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Abstract: The ultimate goal of workflow management is to implement the right person executes the right activity 
at the right time. To make enterprises more competitive, time-related restrictions of business processes should be 
considered in workflow models. A workflow model, which considers time related factors, requires time 
specification and verification before it goes into production so as to guarantee the time coordination in workflow 
executions. Through extending time attributes for the elements in WF-nets, this paper investigates the integration of 
the time constraints imposed on business processes into their workflow models and the new nets are called 
TCWF-nets. Based on analyzing the schedulability of business activities, a time consistency verification method is 
put forward to assure safe time interactions between activities during workflow executions. The schedulability 
analysis method can not only check for the time feasibility of its execution for a given workflow schedule when the 
time constraints are imposed on business processes, but also give an optimal schedule to guarantee the minimum 
duration of workflow execution for a specific case. Research results show that this method supports the time 
modeling and analysis in business processes, and has an important value in enhancing time management 
functionality as well as the adaptability to dynamic business environments of current WFMS. 
Key words: workflow; time consistency; Petri nets; schedulability; verification 

摘  要: 工作流管理的最终目的是实现适当的人在适当的时间执行适当的活动.企业要获得竞争力,需要在工
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作流模型中考虑与业务过程相关的时间约束.一个考虑时间因素的工作流模型,需要在投入运行前进行时间规

范与验证,以保证工作流执行的时间协调.通过为工作流网元素扩展时间属性,得到集成业务过程时间约束的工

作流模型时间约束工作流网(TCWF-nets).基于对业务活动的可调度性分析,提出了时序一致性验证方法,确
保工作流执行中活动之间时间交互的安全性.在所附加的时间约束下,该可调度分析方法不仅能够检测某一给

定工作流调度的时间可行性,还能对特定的实例给出一个最优调度,使工作流执行延迟最小.研究结果表明,该方

法支持业务过程的时间建模与分析,对于丰富现有工作流系统的时间管理功能以及增强现存工作流软件对动

态业务环境的适应性具有重要意义. 
关键词: 工作流;时序一致性;Petri 网;可调度性;验证 
中图法分类号: TP311  文献标识码: A  

The most critical need in companies striving to become more competitive is the ability to control the flow of 
information and work throughout the enterprise in a timely manner. Consequently, time-related restrictions, such as 
bounded execution durations and absolute deadlines, are often associated with process activities and 
sub-processes[1]. However, arbitrary time constraints and/or unexpected delays could lead to time violations, and 
even cause inefficiencies or catastrophic breakdowns within business processes[2]. Therefore, dealing with time and 
time constraints is crucial in designing and managing business processes. 

WFMSs (workflow management systems) are widely used in improving the effectivity and efficiency of 
business processes. However, primitive support for time management has been identified as the most significant 
limitations in applications of today’s WFMS[3]. To satisfy the application requirements of WFMS to practical 
business processes, a workflow model requires not only the specification of flow but also the handling of time 
issues. Time management includes planning of workflow execution in time, estimating workflow duration, avoiding 
deadline violations and guaranteeing the satisfiability of all time constraints imposed on business processes. Proper 
time modeling and management will make better coordination of individual tasks and better planning of business 
processes possible, because early detection of time consistency of a workflow model will enable a user to predict 
any time-related problems, such as any violations of temporal constraints. This is particularly important for 
processes where any deviation from the prescribed model can be expensive, dangerous or even illegal, such as 
airline maintenance and hazardous material handling. 

1   Background and Related Work 

In the real world, all business processes exist in a temporal context and are time constrained. The 
comprehensive treatment of time constraints depends on time modeling of workflow processes. The existing time 
modeling approaches are mainly based on workflow graphs and Petri nets. Eder[4] determined timing inconsistencies 
at model time and found the optimal workflow execution resources at run time using the time information 
generated. Marjanovic[2,3] assigned a time interval to individual workflow tasks as duration constraints and checked 
various temporal requirements and inconsistencies of workflow systems by using the proposed verification 
algorithms. Ling[5] provided a time interval extension of WF-nets for the purpose of modeling and analyzing time 
constraint workflow systems. He put a more emphasis on checking the soundness of workflow process definitions, 
but considered very limited time constraints. Sadiq[6] thought the dynamism of business environment was 
manifested in the form of changing process requirements and time constraints, and he primarily addresses the 
modeling and management of changes occurring in business processes. Adam[7] has developed a PN-based approach 
for identifying inconsistent dependency specification in a workflow, and checking for the feasibility of its execution 
for a given starting time when time constraints are present. But unfortunately, they did not show how to map the 
time constraints imposed on business processes into the Petri net models. 
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These existing approaches aim to check the various time requirements and inconsistencies at build-time, and to 
find the optimal workflow execution resource at run-time or attempt to acquire a consistent state of workflow 
execution. However, they have not considered how time constraints at every workflow execution stage affect the 
schedulability of activities, and what is an activity decision-span when it is schedulable? On the other hand, they 
mainly address time representation and conflict resolution but not touch upon any performance analysis of 
workflow systems. 

To analyze the schedulability for business activities within a time context, a state-based process modeling 
language (e.g. Petri nets) is required to determine when an activity is enabled and when it is executed[8]. This is very 
important to schedulability analysis for time constraint workflow models. In this paper, we use WF-nets[9] to model 
workflow systems and distinguish an activity enabling from its executing. In the subsequent sections, we introduce 
TCWF-nets (time constraint workflow nets), and then discuss the time modeling and time constraint satisfiability in 
business processes. The introduction of decision-spans for schedulable activities helps the activity agencies to 
manage their personal work-plans according to the global business goal. Secondly, we reveal that along a specific 
instance routing, the schedulability analysis is induced to a constraint-programming problem and, solving this 
problem gives an optimal schedule of workflow execution for this case. Finally, we also discuss the schedule-based 
execution. 

2   Time Constraint Workflow Nets 

2.1   Basic principles 

The workflow model or process model is a description of the tasks, ordering, data, time, resource, and other 
aspects of the process. Process instance types are introduced by split nodes (decision nodes) or differenct alternative 
executives of a workflow. Different instances of the same process instance type are modeled by one execution 
subnet of workflow tasks. Obversiously, a workflow model without decision nodes represents only one process 
instance type, and a workflow instance is a single, individual instance of a process. A process instance is an 
individual enactment of a process (process instance type) with its own process data, and it is also called workflow 
instance when a process is represented by a workflow model. In workflow related literatures, there are no a definite 
discrimitation between case and instance. Case, workflow instances or process instances are all used for 
representing particular occurrences of the workflow or process, and activity instances are particular enactment of 
the activity. 

Workflow nets (WF-nets) are a subclass of Petri nets that are used to model workflow processes and verify the 
behavioral correctness of workflows. Workflow concepts can be modeled by Petri net elements, and standard 
workflow building blocks, such as AND-split, AND-join, OR-split and OR-join, can be represented by various net 
structures. A workflow is sound if the following 3 restrictions are satisfied: 1) a workflow should always be able to 
complete a case; 2) every case should be completed properly, with no more work in progress after completion; and 
3) every task should be executed by the workflow execution of some case. To include the notion of time, we extend 
a time set D and a time interval set TC for a WF-net, and a time stamp function TOKENarr(pi) for tokens in place pi. 
So, a Time Constraint WF-net is 

TCWF-net=(WF-net, TC, D) 
where 
WF-net: it is the basic workflow net system; 
TC=TCp∨TCt, where TCp: P→Z×Z and TCt: T→Z×Z, Z is a set of all non-negative real numbers and Z={x∈REAL| 
x≥0}, TCp is a set of all place time pairs and TCp={[TCmin(p),TCmax(p)]∈Z×Z|TCmin(p)≤TCmax(p)∧p∈P}, TCt is a set 
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of all transition time pairs and TCt={[TCmin(t),TCmax(t)]∈Z×Z|TCmin(t)≤TCmax(t)∧t∈T}. (TCmin(p),TCmax(p)) denotes 
the time constraints of process instances and (TCmin(t),TCmax(t)) denotes the time constraints of activity instances; 
D: T Z, D is a set of firing durations and D={FIREDur(t)|FIREDur(t)∈Z∧t∈T}. FIREDur(t) denotes the executing 
duration of an activity instance. 

In TCWF-nets, TOKENarr(pi) represents the absolute time when a process instance arrives at pi, i.e. the global 
lifetime of the instance. A place time pair (TCmin(pi),TCmax(pi)) denotes the time period during which the subsequent 
transition can be enabled when a case arrives at pi, that is, the time interval during which the instance is staying at 
pi. A transition time pair (TCmin(tj),TCmax(tj)) denotes the firable time interval during which the activity 
corresponding to tj can be executed after tj is enabled. Thus, the execution time of an activity depends not only on 
TOKENarr(pi), but also on TCmin(pi)/TCmax(pi) and TCmin(tj)/TCmax(tj), where pi belongs to the set of input places of tj. 
FIREDur(tj) represents how long the execution of activity tj lasts. 

Comparing with the existing time-related Petri nets[5,10], TCWF-nets include more general time constraints, 
such as place time pairs, transition time pairs, firing durations of transitions, and token arrival times, which describe 
the enabled interval of activities, the executable interval of activities, the execution duration of activities and the 
arrival time of a specific case. The weakly firing mode[10] in TCWF-nets suits for modeling an activity, enabling and 
executing in workflow systems. Whether an enabled transition can be fired depends on the additional firing 
mechanisms. For an automatic activity, it can be executed immediately once it is enabled, but for a non-automatic 
activity, it can be triggered by a human participant, etc. Due to considering the execution duration of an activity, all 
the tokens used for enabling the activity are preserved during its execution. Once it completes execution, it 
generates tokens to its output places with the corresponding number and thus, the workflow proceeds. For 
facilitating analysis, we use FIREenable(tj) for denoting the time when tj is enabled, EEBT(tj)/LEET(tj) for denoting 
the earliest/latest enabling time, EFBT(tj)/LFET(tj) for denoting the earliest fire beginning/latest fire ending time, 
FIREbegin(tj)/FIREend(tj) for denoting the actual fire beginning/ending time, It(pi)/Ot(pi) for denoting the set of 
input/output transitions of pi, and Ip(tj)/Op(tj) for denoting the set of input/output places of tj. 

2.2   Time constraint modeling 

In order to represent time information, we need to augment the workflow model with the following basic 
temporal types: time point, duration and interval constraints. Given a workflow schema, a workflow designer can 
assign execution durations, FIREDur(tj) for individual activities or the whole workflow process, as well as relative 
enabled intervals (TCmin(pi),TCmax(pi)) for places, relative executable intervals (TCmin(tj),TCmax(tj)) for activities, and 
even arrival times TOKENarr(pi) for a specific case. These durations and intervals can be either calculated from past 
executions, assigned by specialists based on their experience and expectation or assigned according to the resource 
loads or the urgency of activities. Activity executable intervals correspond to the allowable execution times of 
activities after they are enabled by a process instance. At build-time, these intervals are specified relative to the 
arrival time of process instances, and at process instantiation time, these relative intervals can be converted to 
absolute time intervals, and the time consistency of coorsponding process instances can be statically verified. In the 
sequel, the consistency of these time constraints is monitored at run-time. 

 The arrival time of a process instance, TOKENarr(pj) is an absolute time representing the global lifetime of a 
case arriving at pj. For the start place i, it is the startup time of the process; and for the others, it is the time when the 
immediate preceding activity of pj completes firing; 

 The interval (TCmin(pi),TCmax(pi)) denotes the time period during which pi’s succeeding activities are enabled 
after a case arrives at pi. It also represents how long an instance will stay in place pi and it may be fallen into (0,∞) 
under different cases. This interval includes the waiting time and servicing time of a case; 
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 The interval (TCmin(tj),TCmax(tj)) denotes the time period during which the activity corresponding to tj can be 
executed after it is enabled. If tj is enabled at T0, then it can be executed within the absolute interval (T0+TCmin(tj), 
T0+TCmax(tj)). So (T0+TCmin(tj),T0+TCmax(tj)) is called an absolute execution interval of tj, where T0 denotes when tj 
is enabled; 

 The firing duration FIREDur(tj) which corresponds the execution duration of an activity, denotes how long the 
firing of tj will last. 

For instance in Fig.1, TOKENarr(p11) 
denotes when a case arrives at p11. The 
interval (1,3) associated with p11 denotes a 
time range during which the case will 
enable transition t1 after it arrives at p11. If a 
case arrives in p11 at TOKENarr(p11), then t1 
will be enabled during the absolute time range (TOKENarr(p11)+1,TOKENarr(p11)+3). The (2,8)[2] means that t2 can 
be executed during the interval (2,8) after it is enabled by p2 and, FIREDur(t2)=6 means that the firing duration of t2 
is 6 time units. 

p11

p12

(1, 3)
(2, 8)[6](1, 3)[1]

(0, 6)

(4, 9)

t2t1
p2 p3

(0, 4)[3]
(1, 6)

t3
p4

Fig.1   Fragment of a simple TCWF-net

t42[5,10]

t41[0,5] p51

p52

It is important to note the fact that if a task can be executed for a specific case, then this does not mean that the 
task is executed directly. For example, if a task is to be executed by an employee, then the employee has to be 
available and willing to execute the task. If the employee is ill or on holiday, then the task will not be executed. The 
workflow management is not in a complete control, but just supports the workflow. Since the enabling of a task 
does not imply that the task will be immediately executed, it is crucial to discriminate between the activity enabled 
interval and execution interval. Therefore, a triggering mechanism is required for leading to the execution of an 
enabled task. TCWF-net uses a weak firing mode that means an enabled activity can be fired at any time during its 
execution interval. 

This paper exactly describes the activity enabled interval and execution interval. This distinction is beneficial 
because we aim at determining whether an activity can successfully complete firing within a finite execution 
interval and identifying time violations when the activity fails to complete firing. Consequently, we will provide 
some useful suggestions for system designers to design time safe and reliable WFMS. 

3   Time Constraint Satisfiability 

After activity durations FIREDur(tj), case arriving times TOKENarr(pi), activity enabled intervals (TCmin(pi), 
TCmax(pi)) and the relative execution interval (TCmin(tj),TCmax(tj)) are designed, time calculations are required for 
converting the relative time intervals to absolute time points, computing the earliest enabled beginning time 
EEBT(tj) and latest enabled ending time LEET(tj), computing the earliest fire beginning time EFBT(tj) and latest fire 
ending time LFET(tj), and so on. When EEBT(tj)/LEET(tj) and EFBT(tj)/LFET(tj) are obtained, the workflow 
designer can use the following definitions and theorems to assert whether an activity tj can complete its firing within 
a finite time interval. Also, the designer can re-assign some time constraints at process instancing time for a specific 
case, and then re-analyze the schedulability for activities or the whole process. 

3.1   Time related calculations 

The purpose of time modeling lies in managing time in workflows[4], i.e. determining workflow execution 
planning in time to guarantee the time safety in execution. The precondition of the safe execution of workflows is 
the satisfiability of all time constraints imposed on the process. If all time constraints satisfy a process definition, 
then they are consistent with the workflow process logic or the workflow is global consistent. To avoid the possible 
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conflict between time constraints, it is required to find a workflow execution that satisfies time constraints imposed 
on the business process. So the case startup time must be considered. In a TCWF-net model, the enabled intervals 
and execution intervals of activities are restricted. Selecting different firing times may cause that an activity fails to 
complete the firing within a restricted enabled time interval. That is, there exists an activity which may fail to 
successfully complete an execution. TCWF-net and WF-net have different reachability, and a state that is reachable 
in a WF-net modeling is not necessarily reachable in TCWF-net modeling because of the imposed time constraints. 

Definition 1. An enabled activity tj is said to be firable in a marking M in a TCWF-net, if LFET(tj)≥EFBT(tj); tj 
is said to be able to complete firing successfully, if LFET(tj)−EFBT(tj)≥FIREDur(tj). 

In a marking M, if an activity can successfully complete firing, it is schedulable, i.e. the activity execution 
satisfies the process time constraints. The schedulability analysis for time constraint workflow models is to assert 
the time feasibility in execution for a specific case. Therefore, all analysis is based on the arriving of a case. An 
activity instance can be fired only when its corresponding process instance arrives, and the workflow process is 
progressed only after the activity finishes. To analyze the schedulability for an activity tj, firstly it needs to compute 
the time pair EEBT(tj)/LEET(tj), considering the global time of workflow instances. We have the following 
formulae[11], where pi∈Ip(tj)(i=1,2,...,k): 
 EEBT(tj)= [TOKEN

i
MAX arr(pi)+TCmin(pi)] (1) 

 LEET(tj)= [TOKEN
i

MIN arr(pi)+TCmax(pi)] (2) 

Theorem 1. In a TCWF-net marking M, for an enabled activity (transition) tj, EFBT(tj)/LFET(tj) can be 
calculated by 
 EFBT(tj)=EEBT(tj)+TCmin(tj) (3) 
 LFET(tj)=LEET(tj) (4) 

Proof.  A transition tj is firable, if and only if it is enabled by each of its input places, and it can not be fired 
until TCmin(tj) time interval elapsing after it is enabled. If tj is enabled at time T0, then the firable time of tj which is 
denoted as τ , should satisfy (5) as follows: 
 T0+TCmin(tj)≤τ ≤T0+TCmax(tj) (5) 

Since T0 denotes the enabled time of tj, it should satisfy (6) as follows: 
 EEBT(tj)≤T0≤LEET(tj) (6) 

By replacing T0 with (6) in (5), we can easily have (7) as follows: 
 EEBT(tj)+TCmin(tj)≤τ ≤LEET(tj)+TCmax(tj) (7) 

The tj will stop firing immediately as soon as any of its input places stop enabling it, so 
 τ ≤LEET(tj) (8) 

Combining (7) and (8), we can get minτ =EEBT(tj)+TCmin(tj), maxτ =LEET(tj), where minτ  and maxτ  are 

the earliest fire beginning time EFBT(tj) and the latest fire ending time LFET(tj) of tj, respectively. So, we conclude: 
EFBT(tj)=EEBT(tj)+TCmin(tj) and LFET(tj)=LEET(tj). 

In fact, TCmin(tj)/TCmax(tj) is only a relative time pair, if and only if an enabled time τ  of tj during the interval 
(EEBT(tj),LEET(tj)) has been determined, and it constrains the firable beginning and ending time of tj. That is, tj 
must start its firing at time τ +TCmin(tj) then end its firing at τ +TCmax(tj). The different selecting of τ  may lead 

to two different cases: τ +TCmax(tj)≤LEET(tj) and τ +TCmax(tj)≥ LEET(tj). The former implies that tj can complete 
its firing successfully, but the later implies that tj will be disabled by its input places before τ +TCmax(tj). So, the 
latest fire ending time LFET(tj) is independent of TCmax(tj) but depends only on tj’s latest enabled ending time 
LEET(tj). 
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It is required to be pointed out that, for supporting global distributed business applications, time-dependent 
factors have to be incorporated into both the build-time process definition and the run-time management system. 
The reason is that activities of the workflow may belong to different time zones, flow will also take certain 
tranmission durations from one site to another, e.g., the duration of the material flow for delivering products from 
the supplier to the customer. In order to maintain global time of a process instance, the flow duration and time 
difference conversion must be considered in the workflow model when computing the arrival time of a process 
instance, and this is needed to be analyzed for different workflow structures, such as OR-split, OR-join, AND-split 
and AND-join. 

3.2   Time consistency verification 

In order to guarantee the correct execution of time constraint workflow instances, it is required to check the 
time constraint satisfiability for a process definition or to find the possible conflicting between the time constraints 
and workflow execution routings. The schedulability of tj can be asserted by using Eqs.(1)~(4) and definition 1. The 
time consistency for activity execution depends directly on its schedulability and, a schedulable activity means that 
the process time constraints satisfy the activity execution logic. So, the key of time consistency verification for a 
TCWF-net model lies in the schedulability analysis for the process model. There are 2 cases in time consistency 
verification: 

 For an individual activity tj, if time pair EFBT(tj)/LFET(tj) calculated by Eqs.(1)~(4) satisfies LFET(tj)− 
EFBT(tj)≥FIREDur(tj), then tj is schedulable, i.e. tj can complete its firing under the imposed time constraints; 

 For a workflow instance, the precondition that the execution of this instance satisfies all imposed time 
constraints is that all activities belonging to the instance are schedulable with respect to the initial marking of the 
case. So we have definition 2 as the following: 

Definition 2. A workflow system (or a instance logic of the process) is time consistent, if and only if all 
activity instances along this instance logic are schedulable with respect to the initial state of the workflow. 

For a process instance denoted by an activity sequenceσ =M0t1M1t2M2...tiMi...tnMn or t1t2...ti...tn, verifying its 
schedulability needs to assert whether all activities belonging toσ are schedulable by using Eqs.(1)~(4), because the 
workflow system denoted byσ is schedulable or time consistent if and only if all activities belonging toσ are 
schedulable. Firstly, it is required to compute the time pair EFBT(tj)/LFET(tj) for j=1,2,...,n in turn, then assert the 
schedulability of tj by Definition 1. If tj is schedulable, then fire tj and compute EFBT(tj+1)/LFET(tj+1) according to 
the fire ending time of tj, FIREend(tj). Only if each tj inσ is schedulable, this process instance is time consistent. 

3.3   Handling of time violations 

If an activity tj is nonschedulable, our method also can identify the cause of time violations. Usually there are 2 
methods for treating time violations: 

 For a nonschedulable activity tj, firstly we relax the time constraints of places or transitions occurring prior to 
tj, then we re-compute the time pair EFBT(tj)/LFET(tj) and assert the schedulability of tj according to Definition 1. 
This may be done several times till tj is schedulable; 

 Certainly, for those important time constraints that are not allowed to modify or cases where time constraint 
relaxation still cannot change the schedulability of tj at all events, it is required to analyze workflow semantics and 
then modify the structure of TCWF-nets in order to re-obtain the schedulability of tj. Subsequently, analyzing the 
schedulability of tj under the new workflow model may be repeated till tj becomes schedulable. Of course, the above 
2 methods can also be used alternately to make tj schedulable. 

It needs to be pointed out that this is a static designing method, which is used to locate time violations and then 
provide suggestions on modifying the system specifications and/or relaxing the time constraints for the system 
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designers. 

4   Schedulability Analysis Method 

For a workflow instance with a given planning and a set of time constraints, our time consistency verification 
method aims to simulate the time reachability in execution and analyze the schedulability for each activity, then 
verify the time consistency between the time constraints and process model. If all activities alongσ can complete 
their firing within limited time intervals, then these time constraints are reasonable or the workflow instance is time 
feasible in execution. 

4.1   Decision-Span for a schedulable activity 

To analyze the schedulability of an activity tj, we need to know the absolute enable time of tj. For instance in 
Fig.1, we can determine when t2 is enabled only if t1 ends its firing. Moreover, TOKENarr(p2)=FIREend(t1)= 
FIREbegin(t1)+FIREDur(t1). To determine FIREbegin(t1), a new notation decision-span is introduced to denote the 
firable decision-span of a schedulable activity: 

Definition 3. In a marking M in a TCWF-net model, for a schedulable activity tj, if D(tj) denotes the 
decision-span of tj and UD(tj) denotes the upper bound of D(tj), then the schedulable decision-span of tj can be 
expressed as 0≤D(tj)≤UD(tj), where 
 UD(tj)=LFET(tj)−EFBT(tj)−FIREDur(tj) (9) 

So the actual firing time of tj is: FIREbegin(tj)=D(tj)+EFBT(tj). It makes sure that tj can successfully complete 
execution as long as tj is fired within the allowable range of D(tj). For ∀pi∈Op(tj), there exists TOKENarr(pi)＝
FIREend(tj). It is easy to see that the time when the instance arrives in pi depends directly upon the selection of D(tj), 
and at the same time on the multi-factors such as resource loads, activity emergency and the influence on its 
succeeding activities, etc. 

4.2   Schedulability analysis along a specific path 

For instance in Fig.1, D(t1)∈(0,UD(t1))=(0,LFET(t1)−EFBT(t1)−FIREDur(t1)) and UD(t1) can be determined by 
the time constraints of p11, p12 and t1. Once t1 completes its firing, we have FIREend(t1)=TOKENarr(p2)=f1(D(t1)), and 
more EFBT(t2)/LFET(t2)=g1(D(t1))/g2(D(t1)),FIREend(t2)=TOKENarr(p3)=D(t2)+EFBT(t2)+FIREDur(t2)=f2(D(t1),D(t2)). 
In the same way we can get FIREend(t3)=TOKENarr(p4)=f3(D(t1),D(t2),D(t3)) in turn, where some of f1, f2 and f3,..., 
may be nonlinear functions depending on different TCWF-net structures. This schedulability analysis is a piecewise 
decision-making process, and the selecting activity decision-spans may be nonlinear for general TCWF-net 
topology structures. 

A workflow instance corresponds to a reachable pathσ in TCWF-net models, each decision-span constraint of 
transitions inσ can be determined by Eqs.(1)~(4) and (9), i.e. 0≤D(tj)≤UD(tj). There may exist nonlinear constraint 
relations between D(t1),D(t2),...,D(tn) for general TCWF-net structures, and these constraint relations are denoted as: 
 fk(CC,DT)≥0, k=1,2,…,n (10) 
where CC represents the set of time constraints including TCmin(ptk)/TCmax(ptk) and FIREDur(tj), DT=(D(t1),D(t2),…, 
D(tn)) denotes the decision-span vector. 

Besides guaranteeing time feasible in workflow execution, it is required to calculate the optimal DT* to achieve 
the optimal workflow execution. Here, this optimization problem is: 
 D={DT,f(j,DT)≥0, j=0,1,…,n−1} (11) 

For minimizing J(DT)=FIREend(tn), where tn is the last activity of its corresponding process instance and 
FIREend(tn) denotes the earliest finishing time of the instance, the scheduling problem becomes into solving the 
following programming: 

  



 李慧芳 等:基于时间 Petri 网的工作流模型分析 25 

  (12) 






−=≥ 1...,,1,0,0) ,(s.t.

)(Min

njDTjf

DTJ
DT

The decision-span vector DT can be determined by finding the solution to the problem formulated as (12), 
which is subjected to the constraint (10). For an actual application context, using different methods can solve the 
above programming. 

It needs to point out that in a TCWF-net-based workflow analysis, the selection between normal operation and 
time-violation-related exception handling can be denoted by assigning different firing deadlines for OR-split 
activities[11], and an activity with earlier deadline has higher priority for firing. Here, schedulability analysis must 
consider firable priorities. For example in Fig.1, t41 is enabled earlier than t42 when a case arrives at p4, i.e. t41 has a 
higher priority for firing. If t41 can not finish, the token used for enabling t41 will be put back to p4 and its arrival 
time will be modified as: τ =FIREend(t41f)+1=f(D(t41f)). This token can be still used to enable t41. The precondition 
that t42 can be fired is that t41 fails to complete its firing within a specified time limit, so the instance routing from 
M(p2) to M(p52) is σ52=t2t3t41ft42, where t41f means that t41 fails to finish within its limited time interval. Once the 
constraint conditions of every activity decision-span along σ52 are determined, the schedulability analysis can also 
be formulated as the above programming shown in (11)~(12). 

4.3   Schedule-Based execution 

The execution of a workflow instance can start once all activities belonging to this instance are verified to be 
schedulable under imposed time constraints. All EFBT(tj)/LFET(tj) (j=1,2,...,n) specifies an absolute range for 
activity execution times such that there exists a combination of activity beginning and finishing times that satisfies 
all time constraints and where each beginning and finishing time is within the range [EFBT(tj),LFET(tj)] of its 
corresponding activity. 

We define a schedule to be an activity sequence S={t1/D(t1)/EFBT(t1)/LFET(t1),t2/D(t2)/EFBT(t2)/LFET(t2),..., 
ti/D(ti)/EFBT(ti)/LFET(ti),...,tn/D(tn)/EFBT(tn)/LFET(tn)}, which consists of activities and their execution-related 
time attributes. This sequence gives the decision-span D(tj) and the earliest fire beginning/latest fire ending time 
EFBT(tj)/LFET(tj). Thus, any combination of actual execution beginning/ending times of all activities within 
[FIREbegin(tj),FIREend(tj)] ranges satisfies all time constraints imposed on the business process, where FIREbegin(tj) 
and FIREend(tj) are FIREbegin(tj)=D(tj)+EFBT(tj) and FIREend(tj)=FIREbegin(tj)+FIREDur(tj). In other words, given a 
schedule or a process instance, no violations of time constraints occur as long as each activity tj finishes its 
execution at time within the interval [FIREbegin(tj),FIREend(tj)]. So, the build-time process definition of a TCWF-net 
consists of the following steps: 

 Design the workflow process at the logical level, i.e., define the traditional workflow process; 
 Determine the time constraints of the modeled business process; 
 Map the above time constraints to the time attributes of the elements in a TCWF-net, such as 

TCmin(pi)/TCmax(pi),TOKENarr(pi),TCmin(tj)/TCmax(tj) and FIREDur(tj); 
 Check the reasonability of these time constraints or verify the time consistency with the process definition; 
 If there exist some time constraint violations, then relaxing time constraints and modifying the workflow 

structure are required in order to make sure all activities are schedulable. Finally we know all UD(tj)/EFBT(tj)/ 
LFET(tj); 

 Along the workflow instance, find all constraints between all activity decision-span D(tj) according to 
different TCWF-net structures, and denote the optimization problem as (11)~(12) shown in Section 4.2; 

 Solve the above programming to get the optimal schedule S={t1/D(t1)/EFBT(t1)/LFET(t1),t2/D(t2)/EFBT(t2)/ 
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LFET(t2),...,ti/D(ti)/EFBT(ti)/LFET(ti),...,tn/D(tn)/EFBT(tn)/LFET(tn)}. Carrying the instance into execution as this 
schedule will lead to the minimum duration of the whole process. 

In a word, our method not only guarantees that time constraints are properly modeled and it provides a 
schedule S of a workflow instance to make sure that all activities are time feasible in execution, but also designs an 
optimal and schedulable TCWF-net model for a specific instance through a circular process “modeling  
verifying modifying re-verifying re-modifying...”. 

5   Comparison and Conclusions 

Starting from the requirements of time management in enterprise workflows and basing on analyzing the 
limitation of existing time management methods, a new time modeling and analysis method is put forward in this 
paper to maintain the safe execution of time constraint workflow instances. Comparing with existing time modeling 
methods, the major advantages of our method consist of four aspects. Firstly, the enabled intervals and execution 
intervals of activities are distinguished and taken into account in the proposed approach, while it is neglected in the 
other approaches. This consideration is significant because it enables the proposed approach to analyze the effect of 
temporal constraints at every stage of workflow execution on the schedulability of activities. Secondly, based on 
schedulablity analysis for activities and appropriate handling of time violation, time constraints can be validly 
modeled and the time consistency in workflow execution can be verified. But this is not referred to in existing 
approaches. Thirdly, the decision-span D(tj) represents the urgency of activity tj to some extent, and this facilitates 
the workflow participants to manage their work plans according to the whole business goal. Fourthly, solving the 
given non-linear programming can find the optimal time planning for workflow execution denoted as D(t1)/ 
EFBT(t1)/LFET(t1),D(t2)/EFBT(t2)/LFET(t2),...,D(tj)/EFBT(tj)/LFET(tj),...,D(tn)/EFBT(tn)/LFET(tn). This enables the 
time analysis approach can be used for analyzing the time performance of a workflow, because it can result in a 
somewhat optimal schedule guaranteeing a minimal duration for the execution of a workflow execution in specific 
cases. Research results demonstrate that TCWF-net-based time modeling and analysis not only supports the time 
management in business processes and implements time coordination between activities, but also is crucial to 
promote the application of workflows to complex enterprises. 
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