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Abstract: A kind of interference, called direct access interference, is found in the calculus of Mobile Resources 
(MR), which will cause more damage than the grave interference one finds in the calculus of Mobile Ambients, 
because in MR malicious environments or contexts can freely access the sensitive resources inside a process. This 
kind of interference should be regarded as a program error. To control the direct access interference, we devise a 
variant of MR, the calculus of Safe Mobile Resources (SR). The authors use a type system to avoid the occurrence 
of all direct access interferences. Due to the study, the grave interference is a special form of the direct access inter-
ference, which is also controlled in SR. At the end of the paper, several examples are provided to illustrate how to 
use the new calculus and how robust it is. 
Key words: concurrency; mobile computing; process calculi; type system; mobile resources 

摘  要: 在移动资源演算(MR)中发现了一种干扰现象,称为直接访问干扰,该现象比移动灰箱演算(MA)中的墙干

扰现象更具破坏力,因为在 MR 中恶意的环境或上下文可以不受限制地访问进程内部的敏感资源.因而该干扰问题

当被视为一种程序运行错误.为了控制直接干扰现象,提出了一种MR的变体:安全移动资源演算(SR).它使用了一种

类型系统来避免所有的直接访问干扰的发生.基于该研究,MA 中的强干扰现象实际上是直接访问干扰的一种特殊

形式,自然地,在 SR 中也得到了相应的控制.最后给出一些用例,说明如何使用新设计的演算系统,以及它的健壮性. 
关键词: 并发;移动计算;进程演算;类型系统;移动计算 
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1   Introduction 

The calculus of Mobile Ambients[1] (MA) is proposed for better modeling and describing the properties of the 
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mobile processes than other calculi (such as π-calculus). In MA, each process, who wants to move, should initiate 
the movement activity by itself. For instance, n[in m.P]|m[Q] → m[n[P] | Q]. The mobile process n[in m.P] initiates 
the in m primitive. In some cases, many objects are not able to initiate the movement, however, they may be 
regarded as mobile because someone can take them from one place to another. Here arises a question: how do we 
model mobile resources of this kind? Suppose we have the situation that process P will fetch the resource r from 
place n to place m. In MA, the environment is modeled like this: 

 P = tmp[in n.in r.out n.in m] | P' 
 Places = n[r[open tmp | Q2] | Q1] | m[R] 
 Env = P | Places 
 Env →* P' | n[Q1] | m[R | r[Q2]] 

We have to add a worker process tmp[in n.in r.out n.in m] to take the mobile primitive into r, and to put an open 
primitive into ambient r to be ready for unleashing certain activities. This model has two drawbacks: (1) we have to 
construct many assistant processes when designing the mobile resources of this kind. This makes the application 
designers contribute more commitment to the mobility controlling than to the application business logic; (2) The 
course of the movement of r is not atomic, which may cause much more serious concurrency problems. In the above 
example, it totally produces five reduction steps. Although, in Ref.[1], Cardelli has suggested several ways to obtain 
the atomicity, much more complex constructs will be used when implementing the atomic function. 

We find that the calculus of Mobile Resources[2] (MR), which is proposed to describe and analyze the systems 
containing mobile and nested computing devices that may have resource and access constraints, is more appropriate 
to model the application of the mobile resources which are not able to initiate the movement activity. Moreover the 
course of the process movement is syntactically atomic when it is taken from one place to another. The three 
primitives in MR allow: a process to be taken from one place to another, m to co(n).p | m[q] | n[r] → p | m[-] | n[q | 
r]; a name to be consumed in nested places, nm co(a).p | n[m[a]] → p | n[m[-]]; a process to be removed, del n.p | 
n[q] → p. In the second primitive, nm is a name path, it allows the access of a inside the ambient m which in turn is 
inside n. This is called direct access. It can be also applied in the first primitive. The MR computational model is 
based on the notion of taken and given (a variant of movement). 

We begin our work with a study of interference in MR. From Ref.[3], we know that the coexistence of plain 
and grave interferences∗ can cause a poor algebraic theory, difficulties in writing correct programs and difficulties 
in proving behavioral properties of processes. We find similar grave interferences in MR, for example: 

n to co(m).p | n[r] | del m.q | m[-] 
In this process, n to co(m) wants to take r from n to m, and del m wants to remove the ambient m. Then we have two 
nondeterministic consequences while the process reduces: one is p|n[-]|del m.q|m[r] and the other is n to co(m).p 
|n[r]|q. The first result can continue to reduce to p|n[-]|q. The two results are totally logically different from each 
other. Such kind of interference occurs among the parallel processes that want to operate the same ambient. 

However in MR, there is another kind of interference which will cause more dangerous consequences that can 
affect much more processes. This interference may occur among the processes located in different nested ambients. 
Let’s examine the following two processes: 

 r1 = nm co(a).p | n[m[a]] 
 r2 = n'nm to co(m').q | n'[r1] | m′ [-] 

                                                                 

* plain interference is initially found in CCS[4] and π-calculus[5] which is caused by two or more redexes sharing the same 
interacting partners; grave interference is found in the calculus of Mobile Ambients which will cause the shared ambient to perform 
logically different interactions. 

  



 傅城 等:类型化移动资源 981 

nm co(a) in process r1 will consume the name a inside ambient m which is nested in n. It is clear that r1 can only reduce 
to p | n[m[-]]. But when r1 is put in an environment as shown in process r2, n′nm to co(m′) in process r2 wants to take 
name a from m to m′. If r2 makes the reduction step by the movement of a, then nm co(a) will fail to consume a in m. 
The resource is lost when the process is put in improper environment. In contrast with the previous example of grave 
interference, here the same ambient can be shared through the nested environment. The root reason to cause this 
phenomenon is that MR allows direct access as mentioned above. So this kind of interference is called direct access 
interference. To illustrate how dangerous the direct access interference is, let’s examine another example: 

 rA = !out to co(network) | out[key[Msg]] 
 rB = !network to co(in) | in[-] 
 rcomm = (key)( rA | rB) | network[-] 
 Env = C (rcomm) where C (-) = trap network to co(treasure) | treasure[-] | trap[-] 

rA wants to send a secure message to rB through a public network. The message Msg is encrypted by a key key 
that is shared between rA and rB. But when rcomm reduces to 

 (key)( rA | rB | network[key[Msg]]) 
the process trap network to co(treasure) in Env then gets opportunity to intercept the secure message (key)key[Msg] 
though key is unknown. According to cryptology, if enough cipher is gained, then we have more chances to decipher 
it. It is very dangerous to model secure communication like this example. Even the example, Digital Signature Card 
in Ref.[2] can be interfered by a malicious environment. This example will be discussed in Section 4. 

We compare the direct access interference with grave interference, and find that grave interference is indeed a 
special form of the direct access interference. If the name path trap network in the capability trap network to 
co(treasure) in the above example becomes an empty string, then this is just one form of grave interferences. Thus 
in SR, we only consider the problems caused by direct access interferences because grave interferences problems 
are already included in the direct access interferences. 

As a result of our study in interferences in MR, we regard the occurrence of direct access interference as a 
proramming error. The existence of direct access interference has following severe results: 

1. free names can be easily accessed by the nested environment which results in data loss; 
2. secure resources are hard to be modeled; 
3. programs cannot behave in the expected way in all contexts. 
Before we design the new calculus, we try to construct some normal forms or patterns to avoid drawbacks, but 

we failed at last. The root reason is that, as long as the activity occurs through a free ambient, the environment must 
have the chance to access it. The current theory of MR is unable to solve the problems mentioned above. Moreover, 
the lack of a proper type system is another reason why MR gains so many problems. 

To eliminate these drawbacks, we enhance the MR calculus with full coactions semantically. We call it Safe Mobile 
Resources (SR). And in this paper, we build a type system for the calculus to control the direct access interferences. 
According to MA paper series, the MR processes are also designed to have mobility and threadness types. In addition, 
we use resource type set to represent what types the processes or ambients can provide the resources. Then we prove the 
soundness of the type system. Moreover we prove that all well typed processes in SR do not contain any direct access 
interferences. The type system is partly inspired by SA[3]. In SR, resources can be consumed and are uncopiable. We also 
allow a certain kind of subtyping on the process types. At the end of this paper, we give some examples to illustrate how 
to use it and to show its robustness. 

2   The Calculus of Safe Mobile Resources 

The calculus of Mobile Resources (MR) allows an ambient to be taken, given and removed, and allows a name 
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to be consumed. But it has no control on the access to the certain ambient when it is taken or given. In Safe Mobile 
Resources (SR), we rectify the syntax and semantics so that any activities relevant to taking, giving, deletion and 
consumption can occur only if all participants agree. We achieve the goal by add the coactions: cotof (allow being 
moved from), cotod (allow sth. move in) and codel (allow remove) where the first and second ones are the 
coactions of to (take and give) and the third one is the coaction of del (delete). Its three essential behaviors are 
listed below: n co(a).p | n[a.q] → p | n[q] (1) 

 n to m .p | n[res[cotof n.q1 | q2] | q3] | m[cotod m.r] → p | n[q3] | m[res[q1 | q2] | r] (2) 
 del m.p | ň[codel m.q] → p, m ∈ ň (3) 
For the first formula, we use capability n co(a) to denote that it wants to consume the resource a located in 

ambient n. p and q are processes. There is a name (resource) a in ambient n. n co(a) and a in n can make a contract 
and lead to a reduction step. Moreover in n co(a) we call the part before (left to) co(a) is a path. We can use an 
ambient name string to denote a path such as n1n2m. For simplicity, we use γ to represent a nullable name string, and 
δ for a non-empty name string. So if a capability wants to consume a resource a in the process n1[n2[m[a]]], we use 
n1n2m co(a) to denote it, or let γ = n1n2m, then use γ co(a) instead. The process n1[n2[m[a]]] can also be simplified 
as Cγ (a) by defining Cγ (-) = n1[n2[m[-]]] where we call Cγ a path context. 

For Eq.(2), capability n to m represents that the qualified process in ambient n will be taken into ambient m. 
The process res[cotof n.q1 | q2] in ambient n is the qualified process because there is the process cotof n.q1 | q2. The 
capability cotof n allows the ambient enclosing it to be ready for being taken out of the ambient n. For this example, 
ambient res cannot be taken out of any ambient other than ambient n. Capability cotod m allows a process to be 
given into ambient m only if the capability is inside ambient m. As for (2), the reduction contract is made among 
three participants, and all of them must hold to, cotof and cotod respectively at a proper location. Furthermore, SR 
allows direct access by means of name path for movement primitive. The part before to is the source path while the 
part after it is the destination path. If the process r will be taken out of the nested ambients n1[n2[n3[-]]] and given 
into m1[m2[m3[-]]], we use n1n2n3 to m1m2m3 to denote it. Here, for simplicity, we use path context instead, for in-
stance, let γ1 = n1n2n3, γ2 = m1m2m3, Cγ1 (-) = n1[n2[n3[-]]] and Dγ2 (-) = m1[m2[m3[-]]], then we have γ1 to γ2.p | Cγ1 
(res[cotof n3.q1 | q2] | q3) | Dγ2 (cotod m3.r) → p | Cγ1 (q) | Dγ2 (res[q1 | q2] | r). 

For (3), we use del m to initiate deletion activity. Parameter m is the target ambient to be deleted. codel m is 
the coaction of del m. It allows the ambient m to be ready for the removal when inside it. As mentioned above, 
deletion capability also supports path name. We use del γm where γ = n1n2 to represent that it wants to remove the 
ambient m in n2 that is nested in n1. Moreover, SR supports certain kind of alias, for instance, {n1, n2, m}[p] is a 
process where the outer ambient has three names n1, n2 and m. All of them denote the same ambient. We use ň to 
denote a name set, ň[-] to denote an ambient that has an alias name set, and ň to denote a collection of the bound 
names. 

For mobile calculi, there are two forms to depict the infinite behaviors: !p representing the unbounded number 
of copies of p in parallel and the recursive construct rec x.p. MR uses the former, but we prefer the latter. This is 
because most interferences are caused by parallel process where it is hard to devise a type system for Par rule when 
adopting the form of !p. But if we use recursive construct rec x.p, many former replication constructs can avoid 
being typed by Par rule in the type system. In general every replicated form !p can be denoted by rec x.(p | x) using 
the recursive construct. 

Let N be a countable set of names ranged over by a, b, ..., n, m. Generally, we use a, b to denote resource 

names, and m, n to denote ambient names; the names used in the process can be easily distinguished by contexts. 
We use x, y to range over the set of all recursive variables V. The set of all processes is denoted by P (ranged over 

by p, q, ...) and the set of capabilities Λ (ranged over by λ). In typed version, we use a set of restricted names (ň:Ǔ) 
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defined as (n1:U1)(n2:U2)...(nk:Uk) where ň={n1,n2,...,nk} and Ǔ={U1,U2,...,Uk} to represent the typed names in an 
abbreviated form. And rec x is a binder for the free recursive variable x in a process. 

Capabilities are the expressions that are not names or recursive variables. We write n(p) for all names of 
process p, and fn(p) for all free names of the process p, and n(λ) and fn(λ) for those of the capability λ. For free 
recursive variables, we use fv(p) to denote the set of all free recursive variables in p. → stands for one-step 
reduction. →* stands for the transitive closure of →. The definition of structural congruence relation ≡ is a standard 
which is listed in Table 2. Context is defined as standard. Path context is defined as follows: 

 Cε (-) = (-) Cnγ (-) = n[Cγ (-) | p] 

The SR Grammars and syntax are shown in Table 1. The reduction rules are in Table 3. To simplify our 
objective of the study, we require every process for reduction has no free recursive variables. Thus the rules in Table 
3 are defined on all processes that have no free recursive variables. The rules for structural congruence and typing 
rules (in Section 3) are defined on all processes. 

Table 1  The syntax of safe mobile resources 

a, b, ..., n, m names ň :: = n1, n2, ..., nk  set of names 
p, q, r processes γ :: = ε ▌nγ empty-able name path 
x, y, z recursive variables δ :: = nγ non-empty name path 
 
Capabilities   Processes 
λ :: = δ1 to δ2  move process p, q :: = 0 nil 
 ▌ cotof n allow being moved  ▌ p | q parallel 
 ▌ cotod m allow enter  ▌ λ.p prefixing 
 ▌ a resource  ▌ (n : U) p restriction 
 ▌ γ co(a) consume resource  ▌ x recursive variable 
 ▌ del γm remove ambient  ▌ rec x.p recursive process 
 ▌ codel m allow remove  ▌ ň[p] slot 

Table 2  Structural congruence 

p ≡ q ⇒ n[p] ≡ n[q] (Struct Nest) (p | q) | r ≡ p | (q | r) (Struct ParAss) 
(n1 : U1)(n2 : U2)p ≡ (n2 : U2)(n1 : U1) p (Struct ResRes) p ≡ p  (Struct Refl) 
n ∉ fn(p) ⇒ (n : U)(p | q) ≡ p | (n : U) q (Struct ResPar) p | 0 ≡ p (Struct ParNil) 
m ≠ n ⇒ (n : U) m[p] ≡ m[(n : U)p] (Struct ResNest) (n : U) 0 ≡ 0  (Struct ResNil) 
p ≡ q, q ≡ r ⇒ p ≡ r (Struct Trans) q ≡ p ⇒ p ≡ q (Struct Symm) 
p ≡ q ⇒ (n : U)p ≡ (n : U)q (Struct Res) p ≡ q ⇒ λ.p ≡λ.q (Struct Pre) 
p ≡ q ⇒ rec x.p ≡ rec x.q  (Struct Rec) p | q ≡ q | p (Struct ParCom) 
p ≡ q ⇒ p | r ≡ q | r (Struct Par) 

Table 3  Reduction rules of SR 

 γ1n to γ2m.p | Cγ1 (n[res[cotof n.q1|q2] | r1]) | Dγ2(m[cotod m.r2]) 
 → p | Cγ1 (n[r1]) | Dγ2 (m[res[q1 | q2] | r2]) (Red Mov) 
γ co(a).p | Cγ (a.q) → p | Cγ (q) (Red Act) del γm.p | Cγ (ň[codel m.q]) → p | Cγ (0) (m ∈ ň) (Red Del) 
p → p' ⇒ p | q → p' | q (Red Par) p → p' ⇒ (n : U)p → (n : U)p' (Red Res) 
p → p' ⇒ ň[p] → ň[p'] (Red Nest) p ≡ q, q → r, r ≡ s ⇒ p → s (Red Struct) 
rec x.p → p{rec x.p/x} (Red Rec) 

3   Types 

In the type system of SR, we have three main types (with their forms): capability type (Cap[T, R]), ambient 
type (Amb[T, R]) and process type (Proc[T, R]), where T is called the mobility and threadness attribute or inner 
type, and R is called resource attribute or resource type set. The capability type indicates what behavior (cause 

movement, deletion or resource consumption) will take place after it is consumed. Ambient type indicates that 
which type of the processes it can contain. The process type is used to depict the global behavior of the whole 
process. The type grammars for SR are shown in Table 4. For threadness, we use 0, 1 and ω to indicate a quiet 
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process, a single-threaded process, and a multi-threaded process respectively. For mobility, we use ♀ to denote 
immobile attribute and ♂ to denote mobile attribute. For resource types, we use resource type set to indicate the 
ambient or process to contain the specified kind of resources. An ambient may provide some resources of the 
specified types (we use capitalized S with subscript to denote different resource types) inside it or allow the inner 
process to consume other resources. As for programming languages, the abstract symbol S can represent intrinsic 
types such as strings, integers and arrays etc., or custom types such as abstract data types and class types etc. For 
example, we may use R = {S1, S2} to show the resources type set for a certain ambient, and it describes that the 
resources of the type S1 and S2 are provided in the ambient. If the resources type set R is typed to a process, it 

indicates the process provides the resources of the type S1 and S2. An empty resource type set ∅ indicates that there 
is no activity related to any resources for a process, or no resources contained in a ambient. Furthermore, in SR, we 
have an auxiliary type: location type (denoted as ∆n). We use location type to indicate which place a capability will 
access. For each capability type (as well as ambient type and process type), it has a source location type and a target 
location type. The source location type indicates that certain capability or process in the source location may 
disappear after reduction. The target location type indicates that certain process may appear in the target location. 
Now let’s examine some examples to illustrate the SR type system: 

z A capability that causes a process to be taken out: Cap[♂1,∅,∅, ∅] 
z A capability that provide a resource of type S for consumption: Cap[♀1,∅,∅, {S}] 
z A capability that will take a certain process from n to m: Cap[♀1, {∆n}, {∆m}, ∅] 
z A capability that will remove a specified ambient n: Cap[♀1, {∆n},∅, ∅] 
z An empty ambient: Amb[♀0,∅,∅, ∅] 
z An immobile ambient that can contain a multi-threaded process, provide the resources of type S1 and S2, 

and remove the ambient m: Amb[♀ω, {∆m},∅, {S1, S2}] 
z An immobile single-threaded process that won’t provide any resources for consumption, and that will 

take a certain process from n to m: Proc[♀1, {∆n}, {∆m}, ∅] 
z A mobile multi-threaded process that contains resources of type S1 and S2, and be typed as Proc[♂ω, ∅,∅, 

{S1, S2}] 
Table 4  Typing grammars 

S resource type R set of resource types ∆n location types  
Ξ set of source location types Υ set of target location types 
 
X ::= ♀ immobile Z ::= 0 no thread 
 ▐ ♂ mobile   ▌ 1 single thread 
ξ ::= ∆n location type  ▌ ω multi threads 
Cap ::= Cap[T, R] capability type T ::= XZ, ξ, Υ inner type 
Amb ::=  Amb[T, R] ambient type W ::= Amb ambient type 
Proc ::= Proc[T, R] process type  ▌ S resource type 

We use X to range over the set of mobility type X= {♀, ♂}, Z over the set of threadness type Z= {0, 1, ω}, and 
ξ over the set of all location types L is defined as {∆n | n ∈ N}. Ξ and Υ represent the set of source location type and 

the set of target location type respectively, and both of them range over the set 2L. T ranges over the set of inner type 
T = {XZ, Ξ, Υ | X∈X, Z∈Z, Ξ∈2L, Υ∈2L}. Moreover, RES represents the collection of all resources types, and we use 
S to range over the set RES. Furthermore, we use R to range over the set 2RES to represent the resource attribute for 

ambients and processes. The following is the detailed description for the three major kinds of types used in SR. 
z Cap[T, R] is the capability type where T indicates what mobility and threadness attribute of the 

capability, and R indicates what type of the resource the capability provides. For each typed capability, at 

most one resource type is contained in its resource attribute. 
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z Amb[T, R] is the ambient type where T indicates the process of what mobility and threadness attribute the 
ambient can contain, and R restricts that the ambient can only contain the the resources of the specified 
type in R. 

z Proc[T, R] is the process type where T indicates the mobility and threadness attribute of the process and 
R indicates that the process may provide the resources of the type specified in R. 

The typing rules are shown in Table 5. For each capability, it can only carry one thread because there is 
naturally only one activity for each capability. Therefore, each kind of capability is typed as single-threaded, which 
is shown in (SRT Cap) series rules. As for rule (SRT Amb), intuitively an ambient only allows a process whose 
inner attribute and resource attribute should equal to those of that ambient. But in fact, by rule (SRT Sub), the 
process can easily become “larger”, thus ambient can hold the process whose inner attribute and resource attribute 
may be “less than” the ambient. For instance, if the type of the ambient has ♂ attribute, it can contain the processes 
that has ♀ attribute as well as ♂. But an immobile ambient cannot contain a mobile process because mobile attribute 
is not “less than” immobile attribute. The “less than” relation has same meaning for threadness, resource type set 
and location type set, and it will formally appear to be a kind of subtype defined later. Rule (SRT Sub) is indeed for 
subtyping. 

To simplify the typing result of the computation on the multiple kinds of types in SR type system, we define 
five commutative operators ○, | on Z, * on X and ♥, ● on T as follows: 

* ♀ ♂  ○ 0 1 ω  | 0 1 ω 
♀ ♀ ♂  0 0 1 ω  0 0 1 ω 
♂ ♂ ♂  1 1 1 ω  1 1 ω ω 
    ω ω ω ω  ω ω ω ω 

X1
Z1, Ξ1, Υ1 ♥ X2

Z2, Ξ2, Υ2 = (X1 * X2) Z1|Z2, Ξ1∪Ξ2, Υ1∪Υ2 
X1

Z1, Ξ1, Υ1 ● X2
Z2, Ξ2, Υ2 = (X1 * X2) Z1○Z2, Ξ1∪Ξ2, Υ1∪Υ2 

The reflexive order ≤X on X, ≤Z on Z and ≤T on T are defined as follows, where ≤X and ≤Z are linear orders: 
 ♀≤X ♂ 0 ≤Z 1 ≤Z ω 

X1
Z1, Ξ1, Υ1 ≤T X2

Z2, Ξ2, Υ2 ⇔ X1 ≤X X2 ∧ Z1 ≤Z Z2 ∧ Ξ1 ⊆ Ξ2 ∧ Υ1 ⊆ Υ2 
Then we define a transitive, reflexive relation ≤ of subtyping on the types of process, which is shown below: 

Proc[T1, R1] ≤ Proc[T2, R2] ⇔ T1 ≤T T2 ∧ R 1 ⊆ R2 

We only allow subtyping on processes. There is no need to build subtype relation on ambient and capability 
type because it makes no sense for the comparison between ambients or capabilities in the calculus. 

Theorem 1. If Γ├ p:Proc and p ≡ p', then Γ├ p':Proc. 
Theorem 2. If Γ├ p:Proc and p → p', then Γ├ p':Proc with Proc' ≤ Proc. 
The type system in SR is built to protect the processes from serious concurrency problems such as direct access 

interferences and grave interferences. As we know, plain interferences could be regarded as rational competition. 
But the coexistence of grave interference(in this paper, grave interference is regarded as a kind of direct access 
interference as mentioned in Section 1 and plain interference can cause serious results. The following theorem 
assures that under SR type system all processes run in a good behavior, that is, at most only plain interferences can 
occur in SR processes. 

Theorem 3. If Γ├ p:Proc then no direct access interferences or grave interferences occur in p. 
Through Theorems 2 and 3, it is certain that each well typed process in SR won't cause any direct access 

interferences, and after reduction the process is also well typed without any direct access interferences. 
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Table 5  Typing rules 

Ø├ ◊  (Env Empty)  Γ├ ◊ ∧ n∉dom(Γ) ⇒ Γ, n:W├ ◊  (Env n)  Γ, n:W├ ◊ ⇒ Γ, n:W├ n:W  (SRT n) 
Γ├ n:Ambn ⇒ Γ├ cotof n:Cap[♂1, Ø, Ø, Ø]  (SRT Cap cotof) 
Γ├ n:Ambn ⇒ Γ├ cotod n:Cap[♀1, Ø, Ø, Ø]  (SRT Cap cotod) 

Γ├ m1:Amb[♀Z1, Ξ1, Υ1, R1] ∧ Γ├ m2:Amb[♀Z2, Ξ2, Υ2, R2] ⇒ Γ├ m1 to m2:Cap[♀1, {∆m}, {∆n}, Ø]  (SRT Cap to 1) 
Γ├ m1 to m2: Cap ∧ ∀n∈fn(γ1) ∪ fn(γ2) ⇒ Γ├ γ1m1 to γ2m2:Cap (SRT Cap to 2) 

Γ├ a:S ∧ Γ├ n:Ambn ⇒ Γ├ a:Cap[♀1, Ø, Ø, {S}] (SRT Cap a) 
Γ├ a:S ∧ (∀n∈fn(γ) ⇒ Γ├ n:Ambn) ⇒ Γ├ γ co(a):Cap[♀1, Ø, Ø, Ø] (SRT Cap co(a)) 

Γ├ n:Ambn ⇒ Γ├ codel n:Cap[♀1, Ø, Ø, Ø]  (SRT Cap codel) 
Γ├ m:Ambm ∧ (∀n∈fn(γ) ⇒ Γ├ n:Ambn) ⇒ Γ├ del γm:Cap[♀1, {∆m}, Ø, Ø] (SRT Cap del) 

Γ├ ◊ ⇒ Γ├ 0:Proc[♀1, Ø, Ø, Ø]  (SRT Zero)  Γ, x:Proc├ ◊ ⇒ Γ├ x:Proc  (SRT x) 
Γ, a:S├ p:Proc[XZ, Ξ, Υ, R] ⇒ Γ├ (a:S)p:Proc[XZ, Ξ, Υ, R-{S}]  (SRT Res 1) 

Γ, n:Ambn├ p:Proc[XZ, Ξ, Υ, R] ⇒ Γ├ (n:Ambn)p:Proc[XZ, Ξ-{∆n}, Υ-{∆n}, R]  (SRT Res 2) 
Γ, x:Proc├ p:Proc ⇒ Γ├ rec x.p:Proc  (SRT Rec)  Γ├ p:Proc ∧ Proc≤Proc' ⇒ Γ├ p:Proc'  (SRT Sub) 

Γ├ λ:Cap[T1, R1] ∧ Γ├ p:Proc[T2, R2] ⇒ Γ├ λ.p:Proc[T1 ● T2, R1 ∪ R2] (SRT Pre) 
Γ├ p:Proc[X1

Z1, Ξ1, Υ1, R1] ∧ Γ├ q:Proc [X2
Z2, Ξ2, Υ2, R2] ∧ Ξ1 ∩ Ξ2 = Ø  

⇒ Γ├ p|q:Proc[X1
Z1, Ξ1, Υ1 ♥ X2

Z2, Ξ2, Υ2, R1 ∪ R2]  (SRT Par) 
Γ├ n:Amb[XZ, Ξ, Υ, R] ∧ Γ├ p:Proc[XZ, Ξ, Υ, R] ⇒ Γ├ n[p]:Proc[♀0, Ξ, Υ, R]  (SRT Nest) 

4   Applications 

In this section, we give some examples below to show how to use the SR calculus to model the usual 
applications. In the third example Digital Signature Card, we will show the robustness of SR by comparing it with 
MR. 

4.1   Immobile server 

The Server/Agent model can be constructed as follows: 
Server = rec xs(n to s.del n.xs) | s[rec xs.(cotod s.Collect | xs)] 
Agent = a[rec xa.(cotof n.Data | xn)] 
SA = Server | n[Agent | codel n] 
In this model the mobile agent is taken into the server in order that the process Collect can access the Data in 

the agent. By assuming Γ├ Collect:Proc[Xs
Zs, ∅, Υs, Rs] and Γ├ Data:Proc[Xd

Zd, ∅, Υd, Rd], we have: 
Γ├ Server:Proc[♀1, {∆n}, Υs, Rs]  Γ├ Agent:Proc[♂0, {∆n}, Υd, Rd] 

The result shows that the process Agent is typed as mobile, and Server is typed as immobile. 

4.2   Products delivery chain 

We can easily construct a process transfer chain in SR, which is shown below: 
Placesn = Place1[rec xpl.(cotod Place1.xpl)] | … | Placen[rec xpl.(cotod Placen.xpl)] 
MovePermissionn = cotof Place1. … .cotof Placen 
Productn = Item[cotof Warehouse.MovePermissionn.p] 
Factoryn = (Warehouse) (rec xra.(Warehouse to Place1.xra) | Warehouse[rec xf.(Productn | xf)]) 
RelayAgenti = rec xra.(Placei−1 to Placei.xra)  i ≥ 2 
RAn = RelayAgent1 | … | RelayAgentn 
Usern = (Home)(Home[rec xh.(cotod Home.xh) | q] | rec xu.(Placen to Home.xu)) 
DeliveryChainn = Factoryn | RAn | Placesn | Usern 
This example shows how to model that the products are transferred to the end user from the factory. The 

process DeliveryChainn can be well typed by the SR type system with the assumption Γ├ p:Proc[Xp
Zp, ∅, Υp, Rp] and 

Γ├ q:Proc[Xq
Zq, ∅, Υq, Rq]: 

Γ├ DeliveryChainn:Proc[♀ω, Ξ, Υ, R] where Ξ = Υ = {∆Place1, …, ∆Placen} and R = Rp ∪ Rq  
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If the process DeliveryChainn is put in a malicious environment, it will be forbidden by the type system if the 
environment contains the capability that will access any public locations in DeliveryChainn. This will assure that all 
cargo will be safely shipped to the destination.  

4.3   Digital signature card 

For this example, we will discuss the problem when modeling the application by using the calculus of Mobile 
Resources (MR) through comparing two versions of the Digital Signature Card. One is modeled by MR, the other 
by the calculus of Safe Mobile Resources (MR) proposed in this paper. Both of the two models use reg, in and out 
to represent a register, an in-buffer and an out-buffer. Enck and Deck are the two k-parameterized (in SR version, we 
have additional parameter vpc) processes respectively in charge of encrypting and decrypting resources where k is 
the key and it is only a shared secret between the two specified processes. Communication occurs between pairs 
such as Alice and Bob. Messages are transmitted through the public network that can be used by anyone. 
4.3.1   Problems in the MR version 

In Section 1, we have examined the three main reduction rules of MR. Other rules are the same as in SR. Then 
the application is modeled as follows: 

Enck = !(reg)(in to co(reg k).reg to co(out) | reg[k[-]]) | in[-] | out[-] 
Deck = !(reg)(in to co(reg).reg k to co(out) | reg[-]) | in[-] | out[-] 
Alicek, M = (m)(a)(a[Enck] | m[M] | m to co(a in).a out to co(network)) 
Bobk = (m)(b)(b[Deck] | m[-] | network to co(b in).b out to co(m) 
SecretComM = (k)(Alicek, M | Bobk) | network[-] 
Then we have: 
Alice'k = (m)(a)(a[Enck] | m[-]) 
Bob'k, M = (m)(b)(b[Deck] | m[M]) 
SecretComM →* (k)(Alice'k | Bobk | network[M] 
 →* (k)(Alice'k | Bob'k, M | network[-]) 
This model works well if there is only one communication on the network. But what will happen when more 

than one communication are carrying through the network? Assume there is another communication between Jackk' 
and Joank', M' on the same network. Since network is a public name, it should be excluded from the secret 
communication model. So the SecretCom process for M and M' are redefined as follows: 

SecretComM = (k)(Alicek, M | Bobk) 
SecretComM' = (k')(Joank', M' | Jackk') 
Then we define the process AllComs to denote all the communications carrying through the network, which is 

modelled by: 
AllComs = SecretComM | SecretComM' | network[-] 
 →* (k)(k')(Alice'k | Bobk | Joan'k' | Jackk' | network[k[M] | k'[M']]) (4) 
When execution may move to (4), there are two encrypted messages on the network. Both Bob and Jack do not 

know which message is for them respectively, so Bob may fetch k'[M'] from the network and Jack may fetch k[M]. 
Because both of them do not hold the corresponding key, the messages can not be read by the wrong receiver. But 
the most critical problem is that the messages are lost, moreover, no one knows. The cause of this problem is that 
both receivers can observe the data on the network in this model. Furthermore, if the communication is put in a 
non-trusted environment, the malicious context could directly access the data inside the communication. This has 
been discussed in Section 1. The direct access interference in this model has not been controlled and cannot be 
controlled by the calculus. Moreover if a malicious user has decrypted the shared key, he can fabricate the messages 
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to some receivers. This will cause much more serious security problems which violate the will of the authors who 
design the MR calculus. 
4.3.2   The solution in SR: a virtual private channel 

The SR version of Digital Signature Card uses the type system to check the resource type of the different 
messages on the network. We assume that different communications (user to user pair) have different resource types. 
Then by Theorem 2, the receiver process must be well typed after receiving the message. This means that every 
message will be delivered correctly in terms of the corresponding resource type. Now we will explain how it works. 
The SecretComM and related processes are modeled as follows: 

Enck vpc = (reg:Wr)(rec x1.(ine to reg k.reg to oute vpc.x1) | 
  reg[rec x2.(k[cotof reg.cotof oute.cotof network.codel k | cotod k] | x2)]) | 
  ine[rec x3.(cotod ine.x3)] | oute[rec x4.(vpc[cotod vpc.cotof oute | c.codel vpc] | x4)] 
Deck = (reg:Wr)(rec y1.(ind to reg.reg k to outd.del reg k.y1) | reg[rec y2.(cotod reg.y2)]) | 
  ind[rec y3.(cotod ind.y3)] | outd[rec y4.(cotod outd.y4)] 
Alicek,vpc,M = (n1:Wn1)(ine:Wine)(oute:Woute)(Enck | n1[env1[cotof n1.cotof ine.cotof k.M]] | 
  n1 to a ine.a oute to network) 
Bobk,vpc = (m1:Wm1)(ind:Wind)(outd:Woutd)(Deck | m1[rec x.(cotod m1.x)] | 
  network vpc to b ind.network vpc co(c).del network vpc.b outd to m1) 
SecretComM = (vpc:Wvpc)(k:Wk)(Alicek vpc,M | Bobk vpc) 
To compare with the MR version, we also put two communications on the network (one is Alice-Bob, and the 

other Joan-Jack), then AllCom and other related and auxiliary processes are modeled as: 
Alice'k,vpc = (n1:Wn1)(ine:Wine)(oute:Woute)(Enck | n1[-]) 
Bob'k,vpc,M = (m1:Wm1)(ind:Wind)(outd:Woutd)(Deck | m1[rec x.(cotod m1.x) | env1[M]) 
Joank',vpc',M' = (n2:Wn2)(ine:Wine)(oute:Woute)( Enck' | n2[env2[cotof n2.cotof ine.cotof k'.M']] | 
  n2 to a' ine.a' oute to network) 
Jackk',vpc' = (m2:Wm2)(ind:Wind)(outd:Woutd)(Deck' | m2[rec y.(cotod m2.y)] | 
  network vpc' to b' ind.network vpc' co(c).del network vpc'.b' outd to m2) (5) 
Joan'k',vpc' = (n2:Wn2)(ine:Wine)(oute:Woute)(Enck' | n2[-]) 
Jack'k',vpc',M' = (m2:Wm2)(ind:Wind)(outd:Woutd)(Deck' | m2[rec y.(cotod m2.y) | env2[M']]) 
NetData = vpc[k[cotof network | env1[M]] | codel vpc] | vpc'[k'[cotof network | env2[M']] | codel vpc'] 
AllCom = SecretComM | SecretComM' | network[rec z.(cotod network.z)] 
 →* (vpc:Wvpc)(vpc':Wvpc')(k:Wk)(k':Wk')(Alice'k | Bobk | Joan'k' | Jackk' | 
  network[rec z.(cotod network.z) | NetData]) (6) 
 →* (vpc:Wvpc)(k:Wk)(Alice'k | Bob'k,M) | (vpc':Wvpc')(k':Wk')(Joan'k' | Jack'k', M') |  
  network[rec z.(cotod network.z)] (7) 
This model works when it is well typed. Assume Γ├ c:Sc and Γ├ M:Proc[XZ, Ξ, Υ, RM], Γ├ M':Proc[X1

Z1, Ξ1, Υ1, 
RM'] with Ξ ∩ Ξ' = ∅, then we will deduce that process AllCom is typed as 

Proc[♀ω, ΞAllCom, ΥAllCom, RM ∪ RM' ∪ {Sc}]  where 

ΞAllCom = Ξ ∪ Ξ'  and   ΥAllCom= {∆network} ∪ Υ ∪Υ' 
under Γ with other results listed below: 

Wk = Amb[♂ω, ∅, ∅, ∅] Wk' = Amb[♂ω, ∅, ∅, ∅] Wn1= Amb[♀0, Ξ, Υ, RM] Wm1 = Amb[♀ω, ∅, ∅, ∅] 
Wn2 = Amb[♀0, Ξ', Υ', RM'] Wm2 = Amb[♀ω, ∅, ∅, ∅] Wine = Amb[♀1, ∅, ∅, ∅] Woute = Amb[♀0, ∅, ∅, {Sc}] 

Wind = Amb[♀1, ∅, ∅, ∅] Woutd = Amb[♀1, ∅, ∅, ∅] Wvpc = Wvpc' = Amb[♂ω, ∅, ∅, {Sc}] Wr = Amb[♀0, ∅, ∅, ∅] 
Γ├ env1:Amb[♂Z | 1, Ξ, Υ, RM] Γ├ env2:Amb[♂Z' | 1, Ξ', Υ', RM'] Γ├ network:Amb[♀1, ∅, ∅, ∅] 
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Γ├ SecretComM:Proc[♀ω, ΞM, ΥM, RM ∪ {Sc}]  where ΞM = Ξ and ΥM = {∆network} ∪ Υ 
Γ├ SecretComM':Proc[♀ω, ΞM', ΥM', RM' ∪ {Sc}]  where ΞM' = Ξ' and ΥM' = {∆network} ∪Υ' 

Since the source location type sets ΞM of process SecretComM and ΞM' of process SecretComM' are disjoint, the 
process AllCom can be well typed by (SRT Par). We can then assure that AllCom and all its reduction derivatives 
have no direct access interferences by Theorems 2 and 3. If we have the third and even the fourth secret 
communications on the same network, we need only care the messages should have their source location type sets 
disjoint, then AllCom can be also well typed with no direct access interferences. If AllCom is put in a non-trusted 
environment, the multiple direct access primitive is forbidden by the type system and the virtual private channel 
(vpc) can never be observed by the environment. 

We omit all the deduction steps for the above typing results. For other information provided by the typing 
results, we'll have some intuitive explanation. Throughout the results, we find out that only ambients n1, env1 have 
their resources attribute typed as RM and only ambients n2, env2 have their resources attribute typed as RM'. This is 

because envi, i=1,2 contains the message (M, M'), and in turn, ni, i=1,2 contains the corresponding envelops. 
Therefore from the resource type information we know that certain resources of type RM (RM') may be provided in 

n1 (n2) and env1 (env2). 
For the mobility and threadness attribute about the typing results, ambient k is a secure mobile place which can 

hold classified data that can be sent through a network. reg is an internal immobile place where encrypting and 
decrypting operations occur, and it contains an recursive process with no thread. ine, ind and oute, outd are something 
like fixed buffers to hold incoming and outgoing data. n1 and n2 are the fixed message-sending boxes while m1 and 
m2 are the fixed boxes for receiving. env1, env2 are something like an envelope to hold the message data and the 
signature cotof k. network is a fixed physical place where the data transmission takes place. The processes Enck and 
Deck are modeled as immobile services to provide unlimited encryption and decryption operations, thus they have 
the typing result of multi-threaded. Alicek, M (Joank', M') is a sender process while Bobk (Jackk') is a receiver 
processes. Both of them stand immobile and contain only one thread to perform their operations. 

5   Conclusions and Related Work 

Since the calculus of Mobile Resources (MR)[2] are designed for better modeling the mobile resources which 
have no initiative to move, we base our study on MR instead of Mobile Ambients (MA)[1]. We then find the direct 
access interferences caused by the direct access mechanism in MR. By comparing with the grave interference in MA 
through several examples, we conclude that the direct access interference do more damage and affect much more 
kinds of processes. Therefore in this paper, a variant of MR, the calculus of Safe Mobile Resources (SR) is proposed 
to control the direct access interference. Any process in SR has to be checked by a newly devised type system of SR 
so that only well typed process can be regarded to have good behavior; otherwise they will be regarded as invalid. 
The soundness of the type system has been proved and a theorem for assuring the absence of the direct access 
interference for the well typed process is provided in this paper. At the end of the paper, the example Digital 
Signature Card is examined to illustrate how robust SR is by comparing with MR. Other examples shows how to use 
the new calculus to model the usual applications. 

For the study of interferences of other calculus related to mobile ambients, besides the calculus of Mobile Safe 
Ambients (SA)[3], Ref.[6] proposes a variant of Boxed Ambients (BA)[7] to control the grave communication 
interferences in BA; In paper [8], the security breaches introduced by coactions in SA are avoided by modifying the 
parameters of the corresponding capabilities. In the current calculus SR, we ignore the interference between 
resources consumption and resources movement which is left for the further work. 

For some features of the type system in SR, the interference controlling mechanism between SR and SA is 
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different. The SA calculus uses the single threaded process type with thread right, that is, the every process typed 
single threaded process type can only hold one thread right. This is controlled by the SA-Par rule series. In the SR, 
processes can be quiet, single-threaded and multi-threaded. We achieve the goal by preventing two or more mobile 
capabilities from parallelism. Due to our research, it seems that every untyped ambient-based calculus (such as MA, 
BA, and ROAM[9] etc.) have grave interference problems which are caused by inborn drawbacks in their mobile 
semantics. The best way to remove all these problems is to enforce a dedicated type system. We also allow 
subtyping on every process types which builds a certain relationship between processes. According to Ref.[10], an 
element of a type can be considered also as an element of a super type. In SR, this is applied in the rule (SRT Sub) 
and Theorem 2. In Ref.[11], there is another subtyping relation for the mobile ambients which is devised to return 
the minimal type relative to the mobile system. As for other studies of type system upon the ambients, early papers 
are Ref.[12] where the exchange types are introduced in MA, Ref.[13] where mobility types are proposed to indicate 
mobility of ambients and processes, and Ref.[14] where SA with its type system is introduced to control the grave 
interferences. Recently, ROAM[9] is proposed to type evolving processes on the pure mobile ambients. Moreover, in 
Ref.[15], evolving communication is typed upon the full SA. In Ref.[16], mobility types on a reduced ambient 
calculus without open capability are studied. 

At present, the SR calculus does not support name passing. The behavioral equivalence remains unchanged 
from MR. We expect to devise applicable process equivalence on the typed SR by means of typing the contexts. The 
interference between movement primitive and resources consumption will be further studied. For other aspects, we 
feel that the type system of SR is sufficient but a little far from necessary to control the direct access interference. 
The present one also forbids some forms of the plain interferences. A more accurate type system will be studied in 
the future. 
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