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Abstract: Sampling methodologies are widely used in network measurements and other related fields. Most
applications mainly focus on parent population statistical metrics estimation of interest. Recent researches reveal
that many aspects of network characters present heavy-tailed distribution or self-similarity. These properties might
cause a heavy passive effect on the estimation accuracy. In other circumstances, there exist demands on modeling

the characteristics of a network in network operation. To develop an accurate model for network character is much
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difficult. From a broader view, these applications are treated as special cases of fitting problems of planar data set or
time series in applied mathematics. In the paper, a Fitting-based adaptive sampling methodology (FASM) is
developed for reconstructing the evolution of some network characteristics (model). The contributions of the paper
include: (1) Adopting a Piecewise Linear Function Approximation scheme to provide a more accurate
approximation of the true character. (2) The statistical metric derived from the FASM provides a much more stable
and accurate estimation than other popular methodologies under the same sampling size. Experiments based on two
measurement traces show that the FASM can dramatically reduce the number of samples while retaining the same
approximating residual error as others. (3) The variance of sampling size is more stable than those of other
probability sampling schemes.

Key words:  adaptive sampling; piecewise linear fitting; network measurement
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Network measurements are prerequisite to a variety of application fields such as network fault diagnosis,
performance evaluation, service level agreements (SLAs) validation and traffic engineering. Sampling provides an
effective approach for operators to get a better understanding of the operating networks without causing heavy
burden on the network bandwidth, CPU and storage resources. Many sampling methods and their applications
concern on mining statistical metrics of interest from networks. Zseby deployed sampling methods to measure the
one-way delay metric for SLA validation through estimating the proportion of packets that belong to a specific
flow!"). Nick ef al. employed size-dependent sampling methodology to obtain the customer usage of network for
accounting at a given accuracy'?. Essentially, these methods and their applications provide an overview for some
aspects of the network characteristics. In many situations, there exist demands on obtaining the evolution of some
particular characters of network. Taking measurement-based traffic modeling for example, we are sometimes
interested in not only the volumes of traffic observed at measurement point in a given time duration, but also a
detailed description of the traffic dynamics. An accurate reflection of its variation in measuring is more crucial for
establishing the empirical traffic model. From a broader point of view, many network measurement activities can be
considered as the applications of some kind of sampling methods to reconstruct the evolution of characteristic of
interest and then to infer the particular statistical metrics. Though those proposed sampling methods are useful to
these applications, they are not effective, as illustrated later.

In this paper, we propose a Fitting-based adaptive sampling methodology (FASM) to deal with this
characteristic reconstruction (measurement-based modeling) problem. Experiments show that the FASM could
provide a more accurate approximation than other popular sampling methods. Under the same approximating
residual error, FASM could reduce the number of samples dramatically while providing reasonable statistical metric
estimation, thus the measurement costs are decreased considerably. In addition, the sample size of FASM is more

deterministic than those of other probability based sampling methods.
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The remainder of the paper is organized as follows. Section 1 formalizes the piecewise linear fitting (PLF) in
the context of network measurement. Section 2 presents the FASM methodology. In Section 3, two datasets are used
to evaluate the performance and compare with other methodologies. Section 4 concerns parameter estimation of the
character. In Section 5, we focus on the generated sample size variation. Section 6 discuses the key issues in FASM

application. Section 7 concludes the paper.
1 Formalization of Piecewise Fitting in Network Measurement

Constructing a model for a data set in plane field is a common problem that is always encountered in data
warehouse mining, pattern recognition and applied mathematics. The main purpose of this sort is to develop the
model for a given observed data set. Let Y=f(X)+¢& be a continuous process. X is an independent variable on which
the metric Y to be modeled, &£ denotes the minor random error with mean zero that might be introduced in
observation. Suppose S = {(x,1,),(X5, )5 (X,,¥,)},% <X,...<Xx, be a sequence of observations of Y, and
s, =(x,,y,) represent the i-th element of S. S is referred to as adjoint sequence of Y. As we do not know the true
distribution of ¥, S can be deemed equivalent to Y when N =| § |is large enough.

LetF be a class of k-link piecewise linear functions (PLFs), and E(F)),F, € F the fitting error of ;. To
optimally approximate a data set S by a k-link piecewise linear function F is to find F; that satisfy (1):

F = {F, | min{E(F)),F, ¢ F}} (M

E(F) = max |y, - F(x)| @)

Goodrich defined the fitting error for F, as Eq.(2). A comprehensive study of such work was conducted in
Ref.[3] and its references. A plane sweep based computational geometry algorithm was developed to find the best
k-link PLF. Pittman employed a genetic algorithm (GA) to optimize the number and location of PLF for a given data
sett*],

Once the optimal k-link PLF F is obtained, we get a subset S’,S’" < S with k+1 elements, which locates the start
and stop points for each segment of F . However, these approximation algorithms are not very suitable for network
measurements for the following reasons: (1) we could not get the full dataSin advance for approximating
evaluation during the process of measurement in that our main goal is to model the network characters accurately
with least samples. (2) As S is not known to us, we could not get the optimal PLF F' in approximating. Sampling
provides potential schemes for this type of fitting purposes because two consecutive samples could be treated as
consecutive elements inS’. In network measurement, those widely used sampling methods include systematic
sampling, random sampling and stratified sampling. In Ref.[1], Zseby presented a detailed performance analysis on
these sampling methods. With a-priori information about the serial correlation, Zseby pointed out that stratified
sampling could get a more accurate estimation of the parent population. However, in a practical online
measurement, we cannot subgroup the parent population into subsets according to a given characteristic. Therefore,
we cannot get the serial correlation to guide us in sampling process directly.

To facilitate the analysis of the adaptive sampling methodology in next section, we formalize this
approximating problem in network measurement context. Let Y = f(X) be the true model of interest, X represent
the time elapse of measurement procedure ¢, S’ denote a collection of samples by any sampling or selection schemes
(each element is an observation of Y e.g. (x;,»,)). PLF F'is constructed from S’. We define the approximating

residual error E' as:
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E'(t) = f(x)= F'(x)| dx 3)

Therefore, the mission of network character approximation is to find the PLF F’ which minimizes E'(¢) with a
given sample size n . Equation (3) provides the criterion for F" evaluation. Though the true f(x) is still unknown, we

use it to evaluate the fitting performance of the FASM algorithm with others in the paper.

2 Fitting-Based Adaptive Sampling Methodology

2.1 Nomenclature and definitions

Consider a time series T, which is divided into k consecutive segments Si with segment error 5 . S is the

k+1 consecutive segments based on Sﬁ . We get Eq.(4) as:
E/M' <E; 4

The more segments, the smaller segment error £} . This property of time series segmentation is performed in
Refs.[5,6]. Thus we can control the time at which a sample is drawn and the number of elements sampled to limit
the residual error at a given level. The core of the FASM is that if the variance of Y in an interval A is acute, then
the number of samples collected in this interval should be increased, e.g. the time interval between two consecutive
samples should be decreased, conversely the number of samples should be decreased in a smoother period, which
increases the time interval between two consecutive samples. Let Var/ demonstrates the absolute variance level
(AVL) of Y when the i-th samples is obtained from Eq.(5):

Z | fi/(x/) -l
Var/ = 1/:,-7,41 - , 1<j<i )
;(xi = X1 z Vi

I=i—j+1

where f;/(x) represents the linear regression for fitting the f(x) from x to x,and jis the regression order.

i—j+1

Let R/ measures the relative variance level (RVL) which is defined as:

) J

RI=TE o1 e (©6)
Var/,

Assume 7; to be the time interval between (i—1)-th and i-th samples, then the time 7,

i+1
determined by Eq.(7):

for the (i+1)-th sample is

Ti+1 S L(D}

+1

EXP+D?)) (7
i+1
(d,,,d,,), if R/ >C,C>1
where (Djlﬂ’Dirl) = (d219d22)9 if R!j <1
(0,1),  otherwise

and variable EXP is subservient to exponential distribution with mean 1 and standard deviation 1. The
constant C represents the threshold for adjust the sampling interval. 0<d,, <1 k,/=1,2 are parameters for sampling
interval control. 1/4,,, is the interval expectation for the following n-i samples defined as Eq.(8), which is a minor
variation of the sampling probability definition introduced in Ref.[7].

2. =""L q<i<n ®)

i+1
X, —X;

n i
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Therefore from Eq.(7), the time interval r,,,is determined by two components: a stochastic part which is

subservient to exponential distribution E(4,,, / D! and a deterministic part D7, /l,. By carefully choosing the

+1°

weight of the two parts, the quantities of D!, and D}

i+l i+l

we may control the sampling process according to the

evolution of Y .

2.2 Fitting-based adaptive sampling methodology (FASM) algorithm
During a measurement time duration 7', the
1. PROC FASM: IN(n, j,T ), OUT(S)

PLF is constructed by n samples including the .
y P g 2, =07, =0;8={(t,y,)}i=2

start and end observation of Y , i.e. (0,y,) and

3. // select the first j + 1 samples
(T,y;) . Equation (7) indicates that the time 4. WHILE(i < j+1AND¢_ <T)
interval of consecutive samples 7, is a stochastic n—(i-1) 1
. . . 5. A=——""=i1, =—EXPit+ =71,

variable as variable EXP introduced. Thus the At ) A
ultimate sample size is also a variable depending 6 §=8U{(t,y,)};it+ // getasample
on 7, . Figure 1 illustrates the FSAM algorithm in ; END //'cnd of WHILE
pseudo code. 9 WHILE(f,_, <T)

As the measuring duration 7 is finite, 10. calculate R! from Eq.(6)
algorithm will stop in limited steps. For every 11. calculate £,+ = 7, from Eq.(7)
samplei,i > j , step 10 requires calculating Var/ 12. IF(t; <T)
and Var/,, and each of them is of order O(j). 13. §=8U{(t;,y,)};it+ // getanew sample
Commonly j«n, the computational complexity }‘5‘ ELBSIEEAK
of the FASM is of order O(Jn), where factor J 16. END // end of WHILE

17. S=SU{(T,y;)} 1/ get the last sample

16 le si £ 18. OUTPUT S
ultimate sample size of S . 19, END PROC

depends on j, the number of calculations, and the

3 Algorithm Performance Evaluation

Fig.1 Pseudo code for FASM algorithm
In this section, we compare the performance

of FASM with other popular sampling schemes

in network measurements. We use traces as those used in Refs.[1,2,8] to simulate the scenario of the true network
model of interest for reference, i.e. let the traces delegate the parent population for sampling. The first one is a
one-hour wide-area traffic load trace (simply packet counts in every second) that is derived from the passive traffic
measurement experiment mentioned in Ref.[9]. Another dataset is a one-way delay trace generated by the active
measurement from Ref.[5]. The parent population sizes of N are 3496 and 12000 respectively.

Zesby!"! and Claffy™ summarized the sampling methods of systematic sampling, simple random sampling and
stratified sampling, and assessed the performance by their particular standards. As the stratified sampling method
requires a prior knowledge for dividing the parent population into subgroups, we exclude this method and include
Poisson sampling that is recommended by IETF IPPM in Ref.[10]. In the paper, we implement packet-driven simple
sampling and systematic sampling, timer-driven Poisson sampling and FASM sampling for the evaluation of their
goodness-of-fit.

1000 independent sampling rounds are taken for each sampling scheme under the same expected sampling
size n , which ranges from nearly 0.5% to 10% of the parent population N (30 to 350 for first trace and 30 to 1200
for the second trace). Let (E.,E},...,E."") denote the approximating residual error of n samples, E, the real residual

error, and En the estimation of £, obtained from Eq.(9):
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Figure 2 illustrates the performance for each sampling scheme of the two traces in approximation. It shows that

the Poisson sampling and simple random sampling have nearly the same performance in this scenario. The

systematic sampling appears to perform as well as the FASM, but the stability of fitting residual error is subjected to

the variance of sampling size. The FASM method is more robust than the systematic sampling. The residual error of

the FASM is much smaller than those of the Poisson and simple random sampling, for example in the traffic load

trace, the residual error of the FASM with sample size 110 equals to the Poisson or simple random sampling with

sample size 170. Therefore, from approximation point of view, we could reduce the sample size by 35.3% in this

situation and nearly 19% at points A and B in the one-way delay trace.

Table 1 Parameters selection for the two-trace approximation

Simple random
Systematic

Poisson
FASM

Param J C di dis dy dy
Value 20 1.1 0.8 0.2 0.16 0.64
4
595210 re—— 91y
E, —— Surip e r?n om E A
565 ystematic g7
—s— Poisson
5.35 FASM
83
5.05
| 79
4.75 I
a4 | | 75
45 I I ;
4.15 | | 71
e s
3.85 | 67
30 70 110 150 190 230 270 310 350 30

Sample size 1
(a) Traffic load trace

150 270 390 510 630 750 870 990 1100

Sample size i

(b) One-Way delay trace

Fig.2 Comparison of approximating residual

error between different sampling methodologies

As systematic sampling is a biased sampling method that suffers from two potential problems described in

Ref.[10], therefore, it is excluded from our following analysis. Now, we compare the sample efficiency of FASM

and simple random sampling methods. Let F},Fq, denote the PLF with sample sizeiunder FASM and simple

random sampling. E. and E, represent the fitting error respectively and n, is defined as Ej¥ = Ej, . We calculate

the ratio of the saved samples R, by Eq.(10):

i(i_ip)

i=l

where / and u are the lower and upper bounds of the sample size respectively.

(10)

The Ry is 33% and 17.3% for the first and second trace respectively. Clearly, the FASM significantly
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reduces the number of samples compared with the simple random sampling method.

4 Parameter Estimation

The most important application of sampling methodologies is to estimate the mean, variance or distribution of
parent population. In this paper, based on the first trace, we concentrate on mean estimation by FASM sampling,
comparing it with the unbiased simple random sampling to show that the change of sampling method from simple
random sampling to FASM does not affect this statistic estimation significantly.

Obviously, compared with Poisson sampling or simple random sample method, FASM is a biased sampling
method. It is unreasonable to estimate the statistic metric of parent population as others do. We define the

expectation value of parent population under sample size n as:

V=[P (s (11

As in Section 3, we also perform 1000 rounds independent experiments on the first traffic load trace with the
same sample size n, 30 <n <350 . According to the central limit theorem, suppose that traffic load trace is subject to
N(up,0°) by FASM sampling and N(us,,0°) by simple random sampling with the same sample size n . We take
following hypothesis testing to determine the significant effect of different sampling methodologies under the

significant level & :

Hy:pp = pgp(H, g # i)

let Y7 and Yg be the estimation of ., ug, , we construct:

T =—f "SR _{m+n-2) (12)
11
Sa|—+—

m n

where o =0.01,1n =m =1000 , #, 4,5 (1998) and | ¢, | are illustrated in Fig.3. The ratio of|, |< ¢, 4,5(1998) is about 86.3%.
This result reveals that in most cases, we cannot reject the hypothesis that the two sampling methods do not take

significant difference in mean estimation under the same sample size.

5.5 6.5
A (41| -
45 . 55 .
A . ] 450 e
350 - . . . e s Fe
. . tp(1998):2.576 ee o 35 ° e
253,_“;: _______ G LI PR K A o 9, £,(1998) =2.576 e
s o% ° s o % ° o @ %o e
P B =L, " ®ao e R e e R
e L A s R = .,
o Gof T f e e%t Pome e e L - S S
0.5 .“'.uf B e en B L O, @ o 0.5 I Y O CAIRAC R R
w % “deas ™0 LI % B P T B R T
-0.5 -0.5
30 70 110 150 190 230 270 310 350 30 70 110 150 190 230 270 310 350

Sample size i

Sample size I . R
Fig.4 Distribution of |¢,| under the same

Fig.3 Distribution of|¢ |under the same sample L
approximation accuracy between FASM and

size between FASM and simple random sampling simple random sampling
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Section 3 also mentions that FASM could significantly reduce the number of samples for a given
approximation accuracy compared to simple random sampling and Poisson sampling. We test the validation of
parent population estimation with different sample sizes in the situation of retaining the fitting accuracy. Take points
A and B in Fig.2(a) for example, |7]=1.18 <f,45(1998) . So we can accept the mean estimation by FASM compared
to simple random sampling. Similarly, an equal expectation value testing hypothesis is taken under the same
approximating error between the two sampling methods as depicted in Fig.4. It shows that 85.6% of]|z, |is below
2.576. This reveals that the reduced samples generated by FASM could also provide a reasonable estimation of

parent population as the simple random sampling does.
5 Sample Size Stability

Poisson sampling, sample random sampling and FASM are all probability samples. The resulting sample size
n is a random variable with an expected value n . If the obtained sample size is far from the expectation, then the
sample will be rejected because of the concern of precision or resource occupation. This section analyzes the FASM
sample size stability and compares it with those of the Poisson sampling and simple random sampling.

Suppose N,,t > 0 denote the realized sample size within time ¢ by the sampling methodologies. Apparently, N,
is a counting process. As to the Poisson sampling and sample random sampling, Poisson process and Bernoulli
process can be used to calculate the probability P(N, =k),k=0,1,...,n.

The pdf (Probability density function) for i-th sample time interval f(z;) is derived from Eq.(13):

i 7},1,70, D2
. DI .
r)=-"te U ;>—L 13
f@=p - (13)
The probability of P(N, = n) can be inferred from Fig.5:
33 T Tn
I < < p R
4 t, # t, , t,_ t, = T

Fig.5 Sampling event description

P(N,=n)=P(z, 2T —t,_,,t,_, <T)
=P, 2T -t |t,_,<T)P(t,, <T)
=P, 2T—t, )P(r,, <T—t,,,t,,<T) (14)

n=2
— P(Tn = T_tn—l)P(T] < T)HP(Tn—i < T_tnfifl)
i=1

Assume that for the i-th sample l<i<n, (D},D})=(0,1),i.e.7,=1/4 ,then P(z,<T—t_)=1. Such samples

are referred to as fixed samples. Let P'(N, =n)represent the probability of N, =n while no fixed samples are
included, therefore P' < P . Applying Eq.(13) to (14), P' is given by:

2

1-D? (n—i+1)-D}

o (15)

-1
P(N,=n)=e D H(l—e
i=2

Eq.(15) indicates that the probability is independent of the measurement time duration7 . Let P'(n) denote
the P'(N, =n),T > 0. Figure7 shows two extreme cases of P'(n), e.g. P'(n)and B'(n) when (D!,D?)=(d,,.d,,),
(D!, D})=(d,,dy),i =2,.on . dy,k,1=1,2 are taken from Table 1. The probability P'(n) becomes stable if the
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expected sample size is larger than n' = max {n,,n,} .

Based on the second trace, 1000 rounds of sampling are performed for each n,30<n<1200. Figure 7
illustrates the proportion of the generated sample size that equals to the expected size n . FASM presents a much
more stability on the sample size. From Eq.(15), if the systematic sampling is adopted for the last n’, n'«n samples,
then P'(n) ~1.

x107?
0.40 ; P(i)35 -
P'(i) e A B.=0315___
0.35 ) 30 )
h 1 —F— Simple random
1 .
0.30 . 25| —%— Poisson {
' —A— FASM
0.25 ' 20
'
0.20 . 15
' 4
0.15 . L0\ = - mmm o mmmmm s oS
1 PJ(i) ;
0.10 ; 5%
noan ; R T L SN NN |
0.05 ; 0 Y ¥ SARSA.
6 0 14 I8 22 26 30 30 150 270 390 510 630 750 870 990 1100
Sample size i Sample size i

Fig.7 Comparisons of the proportion of the

. , .
Fig.6 P’ evolution generated sample size that equals to expectation i

6 Discussions

Apparently, parameters C, j,d,,,d,,,d,,,d,, will significantly affect the performance of the FASM, but some
basic rules underlie the selection of them. Threshold C is commonly chosen between 1.0 and 2.0. The smaller the
threshold, the higher the change frequency for the time interval of samples. The regression window size j reflects
the sensitivity to the fluctuation of the measured characteristic. A shortened j makes the FASM take immediate
actions in approximation, while a wider window size smoothens the true property, causing more information loss. In
experiments, a window size from 5 to 50 is suggested and a smaller window has a higher priority.
d,, >d,,,d, <d,, indicates that during a smoother period of character evolution, FASM generates a longer
sampling time interval with higher probability of short sampling interval for an acute evolution period.

To choose better sampling parameters for the FASM, an effective way is to tune them by a training data set of
the interested network character. An on-line self-learning mechanism can be adopted to adjust these parameters for a

more accurate approximating and statistical metrics estimation.

7 Conclusions

In this paper, we propose a novel sampling mechanism, FASM, from a piecewise linear approximation point of
view. The main advantage is that it could significantly reduce the number of samples while providing a reasonable
evolution reflection, e.g. modeling of parent population. We apply this sampling method to network character
extraction according to two real network traces. The experiments show that FASM could drastically reduce the
number of samples by 33% and 17.3% compared to other popular sampling methods for each trace. Though this
algorithm is developed based on the network character extraction, it provides a framework for other application

fields of data mining.
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