 
accuracy of the base station; (2) It increases the traffic in the networks; (3) It wastes much limited energy. 
Therefore, the networks must identify the faulty sensor data and a localized generic scheme for each node is highly 
preferred in WSNs. 

In this paper, we propose the weighted median fault detection scheme (WMFDS) for WSNs. In many data 
centric applications of sensor networks, the nearby sensors are likely to have similar measurements. To detect faulty 
measurements, we assume the faulty measurements are uncorrelated, while normal measurements are spatially 
correlated. In other words, readings from faulty sensors are geographically independent, but readings from sensors 
in close proximity are spatially correlated[8]. 

The rest of the paper is organized in the following way. We first review the literature in the fault detection area 
in Section 2. Then, we define the network model and fault model in Section 3. A fault detection scheme is proposed 
in Section 4. We analyze the performance of the proposed scheme in theory in Section 5. After that, the simulate 
results are presented in Section 6. Finally, the paper is concluded in Section 7. 

2   Related Work 

Recently, fault tolerance in WSNs has drawn much attention from the researchers[9−13]. Krishnamachari, et al.[9] 
introduced a distributed solution for the binary detection of interesting environmental events. They took into 
account the possibility of sensor measurement faults and developed a distributed Bayesian algorithm for detecting 
such faults. They proposed three decision schemes for fault recognition, in which the Optimal Threshold Decision 
Scheme (OTDS) is the best. Subsequently, Luo, et al.[10] discussed how to choose neighbor size and how to address 
both the noise-related measurement error and sensor fault simultaneously in fault-tolerant detection. However, they 
didn’t explicitly attempt to detect faulty sensors; instead, they proposed algorithms to improve the event detection 
accuracy in the presence of faulty sensors. One other shortcoming is that their proposed schemes are only for the 
binary decision situation. 

In Ref.[11], the taxonomy for classification of fault in sensor networks and the first on-line model-based 
testing technique was introduced. This approach can be applied on an arbitrary system of heterogeneous sensors 
with an arbitrary type of fault model. However the technique is centralized. It is up to the base station to collect 
sensor node information and conduct the on-line fault detection. 

Using management architecture, a failure detection scheme called MANNA was proposed for WSNs[12]. The 
scheme created a manager, which has the global vision of the network, to perform complex tasks such as retrieving 
the node state and detect node failure. However, the centralized management and overhead communication may not 
realistic for many applications. 
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A distributed fault detection algorithm was proposed in Ref.[13] to locate the faulty sensors in the WSN. It 
calculates the measurement difference between neighbor sensors at different time to find if the current measurement 
of a sensor is different from its previous measurement. If the measurement changes over the time significantly, it is 
more likely the sensor is faulty. However the algorithm can only detect the fault once for a continuous fault. In other 
words, when the faulty measurement continues, which is common in WSN, the algorithm can’t detect the fault 
except the first time. 

Our WMFDS is a purely localized, generic, scalable fault detection scheme for WSNs. It does not need any 
physical position information. Even when half neighbors are faulty, it can still successfully identify most of the 
faulty sensors. 

3   Network Model and Fault Model 

Our scheme can be applied in network models including grid topology and random topology. Fig.1 shows a 
sample deployment, which includes 10 percent faulty sensors. In this paper, we don’t care for the concrete 
application such as event detection or environment monitor and only require the spatial correlation in neighbor 
measurements. 

Sensors are considered as neighboring sensors if they are within the transmission range of each other. Each 
node regularly broadcasts its measured data or binary decision to all its neighbors. 

Fault may occur at different levels of the WSN, such as physical layer, hardware, system software, and 
middleware[14]. As sensors are most prone to malfunction, we focus on the sensor fault by assuming all software is 
already fault tolerant. That is to say, nodes are still able to receive, send, and process when they are faulty. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Sensor nodes deployed with uncorrelated sensor faults (denoted as “×”) 

4   Localized Fault Detection 

In this section, we will first give some definitions for the denotations. Then, the weighted median and a 
measure to the difference between two sensor measurements will be introduced. Lastly we will present the 
WMFDS. 

4.1   Definitions 

Table 1 summarizes the notations we will use in our discussion. 
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Let the measured data of a sensor be x. Some of them may not be accordant to the ground truth. Now we 
consider the sensor ni. It has N neighbors and their measured values are xj (j=1,…,N), and their corresponding 
weights are λj (j=1,…,N), which represent their corresponding confidence degrees. Our objective is to justify 
whether ni’s measured data xi is faulty or not by exploiting the neighbor sensors’ measurements. 

Table 1  Summary of notations 
Symbol Definition 

p Probability of failure of a sensor 
ni The ith sensor in network. 
N Number of neighbor sensors 
xi Measurement of sensor ni 

ix  Weighted median of ni’s neighbors’ measurements
λ Sensor’s confidence degree 

λmax Initial confident degree 
ξ The maximum tolerant error range 

 

4.2   Median and weighted median 

Firstly, we consider the median of the neighbor sensors’ measurements. Assuming xj (j=1,…,N) are in 
increasing order, the median can be formulated as follows: 
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where MED is the median operation, which outputs the middle of a distribution: half the values are above the 
median and half are below the median. Then, we introduce the weighted median based on confidence degree as an 
extension of median: 
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where ◊ characterizes duplication operation given by: 
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The procedure of the weighted median can be stated as follows: sort the neighbors’ readings, duplicate each 
reading xj to the number of the corresponding weight λj and calculate the median value from the new sequence. 

According to the measurement xi of the sensor node ni and the weighted median ix  of its neighbor sensors’ 
measurements, we define a decision function ),( ii xxf  as follows: 
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where ξ is a predefined threshold. In WSN applications, ξ is set to the tolerant error ratio of the sensor 
measurements. That is to say, if the deviation of the measure value from the true value is less than ξ, the 
measurement is regarded as right. 

Based on the decision function, we introduce a definition of confidence degree of a sensor. Let a positive 
integer λ represent the confidence degree of a sensor. λmax is the initial confidence degree for all sensor. i.e. all λ 
gets the same λmax as an initial confidence degree at the beginning. During the networks lifetime, we set λi=λi−1 if 

),( ii xxf =1. When λi reaches zero, the sensor ni perhaps fails and its state should be reported to a base station. It is 

up to the base station to decide the further actions such as repair or replacement etc. 
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4.3   Fault detection scheme 

According to the preliminary work, we propose the weighted median fault diagnose scheme (WMFDS) as the 
following three steps: 

1. Obtain the sensor measurements xj and the confidence degree λj of all Ni neighbors of sensor ni 
2. Calculate the weighted median value ix  using Eq.(2) 
3. Calculate ),( ii xxf  using (4) 

If ),( ii xxf =0 

xi is right 
Else 

(i) xi is faulty 
(ii) Set λi=λi−1 
(iii) If λi=0, report node failure state to a base station 
 □ 

5   Analysis of the Proposed Fault Diagnose Scheme 

To make theoretical analysis, we will make the assumption that the difference between normal neighbor 
sensors’ measurements is less than ξ. Let xk (k∈[1,N]) be in increasing order. m is the number of the normal sensors. 
l is the number of faulty sensors whose measurements are lower than the right measure range and h is that of the 
higher. Let ℜm={xk|l+1≤k≤l+m}. 

We introduce two metrics to measure the performance. Detection accuracy (P00) is the probability that a faulty 
sensor is diagnosed as faulty. Similarly, False alarm probability (P10) is the probability that a normal sensor is 
diagnosed as faulty. In the process of the fault detection, we need to improve the detection accuracy while reducing 
the false alarm probability. The probability of a sensor being faulty is p (0≤p≤1). We will analyze the detection 
accuracy and fault alarm rate with respect to various probability p in the following. 

5.1   Detection accuracy 

When the weighted median belongs to the abnormal measure range (i.e., ix ∉ℜm), a faulty sensor can be 

diagnosed as good in our WMFDS. Let αm represent the probability of the weighted median belonging to faulty 
measurement range 
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If the weighted median belongs to the abnormal measure range, partial faults can be detected and the 
probability β (0≤β≤1) is 
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So far, the detection accuracy can be formulated in the following form 
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If all weights are all the same, the weighted median fault detection scheme becomes a median fault detection 
scheme (MFDS). And we get the following theorem. 

Theorem 1. For detection accuracy, the WMFDS is better than the median fault detection scheme. 
Proof:  In a given situation, β and p are fixed value to all schemes. From Definition 1, we can draw that 
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Let MP00  represent detection accuracy using the median fault detection scheme, and |}|{ lhmPM
m −<=α . 

Formulation (9) can be rewritten as M
mm αα ≤ . 

Then, we have 
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 □ 

when β is fixed, we can see from Eq.(7) that if 
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,1,0 Nmmα , the detection accuracy P00 reaches its upper 

bound. When M
mm αα = , the detection accuracy P00 reaches its lower bound. Figure 2 shows the theoretical 

probability of detection accuracy with β=0 and 
2
1

=β . Detection accuracy decreases monotonically as the increase 

of sensor fault probability. It also can be drawn that the larger β, the higher detection accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Theoretical detection accuracy (N=4) 

5.2   False alarm probability 

In WMFDS, a normal sensor is diagnosed as faulty if the weighted median is faulty, the false alarm probability 
P10 is given by 
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From Eq.(11), it can be drawn that when 
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Figure 3 shows the theoretical value of the false alarm probability. The probability of false alarms is very low, 
even when the sensor faulty probability is relatively high. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3  Theoretical probability of false alarm (N=4) 

5.3   Analysis of energy consumption 

Since WSNs belong to a special category of networks where energy efficiency is critical for their existence[15], 
we give the analysis of the additional energy consumption in this subsection. Energy consumption of a sensor node 
can be divided into three domains: sensing, data processing, and communication. Of them, a sensor node expends 
maximum energy in data communication, which includes transmission, reception, idle, and sleep[1]. The relation can 
be formulated as follows in general: 
 ETRANSMISSION≈ERECEPTION≈EIDLE>>ESLEEP≈ESENSING≈EDATAPROCESS (12) 

When a node transmits its data packets, all its neighbor nodes can receive the packets due to the broadcast 
feature of radio. A node judges whether its measurement is faulty or not by use of these received packets, instead of 
requiring any additional packet. So the additional communication energy consumption is little, even equals zero. 
The energy consumption of data processing correlates with the time complexity of the data fusion algorithms. The 
detailed comparison of additional energy consumption is shown in Table 2. 

Table 2  Comparison of additional energy consumption 
Additional communication Schemes ETRANSMISSION ERECEPTION EIDLE ESLEEP

Sensing 
ESENSING

Data processing 
(time complexity) 

OTDS No No No No No O(n) 
MFDS No No No No No O(nlogn) 

WMFDS Transmit/Receive a more byte 
for each data packet No No No O(nlogn) 

From Table 2, we can see that the additional energy consumption for executing fault detection scheme is 
considerably little compared to the whole energy consumption in the network. Furthermore, by avoiding the 
detected faulty measured data spreading in the network, a great deal of energy can be saved and the network lifetime 
can be prolonged. 
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6   Simulation Results 

We conduct some experiments to evaluate the performance of the proposed WMFDS using MATLAB. The 
scenario consists of 900 nodes placed in a 30×30 square of unit area with grid topology. The communication radius 
determines which neighbors each node can communicate with and it is set to 1.1 so that each node can only 
communicate with its immediate neighbor in each cardinal. Binary measurements and real number measurements 
are simulated respectively in our experiments. We set the threshold λmax=10, ξ=0.1 in our experiments. 

6.1   Binary decisions 

In many event detection scenarios, only binary decision should be transmitted to a base station. The binary 
model is obtained by placing a threshold on the measurements of sensors. Each node can get its neighbors’ decisions 
(0 or 1)[8]. Assuming the nodes are placed in event region, a node’s binary value is 1 if the sensor node is normal 
and 0 if the sensor node is faulty. The confidence degree λ is set to 10 for normal sensors and random positive 
integer less than 10 for faulty sensors. The results of the proposed WMFDS are compared with that of 
Krishnamachari’s Optimal Threshold Decision Scheme (OTDS)[9] with respect to the sensor fault probability p. 
Fig.4 and Fig.5 show the performance measures for the detection accuracy and the false alarm, respectively, with 
the simulation results of WMFDS and OTDS. Obviously, compared with the OTDS, the detection accuracy is 
considerably improved and the false alarm rate is highly reduced by using our WMFDS. Especially, when there are 
about 25% of the sensors being fault, the detection accuracy is about 98% and the false alarm rate is about 1%. 

 
 
 
 
 
 
 
 
 
 

Fig.4  Detection accuracy of binary decisions       Fig.5  False alarm rate of binary decisions 

6.2   Real number measurements 

Unlike the OTDS, the WMFDS is capable of dealing with real number measurements in addition to binary 
decision. In fact, raw data is needed instead of binary decision in many applications, for example in the Great Duck 
Land experience, they need real temperature, humidity and other data. 

The ground truth measurement at a given node in a given instant is denoted with γ. The measured value is 
denoted as x. Generally, the observed measurement xi of sensor ni can be represented as: 
 xi=γi+εi (13) 

The noise is modeled as a Gaussian distribution ε~N(µ,σ2). In the experiences, we simulate four cases 
according to the typical parameters (Table 3): 

In Table 3, N(±50,1) means that εi is randomly set to N(50,1) or N(−50,1). 
 
 

1.0

Sensor fault probability (p)

D
et

ec
tio

n 
ac

cu
ra

cy
 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

OTDS
WMFDS

0.05  0.1  0.15 0.2  0.25  0.3  0.35 0.4  0.45  0.5

0.35

Sensor fault probability (p) 

Fa
ls

e 
al

ar
m

 ra
te

 

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.05  0.1  0.15 0.2 0.25  0.3  0.35 0.4  0.45  0.5 

OTDS
WMFDS



 

 

 

1216 Journal of Software 软件学报 Vol.18, No.5, May 2007   

 

Table 3  Simulation parameters 

 γ ε λ 
Case 1 100 N(50,1) 1 for all sensors (i.e. without weight) 
Case 2 100 N(50,1) 10 for normal sensors; Random integer less than 10 for faulty sensors 
Case 3 100 N(±50,1) 1 for all sensors (i.e. without weight) 
Case 4 100 N(±50,1) 10 for normal sensors; Random integer less than 10 for faulty sensors 

We repeat the experiment 100 times. The average of detection accuracy and false alarm rate are shown in Fig.6 
and Fig.7 respectively. In all case except Case 1, the detection accuracy is fairly high and false alarm rate is 
considerably low. 

 
 
 
 
 
 
 
 
 
 

Fig.6  Detection accuracy of real number measurements  Fig.7  False alarm rate of real number measurements 

In Case 1 and Case 3, for all sensors have the same weight, the weighted median degenerates into median. 
From Fig.6, it can be seen that Case 2 is better than Case 1, and Case 4 is better than Case 3. This is consistent with 
Theorem 1 presented in Section 5. In our theoretical analysis, Eq.(7) implies that detection accuracy increases with 
the increasing value of β. Here β equals 0.5 in Case 3 and Case 4, whereas equals 0 in Case 1 and Case 2. In Fig.6, 
detection accuracy in Case 3 and Case 4 is higher than that in Case 1 and Case 2. 

Figure 7 shows the excellent performance of our WMFDS with respect to false alarm rate. By comparing Case 
2 and Case 4 with Case 1 and Case 3 in Fig.7, it can be seen that the weighted median has reduced the false alarm 
rate greatly. Again, this is consistent with our probability analysis. 

Overall, our scheme outperforms the pervious fault detection scheme proposed in Ref.[9] in terms of binary 
decisions. Also our scheme can be applied to real number measurements, and get considerable attractive detection 
accuracy, at the same time keeping the false alarm rate relatively low. 

7   Conclusion 

In this paper, we have modeled and analyzed the fault detection scheme based on the spatial correlations 
among the sensor observations in wireless sensor networks. Both mathematical analysis and simulations show that 
due to special correlations, most of the fault measurements can be detected. Benefiting from this, significant energy 
can be saved to prolong the network lifetime by avoiding these faulty measurements transmission in network. The 
proposed scheme will benefit the research on wireless sensor network by providing a novel way of fault detection. 
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