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Abstract: A specia quantum error correction scheme is proposed to protect the flow of transmitted quantum

information in complex channels. Based on the derived syndrome, an algorithm is devised for the construction of

the called quantum event-error correction code, which can correct simultaneously random and burst quantum errors.

Moreover, the constructed code can detect the length, the number and even the exact location of the occurring errors

in the listed error event.
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Quantum information has stimulated much interest with rapid development of quantum communication and

guantum computation. An important issue in quantum information is quantum error prevention'”, detection? and

correctiont®*#. So, the quantum error-correcting code is now an active area of research!®. Since the pioneer

investigations were proposed to defend decoherence in entangled states'®”, many works considering to construct the
quantum error correction codes(QECC) have been presented®®. These codes, which are means of storing
information in a certain set of qubits in such a way that it can be extracted even though a subset of the qubits have
been changed in an unknown way, are fundamental parts in the investigation of the quantum information and
guantum computing. It is an optimal candidate in quantum information for quantum error-correction, which
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compensates effects of quantum noise by introducing redundancy like the classical error correction code.

While the possibility of correcting decoherence errors in entangled states was discovered®”, many works
considering QECC have been presented!® ¥, All these investigations may be divided into two categories, i.e., oneis
to construct codes for correcting quantum random errors’® ¥ and the other is to design codes for defending quantum
burst errors*>*¥, |n the first category, errors happen in some random positions. To correct this kind of errors, the
guantum error-correction code is designed to maximize the minimum number of corrected singular error symbols.
Currently, such a category of errors has been intensively investigated, and hence many good quantum
error-correction codes have been proposed with big error-correcting ability, which are decided by the weight of the
constructed code. However, in the second category, errors happen in consecutive qubits with a fixed error length d.
To correct this kind of errors, the burst error correction code is proposed to maximize the minimum length of
corrected errors, which has a character of correcting errors with a fraction of fixed length.

While random errors and burst errors occur simultaneously in a quantum code, detection and correction of
errors are more complex. A simple way is to divide these errors into M separated (single) error events. Each event
can be described by a binary vector in which the first and last bits are always “1"s. Since there are three basic
errors, i.e., the bit flip error, the phase error and the mixed error of bit flip and phase errors*¥ occurring possibly to
a qubit, quantum error events may also be divided into three kinds, i.e., quantum bit flip error event, quantum phase
error event and quantum mixed error event. By far, there is no research on how to correct quantum event error by
the quantum approach. To correct quantum event errors in a quantum code, a new code which is called as quantum
event-error correcting (QED) code isfirst investigated in this paper.

1 Descriptions of Quantum Event Errors

In a two-dimension Hilbert spaceH®?, a qubit can be denoted by| Yf}:a|0>+ﬂ| 1. Since disturbance of the
environment, errors may occur to such a qubit. Let ¢ be an arbitrary quantum error with error operation in
{E;:i=1,2,...,n}occurring to the qubit | ), where

E =6l +§X+6Z+8&Y D
€.(x=0123) are unit vectors, and operators X=c, Z=c, and Y=—iXZ denote the bit flip error, the phase error and
the mixed error of bit flip and phase error.

The quantum bit-flip error event (QBEE) can be described as,

& :(a:l’aZ""vai(ex))' (2
where a =a,,, and a<{0,1} forl<k<I(e,), andI(e,) denotes the length of e,. If a=1, the corresponding qubit

subjects to X error, otherwise there is no error occurring to the i-th qubit. Suppose there is a QBEE occurring to a
guantum code, the corresponding quantum bit-flip event error can be described by an n-dimensional vector,

Pij (ex)=(w:ewi) ©

i-1 n-j
Clearly, there are at most n—I(e,) possible event errors which start at positionsi corresponding to e,.

Mathematically, the QBEE, i.e., e, can be obtained by the mapping e,=¢(«) that transforms «<{0,1}" to e, by
remaindering the bits between the first and last bit “1"s in the vectora. Let e, and e, be two QBEEs with

lengths of I(e, ) andl(e,,) . Without loss of generality, suppose I(e, ) <I(e,,). The addition of two QBEES can
be defined ase,, =e, +e,, with the following rules: @) zero pads e, at the beginning such that the new vector has
lengthl(e,,) . b) Add the resulting vector to e, in GF(2). Denote a set of distinct QBEEs by E, ={e{",..., e}
and lengths of the respective error events in E, by I(E,) ={I(e™),..., (&)} , where M, =|E, | is the size of E,.
Then a QBEE set E, isclosed if and only if ¢(el” +el®) e E, for el”,el? e E, with pzq.
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In a similar way, one can describe the quantum phase error event (QPEE) with the length of I(e) by
e, =(b;,b,,...,b,), withthe corresponding quantum phase event error expressed by p; ; (e,)=(0,...,0,¢,,0,...,0) .
‘ ' .

i-1 n-j
Based on e, and e,, the quantum flip-phase error event (QFEE) may be described by two binary vectors of the
length of I(e,) ase, =(a,,8,,....8,) |01, 0,, 0y ) = (€ |€,), Wherea, =b, =&, , =b, =1 and a=b<{0,1}
(1<k<l(e,)).Define the corresponding error by

p.;(€,)=(0..0,,0..0]0,..0.¢,,0....0) (4)
’ i-1 n—j i-1 n—j

In terms of Eq.(1), errorsrising e, €, and g, in a quantum code may be represented by unitary operators X, xB,
X%z, respectively, where z1,6,&{a.f}. Suppose a basis{|v,):v, e{04",i=1..,2"} in H®", then one has
X =|v +a), and Z7|v.) = (-)"’|v,) .

The error operator of QBEE, QPEE and QFEE may be generalized by p(E™)=(-1)*X*Z” where 1e{0,1}.
Obviously, QBEE, QPEE and QFEE are especial cases of E™ corresponding to /=0,e=0, and o=/ respectively. In
addition, there is a more general event error with . Thus, the quantum error event may be generalized by the

following vector,

e = (™ &) = (p(a™) | p(5™)), (5)
where 1<m<M, +M,, (@)= (@™ af"..a{)  o(f™) = B b7 ...b{, )

2 Construction of Quantum Event Error Correction Code

In this section, we show how to construct the stabilizer quantum code for event-error correction. Since a
guantum error correction code can detect both quantum bit-flip event errors and quantum phase event errors at the
same time and location (errors corresponding to QFEES occur in this case), only QBEEs and QPEES need to be
considered in the following sections.

2.1 Syndrome of quantum event-error detection code

The particular code we wish to present may be best described by using the stabilizer formalism™™, which
provides an elegant and simple way to understand the process of the encoding operations.

A stabilizer quantum code ((n,2"%)) is defined to be a vector space V; stabilized by a subgroup S of Pauli group
G, on n qubits, such that S(—I¢S) have k independent and commuting generators denoted by {g;:i=1,2,...,k}. There
isagood way of expressing these generators by exploiting the check matrix H which is a Kx2n matrix denoted by

o | p
H=|:|:] (6)
a B
where a,;,3;€{0,1} ",(1<i<k), and the i-th row is the generator g; described in the same way asin Eq.(5).
Consider a stabilizer S={ g;:1<i<k} with k generators, and the event error operator,
g =Xz 1<i<k. @)

Obviously, & =1and ee, =e;e , where ¢=0 or 3=0. Then a set of vectors xeH", which satisfiese |x)=|x)
forms a (n—k)-dimensional stabilizer quantum code Q.
Suppose a quantum event-error correction code Q be described by a (ky+kz)x2" check matrix H with k=k;+k,.
Especially, based on Eq.(6), the check matrix can be expressed as,
9y :{H W, 0 }{h{”...hgﬂ 0 } -
0 H? 0 h®  h

koxn
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Theorem 2.1. H isatotally singular matrix if and only if
H lgfzn : (H I,Ezzln)T = Ok1><k2 (9)
Let L be the length of the longest quantum error event in E, i.e., L = max{I(E,),I(E,)} . To correct any event
error p, ; (€) , the linear combination of the columns of H from i to i+L-1, from n+i to n+i+L-1 and the event

error p,; ;(€) hasto be nonzero. Especially, to correct an event error such that Eq.(5) for arbitrary m and [(e™), the

syndrome can be composed as,
min{l(e("‘)),n—i} (€9 0
S = Z [hat Jb&(m) +[h(z)Jal(m) (10)
t=1 i+t
In matrix form, Sm can be rewritten as,
min1 (€™),n-i} (" () (M)
S = hl(j) bt(m) (11)
t=1 hi+t &
wherel(e™) = max{l(e!™),1(e™)} . I1f1(el™) = I(e!™) (without loss of generality, suppose I(e™)<I(e™), zero
pads eim) at the beginning such that the resulting vector has the same length asl(e{™) to compute s™. To correct
such an event error, the above syndrome must satisfy
s"#0 (12)
The syndrome is a kytk, dimension vector, which shows the error event type m and the location i of the

detected errors. First k; rows of vector s" with nonzero show errors from the QPEES corresponding to H ) and

kyxn

the last rows k; of vector with nonzero show errors from the QBEEs corresponding to H ézz)n . Furthermore, from the

number of “1"s in the syndrome, one may obtain the exact number of quantum random errors occurring in the
corresponding error event. Hence, the syndrome shows us not only the type of error event, but also the length, the
location and even the total number of random errors occurring in the error event, which can be shown by,

det ected—errors

L+ 1(@M),... (13)

n

In general, if the event error p; (&) forr =x,z, which is detected by the syndrome s, is the unitary operator, the

error in the quantum code can be corrected. To correct such an event error and recover the original state, one only
needs to carry out the operator p; (8.) again on the received quantum states.

However, to correct errors corresponding to more error events, one has to design the compositional syndrome.

Let 2™ =(0

T

& egm)))Xl,ef"‘)), which is obtained by arranging L—1(e™ ) zeros in front of €™ . According to

Eq.(5), one obtains the error matrix
=) =x =@ =@

= 0 S eeSar S S
= _ | T MeL : :
- = = : :

) =
ML= ML

whereM =M, + M, . Lety ™ = (h{?, h{),...h» )" andy @ = (h{?,h{},...h? )" for 1<j<L be columns of matrix

HY and H®

kyxn koxn

(14

respectively. Then vectors,

0 = (0 Y e, 0,00 £ = (02D 02, 0,.0) (15

ka kg
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denote columns of the check matrix H. A syndrome S for general quantum event errors from the error matrix =
may be composed as

x) =2 x) = =(2)
z Y (0+hy=1n L-1| ¥ @) =1h Z |_ ~1+h)=1h
h=1|,, (2 =) (2 —(X) h=1| o (D) =%

W(o+h)~1h ‘/’( +hy= ‘/’(o+h)~1h
: (16)
( ) =(2) '—( )
Z ‘//(0+h L-1 V/(1+h)—-Mh z L 1+h) =
h=1 X) (1) =X h=1 (2) H(X)
(0+h)‘—‘Mh W(1+h)~Mh (0+h)‘—‘Mh

The syndrome Sis an MKL matrix. Denote rows of Sfrom m(k—1)+1 to mk by S™, which consists of the syndrome of
event error type m calculated by using check matrix H. By using the similar trick to analyze the syndrome s™ of

an error event, one can detect lengths, numbers, and locations of the occurring random errors corresponding to
multiple error events.

For convenience, we define two “existence” functionss- (), @ () . If &-(S") =1, Then S must be nonzero
matrix for the given matrices = and H, otherwise, ¢.(S")=0. In asimilar way, if@- (H)=1, H must be totally
singular, otherwise, w_(H) =0.

2.2 Analgorithm for construction of quantum event-error correction codes

In this subsection, we investigate how to construct a quantum event-error correction code by exploiting the
syndrome S. Obviously, to construct such a code, the check matrix which gives rise to a nonzero syndrome s™ for

arbitrary error evente™ needs to be yielded explicitly. In the following we present an approach for constructing
such a check matrix.

For a given error matrix = , firstly, we choose vectors 9,y {9 ...,y of ky-dimension and vectors

yi? .. of krdimension asL columnsof H{? and H{  of the check matrix in Eq.(8) respectively,
to create an initial matrix
™ ,,® )
Wi aWo WL 0
Vo = 7 B R (17)
{ 0 wfng..qw}

suchthat ¢.(S,”°)=1 and @.(y,)=1. Then create the second matrix y; by cutting the first column and adding a
new column h, ={h® ,h®} in the matrix o, i.e.,

y —{wéx’,wéxﬂ---,h{” 0 } (18)
1~ z 2
0 v ¥

Finally, matrices ya,y5,...,u, ae created in a similar way by adding hgh,,...,h,. and cutting
w0, respectively until the n-L-th matrix. Each matrix , satisfies the following conditions,
ez(S) =1, @:-(y,) =1 (19)
where S” denotes a syndrome of vy for k=0,1,...,n-L. Utilizing the initial matrix v, and added columns
hy,ha,....he 1, the matrix H is obtained,
~ {wf” R NN
0

H =

0
Z, zZ 4 Z, (20)
V/{),wé),---,wﬁ),h”}

whereh® = (h{? h{?,....h{)).
The above procedure may be done by a finite quantum condition machine (FQCM). Define now a FQCM

whose starting condition is labeled by an arbitrary matrixy, such that &:(S,”°)=1 anda_(y,)=1, and the

transition (edge) condition is labeled by h, from each existing matrix y, to any existing matrix . Since al
matrices wi(k=0,1,...,n-L) satisfy Eq.(19), the check matrix H may be obtained by walking through the FQCM and
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reading off the edge label hy in turns.
Many paths may be chosen in the FQCM for completing the check matrix, i.e., many h, s can be chosen at each
step for creating yi. Since paths that produce a large number of different syndromes do not always result in good

codes because of higher probability of producing zero elements of the vector s}m) in syndrome S, how to choose an
optimal h, becomes an important problem. Consider a path of length n, and denote the set of positions of all
event-errors by Q™ ={l:1<1 <n,s™ =}, where error event of type m gives rise to the same syndrome s. Let AT

be the size of Q" (i.e, A =|Q:"|), the occurring probability of two quantum error events that produce zero
element of the syndrome (ignoring the edge effect) is
Pris2 = 2. Zpﬂhpmz n-n
S1,S2 My, My

In a similar way, the occurring probability of three or more quantum error events can be obtained. Then the total
probability of producing a zero s of syndrome Sis

Pm's = z PmS,m (22)
m>1

The condition for the optimal h isto minimize pyjss.

m My
S S (21)

Based on the above theory, an algorithm comes for the construction of quantum event-error correction code
with minimizing the probability of producing zero element of sin syndrome S.
An algorithm for finding the check matrix H:

Step.1 For agiven error = , find all yo and ensure - (S,”°) =1 anda@ (v,) =1. Denote the set of all possible

Step.2 Select randomly amatrix g from V.

Step3 Let H0: Wo-

Step.4 For 1<k<n-L repeat:

- For all edges h, emanating from  do:

(1) CreateQ, (h, ) =y, , such that Eq.(19). (2) Assuming that Q, isa check matrix, calculate P, (Q, ) - (3)
Find alabel h which minimizes P, (Q, ) . (4) Continue (5). Lety, =y, .

- continue

Step.5 H = H such that Eq.(20)

It is necessary to remark that the 2n-dimension vector (u, |u,) satisfyingH,-u," +H,-u,’ =0 forms the

quantum event-error detection code Q. These vectors are generated by G = (G, |G,) , whereH, - GZT +H, ~GxT =0
for H,=(H*0)7, and H,=(OH?)".

3 Discussion and Conclusion

A quantum event-error correction scheme is put forward for correcting any event errors from the listed error
event sets. And, the process of the construction is introduced based on the syndrome inferred in this paper. Since the
designed quantum code can easily point out the exact location of single errors symbol by utilizing the syndrome, it
may be more convenient to use such a code to correct these different errors in the complex quantum channels. In
fact, it is easy to prove that the code can detect random quantum errors with an upper bound

3n-1(e)) >

0<i<l(e,)

n+A-2
( 11 leT |*, where 1(e,) is the length of the error event and |E, | is the size of the listed

error event. For the other hand, the code can detect quantum burst errors with length d. Therefore, compared with
the two kinds of previous QECCs (i.e., quantum random error-correction code and quantum burst error-correction
code), the proposed code has an advantage of detecting two different kinds of errors at the same time, namely, the
code can detect a fraction of errors which consists of either quantum random errors or quantum burst errors, and it
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hence has more ability to detect quantum errors with more efficiency.
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