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Abstract: Training a SVR (support vector regression) requires the solution of a very large QP (quadratic
programming) optimization problem. Despite the fact that this type of problem is well understood, the existing
training algorithms are very complex and slow. In order to solve these problems, this paper firstly introduces a new
way to make SVR have the similar mathematic form as that of a support vector machine. Then a versatile iterative
method, successive overrelaxation, is proposed. Experimental results show that this new method converges
considerably faster than other methods that require the presence of a substantial amount of data in memory. The
results give guidelines for the application of this method to large domains.
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In the last few years, there has been a surge of interest in SVMs (support vector machines)!'). SVMs have
empirically been shown to give a good generalization performance on a wide variety of problems. However, the use
of SVMs is still limited to a small group of researchers. One possible reason is that training algorithms for SVMs
are slow, especially for large problems. Another explanation is that SVM training algorithms are complex, subtle,
and sometimes difficult to implement.

In 1997, a theorem™ that introduces a whole new family of SVM training procedures was proved. In a
nutshell, Osuna’s theorem showes that the global SVM training problem can be broken down into a sequence of
smaller sub-problems and that optimizing each sub-problem minimizes the original QP problem. Even more
recently, the sequential minimal optimization algorithm (SMO) was introduced® as an extreme example of Osuna’s
theorem in practice. Because SMO uses a sub-problem of size two, each sub-problem has an analytical solution.
Thus, for the first time, SVMs could be optimized without a QP solver.

In addition to SMO, other new methods™’! have been proposed for optimizing SVMs online without a QP
solver. While these other online methods hold a great promise, SMO is the only online SVM optimizer that
explicitly exploits the quadratic form of the objective function and simultaneously uses the analytical solution of the
size two cases.

While SMO has been shown to be effective on sparse data sets and especially fast for linear SVMs, the
algorithm can be extremely slow on non-sparse data sets and on problems that have many support vectors.
Regression problems are especially prone to these issues because the inputs are usually non-sparse real numbers (as
opposed to binary inputs) with solutions that have many support vectors. Because of these constraints, Shevade!®
and Chih-Jen[") generalized SMO so that it can handle regression problems. However, one problem with SMO is that
its rate of convergence slows down dramatically when data are non-sparse and when there are many support vectors
in the solution — as is often the case in regression — because kernel function evaluations tend to dominate the
runtime in this case. Moreover, caching kernel function outputs can easily degrade SMO’s performance even more
because SMO tends to access kernel function outputs in an unstructured manner.

Mangasarian'® proposed a new training algorithm based on SOR (successive overrelaxation). Because SOR
handles one point at a time, similar to Platt’s SMO algorithm which handles two constraints at a time and Joachims’
SVM which handles a small number of points at a time, SOR can process very large datasets that need not reside in
memory. The algorithm converges linearly to a solution.

In this work, we propose a new way to make SVR (support vector regression) have the similar mathematic
form as that of a support vector classification, and derive a generalization of SOR to handle regression problems.
Simulation results indicate that the modification to SOR for regression problems yields dramatic runtime

improvements.
1 Successive Overrelaxation for Support Vector Machine

Given a training set of instance-label pairs (x;,y;), i=1,...,/, where x;eR" and ye {1,—1}’, Mangasarian outlines
the key modifications from standard SVM to RSVMP! He starts from adding an additional term 5%2 to the

objective function:

© hEE

AT hupy/ www. jos. org. cn




202 Journal of Software #AFFIR  2004,15(2)

minl(wrw+b2 )+ Cz[:é.
i=1

wb,¢& D

sty (quo(xl.)+b)21—§,. (1)
& 20,i=1,.,1

The training is expressed as a minimization of a dual quadratic form:

minlaTHa+laTEa—eTa
2 2

st. 0<a,<C,i=1,.,1

@

yi9(x)) » 1 a,
where H =227, Z = : , E=YY", Y= :
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Define A4=H+E, L+D+L" =A. The nonzero elements of L e R™ constitute the strictly lower triangular part

constitute the diagonal of 4. The SOR method,
which is a matrix splitting method that converges linearly to a point a satisfying (2), leads to the following

of the symmetric matrix 4, and the nonzero elements of D e R"™

algorithm:
Choose @ € (0,2). Start with any «” e R'. Have a' to compute a™*' as follows:
at = (ai —oD™ (Aai —e+ L(ﬂt”1 —a' )))* 3)
where ()* denotes the 2-norm projection on the feasible region of (2), that is
0 a,<0
(a,.)* =da, 0<a,<C;, i=1..1.
C a 2C

2 Simplified SVR and Its SOR Algorithm
Most of those already existing training methods are originally designed to only be applicable to SVM.
Compared with SVM, SVR has a more complicated form. For SVR, there are two sets of slack variables (g"] ,‘..,f,)

and (9"1*,...,9",*) and their corresponding dual variables (,,...,a,) and (al*,...,a,*). The analytical solution to the
size two QP problems must be generalized in order to work on regression problems. Even though Smola has
generalized the SMO to handle regression problems, one has to distinguish four different cases: (a,.,aj), (a,.,a;),
(af,a/), and (af,aj.). This makes the training algorithm more complicated and difficult to be implemented. In this

paper, we propose a new way to make SVR have the similar mathematic form as that of a support vector
classification, and derive a generalization of SOR to handle regression problems.

2.1 Simplified SVR formulation

Similar to (1), we also introduce an additional term b%/2 to SVR. Hence we arrive at the formulation stated as

follows:

min %(wTw+b2)+ CZIZ(@ +§,.")

i=1
s.t. yi—wo(x;)—b< e+, 4)
W@(xi)+b_yi S8+§:
ELET20 =11

By introducing two dual sets of variables, we construct a Lagrange function from both the objective function

and the corresponding constraints. It can be shown that this function has a saddle point with respect to the primal
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and dual variables at the optimal solution:

L = %WTW+%b2+CZIZ(§,.+§;) ZIZ (g+§ yl+w¢)(x‘.)+b)—
i=1 i=1 (5)
i i

ailerer v -woln)-0)-Flné +nie)

It is understood that the dual variables in (5) have to satisfy positive constraints, i.e. a;,a;,7,,7, 20. It
follows from the saddle point condition that the partial derivatives of L with respect to the primal variables

(w, b,&, (f,.*) have to vanish for optimality.

—L=b+lel(a;‘—ai)=0 = bzzll(a —a)

i=1
oL ; .
5w_w Z(a —a)p(x;)=0 = W=Z(ai—a‘.)¢(xi) (6)
i=1 i=1
6%) =C- (*) —n ™ -0
og" '

Substituting (6) into (5) yields the dual optimization problem:
min
(7

st. a,,a’ €[0,C]

The main reason for introducing our variant (4) of the SVR is that its dual (7) does not contain an equality
constraint, as does the dual optimization problem of the original SVR. This enables us to apply in a straightforward
manner the effective matrix splitting methods such as those of Ref.[8] that process one constraint of (4) at a time
through its dual variable, without the complication of having to enforce an equality constraint at each step on the

dual variable a. This permits us to process massive data without bringing them all into a fast memory.

Define
dl(”(xl) a, 1 Y —€
d,plx a 1 -&
H=277",7 = o) a=|%1 L E=di” A . ol
d1+1¢(x1+1) a, | V€
dz,(p(xz,) 21x1 a, 20x1 1 VT E )y

Thus (7) can be expressed in a simpler way.

min laTHLH-laTEa—CTa )
st. a,el0,Cl i=1,..1

If we ignore the difference of matrix dimension, (8) and (2) have the same mathematic form. Compared with
(7), (8) has a simpler mathematic form. However, the only difference between formulations (7) and (8) is the
mathematic representation. If we expand (7) and (8) to polynomials with respect to a, their mathematical
formulations will be identical. So their optimization problems are essentially the same. Through this important
transformation, SVR and SVM can be written in the same mathematic form. According to the statistical learning
theory, we can solve the optimization problem for SVR in the same way as SVM. Thus many training algorithms

that are used in SVM can be used in SVR directly.
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2.2 SOR algorithm for SVR

Here we let A=H+E, L+D+L" =A. The nonzero elements of L e R*** constitute the strictly lower

triangular part of the symmetric matrix 4, and the nonzero elements of D e R*** constitute the diagonal of A4 .
The SOR method, which is a matrix splitting method that converges linearly to a point a satisfying (8), leads to

the following algorithm:

SOR Algorithm. Choose w e (0,2). Start with any «’eR*. Have d' to compute o' as follows:

¢t -t e+ ) ®

until |

a™ - a[|| is less than some prescribed tolerance.

The components of «'"' are computed in order of increasing component index. Thus the SOR iteration (9)

consists of computing aj.” using (af” ey a}",.tll N ) That is, the latest computed components of ¢ are used in

the computation of a"/.” . The strictly lower triangular matrix L in (3) can be thought of as a substitution operator,
i+l i+l

substituting (a] ,...,aH) for (af,...,aj;l ) Thus, SOR can be interpreted as using each new component value of u

immediately after it is computed, thereby achieving improvement over other iterative methods such as gradient
methods where all component of a are updated at once.

Even though our SOR iteration (9) is written in terms of the full 2/x2/ matrix 4, it can easily be

implemented one row at a time without bringing all of the data into memory as follows for j=1,...,2/:

) ) 21 ) i} )
alfl = [a} —wA;jl[ZAjka,'{ —c;+ ) Aa J] (10)
=y k=1 .

A simple interpretation of this step is that one component of the multiplier g; is updated at a time by bringing

one constraint of (8) at a time.
3 Experimental Results

The SOR algorithm is tested against the standard chunking algorithm and against the SMO method on a series
of benchmarks. The SOR, SMO and chunking are all written in C++, using Microsoft's Visual C++ 6.0 complier.
Joachims’ package SVM"€" (version 2.01) with a default working set size of 10 is used to test the decomposition
method. The CPU time of all algorithms are measured on an unloaded 633 MHz Celeron II processor running
Windows 2000 professional.

The chunking algorithm uses the projected conjugate gradient algorithm as its QP solver, as suggested by
Burges!'). All algorithms use sparse dot product code and kernel caching. Both SMO and chunking share the folded
linear SVM code.

Experiment 1. In the first experiment, we consider the approximation of the sinc function f(x)= (sin Toc)/ X .

Here we use the kernel K()cl,xz):exp(—"xl —x2||2/5), C=100, 6=0.1 and &=0.1. Figure 1 shows the
approximated results of SMO method and SOR method respectively.
In Fig.1(b) we can also observe the action of Lagrange multipliers, acting as forces (ai,a;) pulling and

pushing the regression inside the & -tube. These forces, however, can only be applied at the samples where the
regression touches or even exceeds the predetermined tube. This directly accords with the illustration of the

KKT-conditions: either the regression lies inside the tube (hence the conditions are satisfied with a margin), and
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Lagrange multipliers are 0, or the condition is exactly met and forces have to apply a, #0 or a; #0 to keep the

constraints satisfied. This observation indicates that SOR method can handle regression problems successfully.

15 15
(a) ()

0s

Fig.1 Approximation results of SMO method (a) and SOR method (b)

In Table 1 we can see that the SVMs trained with various methods have nearly the same approximation

accuracy. When handling a small size of data sets, there is no great difference in time consumption.

Table 1 Approximation effect of SVMs using various methods

Experiment Time (s) Number of SVs Expectation of error Variance of error
SOR 0.432 £0.023 9t 1.26 0.0014 £ 0.0009 0.0053 £ 0.0012
SMO 0.467 £ 0.049 9+0.4 0.0016 £ 0.0007 0.0048 + 0.0021

Chunking 0.521 £0.031 9t0 0.0027 £0.0013 0.0052 £ 0.0019
SvM"e™ 0.497 + 0.056 910 0.0021 + 0.0011 0.0067 + 0.0023

Experiment 2. In order to compare the time consumption of the different training methods on massive data sets,
we test these algorithms on three real-world data sets.

In this experiment, we adopt the same data sets used in Ref.[9]. That is, we choose the Boston Housing and the
Abalone dataset from the UCI Repository and the USPS database of handwritten digits. The first data is of size 506
(350 training, 156 testing), the Abalone dataset of size 4177 (3000 training and 1177 testing). In the first two cases

the data were rescaled to zero mean and unit variance, coordinate-wise, while the USPS dataset remained

Table 2 Comparison on various data sets
Data set iz (5] Tralqlngset Number of Training Testing

size SVs error error

SOR SOR SOR SOR SOR

SMO SMO SMO SMO SMO
Chunking Chunking Chunking Chunking Chunking

SVM]ighl SVMlighl SVMlighl SVMlight SVMlighl
0.15£0.07 168+ 13 23.4+1.34
Boston 0.23+0.11 163 £ 15 25.71+0.94
. 350 25.0
housing 2,74+ 1.06 16716 2431 1.08
3.4210.08 168 + 10 23.6+1.12
8.72 £2.31 1308 £ 24 2.46 +0.65
+ + +
Abalone 12.63 £3.98 3000 1316 £ 7 25 2.23+0.81
87.44 £ 12.01 1317+ 15 2.37+0.96
88.37 = 15.24 1317 11 2.65+0.72
97.41 + 28.07 11534+ 6 28.6 X 1.43
+ + +

USPS 183.2 £ 16.85 29463 11532 £8 30.0 334+ 1.25
1563.1 £ 54.6 115335 31.8%1.16
1866.5 + 46.7 11534+ 5 29.4+1.53
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unchanged. Its data size is 40337 (29463 training and 10874 testing). Finally, the gender encoding in Abalone
(male/female/infant) was mapped into {(1,0,0), (0,1,0), (0,0,1)}.

We adopt the same kernel function as Experiment 1. For the first dataset, Boston Housing dataset, the
parameters are C=1000, 6=1.5 and &=30. For the second dataset, Abalone dataset, the parameters are
C=1000, 5=5 and ¢ =3.5. While for USPS dataset, these parameters are C=1000, 6 =18 and &£=30.

Table 2 illustrates the time consumption, training set size and number of support vectors for different training
algorithms. Here we can see that as the size of data set increases, the difference of training time among these
training algorithms also increases greatly. When the size of data set reaches 29463, the training time needed by
Chunking and SVM'" js more than 16 times than that of SOR.

Experiment 3. In this experiment, we will use the SVM trained by SOR to predict the time series data set. Here
we adopt Greenwich’s sunspot data. We can gain these data from Greenwich’s homepage

http://science.msfc.nasa.gov/ssl/pad/solar/greenwch.htm. We use historic sunspot data to predict future sunspot data.

Figure 2 shows the comparison between the real sunspot data and the predicted sunspot data. This illustrates that the
SVM gives a good prediction to sunspot. This experiment shows that the SVM trained by SOR algorithm can be

used in practical problems successfully.
260

200

160

100

a0

0

50 L L L L I
0 a0 100 150 200 280 300

Fig.2 Comparison between real sunspot data (real line) and predicted sunspot data (dashed line)
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