
 Vol.15, No.6 ©2004 Journal of Software 软 件 学 报 1000-9825/2004/15(06)0940

一种针对组播的分布式自调节显式速率控制器
∗

谭连生+, 刘 芹, 余一娇

(华中师范大学 计算机科学系,湖北 武汉 430079)

A Distributed Self-Tuning Explicit Rate Controller for Multicast Flows

TAN Lian-Sheng+, Liu Qin, YU Yi-Jiao

(Department of Computer Science, Central China Normal University, Wuhan 430079, China)

+ Corresponding author: Phn: +86-27-67867651, Fax: +86-27-67863612, E-mail: l.tan@ccnu.edu.cn

Received 2003-06-03; Accepted 2004-01-06

Tan LS, Liu Q, Yu YJ. A distributed self-tuning explicit rate controller for multicast flows. Journal of
Software, 2004,15(6):940~948.
http://www.jos.org.cn/1000-9825/15/940.htm

Abstract: The ever-increasing multicast data applications recently have aroused considerable interests in the
design of congestion control scheme for multicast services. This kind of study is indeed important, especially to
those multicast receivers with large propagation delays which mean the feedbacks arriving at the source node are
somewhat outdated and harmful to control actions. A distributed self-tuning explicit rate algorithm is presented in
this paper to overcome the vulnerability that suffers from the heterogeneous multicast receivers. It is suggested that
congestion controllers be located at the source and the participating intermediate nodes to regulate the transmission
rate. This network-assisted property is different from the traditional control scheme in that the router computes the
appropriate transmission rate of itself and executes it rather than sends packets in best efforts. This active manner
makes the control more responsive to the network status. The proposed self-tuning controller has essentially a
proportional controller structure. The proportional gain is related to the extent that the router buffer occupancy
deviates from the desired point. Simulation results show the efficiency of the proposed scheme in terms of fast
response, high link utilization, and relatively stable buffer occupancy.
Key words: distributed algorithm; explicit rate; multicast congestion control; rate-based congestion control;

self-tuning controller

∗ Supported by the National Natural Science Foundation of China under Grant No.60174043 (国家自然科学基金); the Key Project

of Natural Science Foundation of Hubei Province of China under Grant No.2002AB025 (湖北省自然科学基金)
TAN Lian-Sheng was born in 1965. He is a full professor now and the Head of the Department of Computer Science, Central

China Normal University. Dr. Tan obtained his Ph.D. degree from Loughborough University in UK in 1999. He was a postdoctoral
research fellow doing researching in computer networks with School of Information Technology and Engineering, University of Ottawa,
Canada in 2001. His research interests are in modeling, congestion control analysis, and performance evaluation of computer
communication networks. LIU Qin is a MSc. candidate in Department of Computer Science, Central China Normal University. She is
interested in computer network congestion control and traffic modeling. YU Yi-Jiao was born in 1978. He is currently a research fellow in
Central China Normal University and obtained his Master degree of Computer Science from Central China Normal University. His
research interests focus on computer network, artificial intelligence, and network management.

 谭连生 等:一种针对组播的分布式自调节显式速率控制器 941

摘 要: 拥塞控制是组播服务需要解决的重要问题.当存在大量异质的、传播时延较高的组播接收者时,到达源端

的反馈在一定程度上已经过时,因此常常严重影响控制效果.提出了一种分布式、自调节的显式速率比例控制方案,
它在源端和中间节点实施控制算法调整各自的发送速率,并且比例控制系数会根据路由器缓冲区占有量偏离理想

值的程度自动调节.这种网络参与控制的主动行为比传统路由器尽力服务的工作方式对网络状态的响应更加迅速,
自调节的控制系数比固定的控制系数更能及时调节发送速率.仿真实验结果表明,算法具有响应快、链路利用率高

和路由器缓冲区占有量比较稳定的特性.
关键词: 分布式算法;显式速率;组播拥塞控制;基于速率的拥塞控制;自调节控制器
中图法分类号: TP393 文献标识码: A

1 Introduction

Multicast improves the efficiency of multipoint data distribution by building a distribution tree from a sender
to a set of receivers[1]. However, the widely used multicast transport protocols which are layered on the top of IP
multicast, could cause congestion or even congestion collapse if they do not provide adequate congestion control.
Congestion control thus plays an important role in traffic management of multicast communications. There are
many congestion schemes handling unicast transmissions efficiently[2~4]. Unfortunately, multicast congestion
control is much more sophisticated than that of unicast due to the complexity of multicasting mechanism. Several
multicast congestion approaches have been proposed recently. One class of them[5,6] adopts a simple hop-by-hop
feedback mechanism, in which the feedback, i.e., backward control packets, from downstream nodes are initially
gathered at branch points, and then are transmitted upwards by a single hop upon receipt of a forward control
packet. The main merit of these methods lies in their simplicity of hop-by-hop mechanism, but at the same time they
often lead to the so-called consolidation noise problem[7] due to incomplete feedback information. To overcome this
drawback, Ref.[8] proposed a method called feedback synchronization that certain manipulations are performed at
each branch point by accumulating feedbacks from all downstream branches. This scheme then introduces another
problem of slow response due to the delay of feedback from “long” path. Such delayed congestion feedback can
cause excessive queue build-up and packet loss at the bottleneck link. The authors of Refs.[9,10] suggested that
only the suitable set of representatives instead of all receivers send their feedbacks to their sender. The authors of
Ref.[11] proposed a fuzzy-logic-based consolidation algorithm to estimate the unknown congestion information
caused by long propagation delay. More recently, Ref.[12] proposed an optimal second-order rate control algorithm
to deal with control packet round-trip time (RTT) variations in multicast communications. This method has studied
the system dynamics by using the binary congestion feedback in the scenarios of both persistent and on-off elastic
traffic services, which defines that the data transfer rate is adjusted at the source depending on the available
bandwidth at the bottleneck.

The major difficulty in the design of multicast congestion control protocols arises from the long and
heterogeneous RTTs involved in the closed-loop control. The responsiveness of a congestion control scheme is
crucial to how a protocol affects the network stability[13]. Concerning this regard, with a comparison to the binary
feedback congestion control, the explicit rate scheme is more responsive to network congestion and can better serve
wide area networks (WAN) environments where the bandwidth delay product is usually large. Explicit rate approach
(see, for example Ref.[2]) has been proposed for unicast transmission systems. However, few attentions have been
paid to the explicit rate formulations in multicast cases.

This paper develops a distributed self-tuning explicit rate algorithm to overcome the vulnerability that suffers
from the heterogeneous multicast receivers. In our scheme, congestion controllers are located at the source and the
participating intermediate nodes, i.e., the non-leaf nodes in a multicast tree, to regulate the transmission rate. This

 942 Journal of Software 软件学报 2004,15(6)

network-assisted property is different from the traditional control scheme in that the router computes the appropriate
transmission rate of it and executes it rather than sends packets in best efforts. This active manner makes the control
more responsive to the network status. In addition, the proposed self-tuning controller is essentially a proportional
controller. The proportional gain is related to the extent that the router buffer occupancy deviates from the desired
point. Therefore, the feedback consolidation problem is solved naturally within this algorithm. Each branch point
only receives feedbacks from the direct downstream nodes instead of all downstream nodes; it thus greatly
decreases the number of feedbacks that need to be processed at one node. As a result, our scheme can avoid
feedback explosion[14] to a great extent. Simulation results show the efficiency of the proposed scheme in terms of
fast response, high link utilization, and relatively stable buffer occupancy.

The paper is organized as follows. In Section 2, we present the overall architecture of the proposed multicast
control scheme. We then evaluate the performance of the algorithm via various simulations in Section 3. It is finally
concluded in Section 4.

2 Description of the Scalable Self-Tuning Rate Controller

2.1 System configuration

A rate-based congestion control algorithm is a feedback-based flow control mechanism for elastic traffic.
Traditionally, the packet admission rate of the source is adjusted according to network status information carried in
the feedback. Each intermediate node just sends packets received in best efforts without regulating its transmission
rate. That is to say the link utilization is full if the link buffer is not empty. There is no doubt that this mechanism
can make a good use of the network resources, but the passive manner will aggravate the downstream bottleneck
congestion level in case there is a long distance between these two nodes. If rate regulation is only carried out at the
source node, it has elapsed a long time from the congestion spot to the source. During the non-regulating period, the
upstream node still emits packets at its maximum capacity, which will deteriorate the downstream bottleneck. In
fact, we can alleviate the congestion level of the downstream node by shortening the duration of rate updating.
Suppose that two adjacent nodes constitute a virtual “source-destination” pair, in which the upstream node acts as
the source and the downstream one acts as the destination. The upstream node gets feedbacks from the direct
downstream nodes and adjusts its transmission rate. In this way, we can deploy the same rate regulation mechanism
in the real source node and the intermediate nodes.

As shown in Fig.1, the considered multicast elastic service in the network-assisted environments is described
as follows.

(i) The network is a connection-oriented one and time is slotted by the sampling period with the duration
[n,n+1] equal to T. The associated data are transferred by a fixed size packet, called a data packet.

(ii) The source of a multicast session issues and transmits forward control packet (FCP) every sampling period
in order to communicate flow-control related information with routers in the multicast tree.

(iii) The branch point of the multicast tree replicates each data packet and FCP from its upstream node to all its
downstream branches. The downstream node returns its congestion information via backward control packet (BCP)
to the parent through the backward direction of the coming path once it receives a FCP. Assume that congestion
never happens at the router connected with the source, hence these two can be consolidated into one node, which is
true in most cases in real networks. Under this assumption, the multicast source can also be treated in the same way
as the branch point shown in Fig.1.

(iv) The buffer occupancy of the ith node is denoted by xi(n) at time slot n and the desired buffer level is
denoted by ix . The router has sufficiently large storing capacity B, . ∞<<< B0

 谭连生 等:一种针对组播的分布式自调节显式速率控制器 943

0

1

2

i

N

i

Branch
point

Virtual
source

Virtual
destination

Branches

.
.
.

.
.
.

x1(n)
: ith node (router)

L1

L2

Li

LN

x2(n)

xi(n)

xN(n)

r1(n)

r2(n)

ri(n)

rN(n)

τ1

τ2

τi

τN

Fig.1 A multicast configuration at a branch point

(v) The ith link and its corresponding capacity is denoted by Li without making confusion in the context. The
time it takes for a packet to go from one end of the link to the other end (either in forward or in backward direction)
is denoted by integer τi, which includes queuing delay, processing delay, and propagation delay. If the sum of these
delays is not a multiple of T, it is sound to add a small value to the path delay to make τi integer.

(vi) Each router schedules the packets in a first-come-first-serviced manner. The component ri(n) represents the
transmission rate of the ith node at time slot n. We use Fig.1 to describe the considered multicast model. With refer
to Fig.1, the buffer occupancy of the ith node is determined by
)}()()({)1(0 nrnrnxSatnx iiiBi −−+=+ τ (1)

where and r

<
≤≤

>
=

0 0
0

}{

x
Bxx

BxB
xSatB i(n)<Li.

If Node0 happens to be the multicast session source, another condition MDR≤r0(n)≤PDR must be satisfied,
where MDR is the minimum data rate of the multicast session and PDR is the peak data rate.

2.2 The algorithm

The router’s buffer occupancy is expected to stay at the neighborhood of the desired level. If x(n) is too high, it
often leads to buffer overflowing and packet loss. In addition, under this circumstance long packet queuing delay
usually results in time out and retransmission, which in turn builds up the mounting of the buffer occupancy;
consequently a vicious circle is formed. If x(n) is too low, it increases the likelihood of link underutilization during
the occasionally idle period. Thus the router buffer occupancy plays an important role in the congestion control that
is chosen out to be the feedback carried in BCP. Generally, among all downstream nodes, the most congested one
defined as the worst node deserves special attention. Based on this consideration, we propose the following
proportional control scheme

])([)()1(worstworstworstpii xnxCnrnr −−−=+ τ (2)

where Cp is the proportional gain, and xworst(n), worstx , τworst are the buffer occupancy, desired level and

corresponding propagation delay of the worst node respectively. The component Cp can be carefully selected to
ensure the stability of the system that guarantees the bounded buffer occupancy. However, the selection is generally
difficult. Sometimes there even doesn’t exist such a Cp at all. What’s more, the fixed Cp can hardly capture the
congestion level accurately once the session is established. If x(n) leaves far away from the desired point x , it is
expected to bring the operating point quickly to the equilibrium value. Especially when x(n) is much bigger than x ,

 944 Journal of Software 软件学报 2004,15(6)

a large Cp will prevent the node from dumping in congestion. When the system switches to the neighborhood of the
desired point, it is expected that Cp come down to a small value to act conservatively. This observation motivates us
to take a different method in choosing the feedback gain Cp from the conventional method like additive increase
multiplicative decrease (AIMD) algorithm (see, for example Refs.[12,15]).

In our approach, the feedback gain Cp is designed to have the

following form

−−

=

= −

i

iii

p

x
xnx

eC
)(

0||

τ
β

ββ

, where |β|, called the deviation

ratio, represents the extent that the buffer occupancy deviates from
the desired point. Let β0 be the deviation ratio threshold. To show the
mathematical property of this parameter, we plot the curve of the
function Cp corresponding to some fixed and τi in Fig.2. The
component Cp now has the property we are looking for due to

. With the increase of deviation ratio, C

<<
=
>

β
β
β

||10
||1
||1

p

p

p

C
C
C

<
=
>

η
η
η

p

increases correspondingly.

x

Fig.2 The curve of Cp

In our algorithm, the node that has the largest β is thought to be the worst one. In the case β is negative, the
smaller it is, the lower buffer occupancy is; while in the case β is positive, the larger it is, the worst congestion
situation is. Thus β is a good indication of the congestion level of each node without extra calculation. We have the
self-tuning controller suggested by

[]

−−⋅−=+
=

 −−
=

−

∈

worstworstworstp

p

i

iii

nodesdownstreamdirecti

xnxCnrnr
eC

x
xnx

)()()1(

)(max

00

|| 0

τα

τ
β

ββ (3)

A fine-tuning parameter α (0 < α < 1) is added to limit the changing rate of Cp since exponential function often
increases too fast when the exponent is large.

The control gain CP selection can be built on the following stability analyses. To analyze the stability, we have
the following Taylor-series expansion

 () () () (
i

i
i

ii ∑∞

=
− −=−++−+−+=

0 00
2

00
|| ||

!
1...||

!
1...||

!2
1||1e 0 ββββββββββ ＋) (4)

By substituting (4) into (3), we further have

 [worstworstworst

i

worst

worstworstworst
i xnx

x
xnx

i
nrnr −−

−

−−
−=+ ∑∞

=
)()(

!
1)()1(0000 τβτα] (5)

Combining (1) with (5), one yields a closed-loop system description. The stability in terms of the buffer occupancy
x(n) can be analyzed by using the nonlinear system analysis techniques like those suggested by Ref.[16]. However,
we omit this mathematical complexity here. Our selection of the control gain is only following the line of empirical
investigation and analysis based on simulations, and the details are to be given in Section 3.

The whole algorithm at the branch point is illustrated in Fig.3. At the center of router control algorithm are two

 945

0|| ββ −e

谭连生 等:一种针对组播的分布式自调节显式速率控制器

vectors: 1) multicastVector, the connection pattern
vector where multicastVector(i) =1(0) means the ith
output port of the router is (not) a downstream branch
of the multicast connection and a BCP is (not)
expected from the ith downstream branch; 2)
receivedVector, the responsive branch vector is
initialized to 0 and reset to 0 whenever the local
transmission rate is updated; while receivedVector(i)
is set to 1 if a BCP is received from the ith
downstream branch. The BCP contains a field named
BO for filling the buffer occupancy.

At the session establishing time, the desired
buffer occupancies of the direct downstream nodes are
recorded in desiredVector via negotiation option.
Upon receiving a data packet or a FCP, the router
multicasts it to its output ports specified by
multicastVector, if corresponding output links are
available; otherwise en-queues it in its queue. Upon
receiving a feedback BCP from any downstream
branch, the router marks its corresponding bit in
receivedVector, and then select the largest β. If receivedVector = multicastVector, which implies that all feedbacks
have been synchronized, the local transmission rate is then updated. Note that the rate cannot be more than the
minimum bandwidth of its output links.

At the session establishing period:
Record the desired buffer occupancies of the direct downstream nodes in
desiredVector;
On receipt of a data packet or a FCP at the intermediate router:
Multicast data packet based on multicastVector;
On receipt of a BCP from i-th branch:
if multicastVector (i) = 1
{
 receivedVector (i) = 1;
 if (BO – desiredVector (i)) / desiredVector (i) >β
 {
 β = (BO – desiredVector (i)) / desiredVector (i);
 worstDeviation = BO – desiredVector (i);
 }
 if receivedVector = multicastVector
 {
 Cp = ; //uptate its tramsmission rate
 r = max(0,min(all output links bandwidth, r - α· Cp · worstDeviation));
 receivedVector = 0; // reset receivedVector
 β= -∞; // infinitesimal
 }
}

Fig.3 Pseudocode of branch point

The feedback consolidation problem is solved naturally in this algorithm. Each BCP just experiences one hop
instead of returns to the source node where the feedbacks accumulated at one branch point are very limited
compared with those from all the downstream nodes. The small amount of feedbacks will not make the branch point
undated.

Rate computation and execution run independently on individual branch point. The distributed processing
manner not only simplifies the implementing complexity, but also provides a mechanism to deal with the
heterogeneous long propagation delay. This benefit is evident from the following simulation results.

3 Performance Evaluation via Simulation

In this section, we study the performance of the proposed scalable self-tuning controller under a complex
network configuration. There are three key performance related issues that merit serious considerations:

(i) The response of the controller from the initial state to stead state, i.e., the duration it takes for system to
reach an equilibrium state;

(ii) The steady state of the bottleneck, of particular interest is the buffer occupancy;
(iii) The average link utilization of the bottleneck link.
Our designed simulation topology is shown is Fig.4. The multicast source and intermediate points are

represented by Node1~Node13. Links are denoted by L1~L19 with the corresponding forward/backward delay in the
bracket measured in T (T=1ms). Node1 is the multicast session source; Node4, Node5, Node6, Node9, Node10,
Node12 and Node13 are the destinations. All links have bandwidth 300Mb/s except L3 and L13 with bandwidth
75Mb/s. The configuration includes the cases of node having single-branch (e.g. Node11), nodes having multiple

 946

Journal of Software 软件学报 2004,15(6)

branches (e.g. Node3 and Node7), nodes having different
hops to the source, heterogeneous RTTs and various link
bandwidths. It is believed that this model is representative
enough for the purpose of studying our proposed scheme in a
WAN environment. We carry out extensive simulations using
the software MATLAB, and compare the self-tuning
proportional control (STPC) with the fixed proportional
control (FPC) described by Eqs.(1) and (2). FPC is named for
its invariable proportional gain once the control begins.

The network configuration that we investigate into
involves two bottleneck links, L3 and L13, which bring Node3
and Node8 into being the bottlenecks. The desired buffer
occupancy is set proportionally to its minimum outgoing link

capacity to reflect the individual transmission capacity as follows: Kb7583 == xx ,
Kb3001312111097654 ========= xxxxxxxxx . The feedback gain Cp used in FPC is set to be 0.002; the other

parameters used in STPC are chosen as r1(0)=42Mb/s, α = 0.001, β0 = 0.1, MDR = 0, PDR = 1000Mb/s. The
simulation duration is 1000ms and the results are shown in Fig.5 ~ Fig.8. The notation DL in the figures represents
the desired level.

1

2

3 7

4 5 6 8 11 13

9 10 12

L1 (1)
300Mb/s

L2 (2)
300Mb/s

L3 (1)
75Mb/s L5 (5)

300Mb/s

L7 (9)
300Mb/s

L4
300Mb/s

L6
300Mb/s

L8
300Mb/s

L10 (1)
300Mb/s L15 (4)

300Mb/s

L18 (1)
300Mb/s

L11 (5)
300Mb/s

L13 (10)
75Mb/s

L16 (7)
300Mb/s

L19
300Mb/s

L12
300Mb/s

L14
300Mb/s

L17
300Mb/s

L9 (6)
300Mb/s

i :branch point

Fig.4 Multicast simulation topology

 (a) Node3 (b) Node8

Fig.5 Bottleneck buffer occupancy

 (a) Node7 (b) Node11

Fig. 6 Nonbottleneck buffer occupancy

From Figs.5(a) and (b), it is found that the buffer occupancy of the bottleneck nodes in STPC is much smaller

than that in FPC, and nearer to the desired buffer level. Take Node3 for an example, the maximal buffer occupancy

 谭连生 等:一种针对组播的分布式自调节显式速率控制器 947

in FPC is 920Kb while 227Kb in STPC, almost one fourth of the former. High occupancy results in a long queuing
time due to extra queue build-up, which would degrade the responsiveness of the feedback and subsequently the
efficiency of the control scheme. Figures 6(a) and (b) depict the non-zero buffer occupancies of the non-bottleneck
nodes. STPC still shows superiority in smaller buffer occupancy. Although it fluctuates around the desired level, its
smooth change shows that it is still acceptable.

(a) Node1 (source) (b) Node3

(c) Node7 (d) Node8

Fig.7 Transmission rates of the source and branch points

(a) L3 (b) L13

Fig.8 Bottleneck link utilization

The transmission rates of the source and branch points are shown in Fig.7. In both schemes the rates fluctuate
around the bottleneck link capacity 75Mb/s, but the swing is smaller in STPC, meaning a better steady state
performance. Furthermore, by more closely looking into Fig.7, one notes STPC also demonstrates better transient
dynamics. STPC yields a shorter response time than FPC. In STPC, it takes about 160ms for the source node to
come into a regular pattern; while in FPC, that is about 260ms.

 948 Journal of Software 软件学报 2004,15(6)

From Fig.8, one observes there is certain advantage of STPC over FPC, which is that STPC achieves a better
bottleneck link utilization. The average utilization of L3 in FPC is 82.93%, while in 85.93% STPC; the average
utilization of L13 in FPC is 82.43%, while 85.43% in STPC.

In summary, the simulation results show that under our proposed STPC scheme, the response time is shorter
and the buffer occupancy fluctuates smoothly around the desired point. The utilization of the bottleneck link is
excellent.

4 Conclusions

This paper presents a distributed congestion control method in multicast communication networks. It uses a
self-tuning proportional control to regulate the transmission rate of not only the source but also the intermediate
nodes. The proportional control gain in this scheme is shown to be able to adjust automatically depending on the
network load. Simulation results demonstrate that this method can achieve good system dynamics along with
excellent link utilization. It is able to scale to a large number of receivers and to be implemented in a heterogeneous
environment with different link capacities and delays. Our further research would investigate into the TCP-friendly
related issues in multicast congestion control along this line of study.

References:
[1] Deering S. Host extensions for IP multicasting. RFC1112, 1989.
[2] Benmohamed L, Meekov SM. Feedback control of congestion in packet switching networks: The case of a single congested node.

IEEE/ACM Trans. on Networking, 1993,1(6):693~708.
[3] Keshav S. A control-theoretic approach to flow control. In: Proc. of the ACM SIGCOMM’91. Zurich: ACM Press, 1991. 3~15.
[4] Benmohamed L, Meerkov SM. Feedback control of congestion in packet-switching networks: The case of multiple congested nodes.

Int’l Journal of Communication Systems, 1997,10(5):227~246.
[5] Tzeng HY, Siu KY. On max-min fair congestion control for multicast ABR services in ATM. IEEE Journal on Selected Areas in

Communications, 1997,15(3):545~556.
[6] Saito H, Kawashima K, Kitazume H, Koike A, Ishizuka M, Abe A. Performance issues in public ABR service. IEEE

Communications Magazine, 1996,(11):40~48.
[7] Zhang X, Shin KG. Statistical analysis of feedback synchronization signaling delay for multicast flow control. In: Proc. of the IEEE

INFOCOM 2001. Anchorage, 2001. 152~1161.
[8] Cho YZ, Lee SM, Lee MY. An efficient rate-based algorithm for point-to-multipoint ABR service. In: Proc. of the IEEE

GLOBECOM 1997. Phoenix, 1997. 790~795.
[9] DeLucia D, Obraczka K. Multicast feedback suppression using representatives. In: Proc. of the IEEE INFOCOM 1997. Kobe, 1997.

463~470.
[10] Rizzo L. PGMMCC: A TCP-friendly single-rate multicast congestion control scheme. In: Proc. of the ACM SIGCOMM 2000.

Stockholm, 2000. 17~28.
[11] Lee SH, Lim JT. Multicast ABR service in ATM networks using a fuzzy-logic-based consolidation algorithm. IEE Proceedings –

Communication, 2001,148(1):8~13.
[12] Zhang X, Shin KG, Saha D, Kandlur DD. Scalable flow control for multicast ABR services in ATM networks. IEEE/ACM Trans.

on Networking, 2002,10(1):67~85.
[13] Shi S, Waldvogel M. A rate-based end-to-end multicast congestion control protocol. In: Proc. of the 5th IEEE Symp. on Computers

and Communications. Antibes, 2000. 678~686.
[14] Crowcroft J, Paliwoda K. A multicast transport protocol. In: Proc. of the ACM SIGCOMM. Stanford: ACM Press, 1988. 247~256.
[15] Golestani SJ, Sabnani KK. Fundamental observations on multicast congestion control in the Internet. In: Proc. of the IEEE

INFOCOM 1999. New York, 1999. 990~1000.
[16] Vidyasagar M. Nonliner Systems Analysis. 2nd, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2002.

	Introduction
	Description of the Scalable Self-Tuning Rate Controller
	System configuration
	The algorithm

	Performance Evaluation via Simulation
	Conclusions

