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Abstract: Previous work on pattern discovery in sequence data mainly considers finding global patterns, where 
every record in the temporal sequence contributes to support the patterns. However, local patterns, which are 
frequent only in some time periods, are actually very common in practice and the efficient discovery of it is 
potentially very useful. This paper presents a method for discovering generalized local sequential patterns with the 
format ‘if A occurs, then B occurs within time T in subsequence s’. The proposed method includes an index 
structure that supports efficiently locating and counting of the pattern instances and a two-phase method for 
efficiently mining of local patterns. Experimental results corresponded with the problem definition and verified the 
superiority of the approach. 
Key words: generalized local sequential pattern; temporal sequence; data mining algorithm 

摘  要: 已有的时序序列中的模式发现方法主要关注于发现全局的模式,该模式的频繁度量通过扫描序列的

所有记录产生.然而,仅在某个时间段中频繁的局部模式在实际中是广泛存在的,对其有效的发现是有意义的.介
绍了一种在时序序列中发现一般化局部序列模式的方法.发现的模式具有形式“在子序列 s 中,如果 A 发生,则 B
在时间 T 内发生”.提出的方法包括一个支持高效的模式实例定位与计数的索引结构和一个 2 段的局部模式挖
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掘算法.试验结果符合问题的定义,并证明了提出方法的优越性. 
关键词: 一般化局部序列模式;时序序列;数据挖掘算法 
中图法分类号: TP311  文献标识码: A  

Sequential pattern discovery from temporal sequences is an important subroutine in many data mining 
applications. Previous work on this problem has mainly considered finding global patterns, where every record in 
the temporal sequence contributes to the pattern[1~4]. Local patterns found only in subsequences are actually very 
common in practice and can reveal another kind of useful knowledge compared with global patterns. Therefore, 
knowing which pattern and in which time period is frequent could be equally if not more useful than simply 
knowing whether a pattern is frequent. For example, “In the sale records of a supermarket, a customer always buys 
biscuits followed by soda in the summer, but biscuits followed by milk in winter.” Then the analysts observe the 
correlations of purchase behaviors in different season so that the company can plan sell strategy appropriately 
according to the season.  

Local pattern discovery has not been well considered in the KDD field. The discovery of temporal association 
rule[5] and partial periodic pattern[6] seem alike to the problem we consider, but either the mining goal or the formats 
of the discovered knowledge are essentially different. In our previous work[7], we introduced a problem class that is 
the discovery of local sequential patterns (LSP). In Ref.[8], a compacted representing model is proposed. In this 
paper, we address a problem that is the discovery of generalized local sequential patterns (G-LSP) with the format 
“if A occurs, then B occurs within time T” from a long temporal sequence. The problem has a two-dimensional 
solution space consisting of patterns and temporal features, therefore it is impractical to use traditional methods for 
global patterns on this problem directly. Our approach is maintaining a suffix-tree-like index structure to support 
efficient locating and counting of the instances of local patterns. Based on this index, all G-LSPs are discovered by 
a two-phase algorithm.  

1   Problem Description 

A sequence S=(S(1),S(2),…,S(N)) is a list of records ordered by position number. Without losing generality, we 
represent S by a $-terminated sequence of symbols from an alphabet ∑={a1,…,ak}, where each symbol uniquely 
represents a record at a time point. A subsequence, S[sp,ep]=S(sp),…,S(ep), is a continuous part of the original 
sequence. Given a maximal time duration T and a time period S[sp,ep], we use the pattern format: if A occurs, then 
B occurs within time T in subsequence S[sp,ep] where A and B are two subsequence, i.e.  

s[pa,pa+|A|−1]=A∧s[pb,pb+|B|−1]=B∧s[pb,pb+|B|−1]∈s[pa,pa+T−1], 
where s=S[sp,ep] and |X| denotes the length of subsequence X, i.e. the number of records in X. We denote the pattern 
as A(T)→B (S[sp,ep]). 

To evaluate the frequency of local patterns, we use measurements local frequency (Lf), local support (Lsupp) 
and local confidence (Lconf). The local frequency of subsequence A in subsequence s is the number of occurrences 
of A in s. The local frequency of pattern A(T)→B(s) is the number of occurrences of the pattern in s. We denote it as: 

Lf(A,s)=|{i |s[i,i+|A|−1]=A}|, 
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The local support of subsequence A and that of the pattern A(T)→B in subsequence s are defined as follows: 
Lsupp(A,s)=Lf(A,s)/|s|, 

Lsupp(A(T)→B,s)=Lf(A(T)→B,s)/|s|. 
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The local confidence of A(T)→B in subsequence s is the ratio of the local frequency of A(T)→B in s over the 
local frequency of A in s. We denote it as: 

Lconf (A(T)→B,s) = Lf (A(T)→B,s)/Lf (A,s). 
Given a maximal distance T, a minimal support ms and a minimal confidence mc, if the local support of a 

pattern A(T)→B(s) is no less than ms and the local confidence of that pattern is no less than mc, we consider the 
pattern as a generalized local sequential pattern (G-LSP). Then the mining problem is defined as follows: Given a 
sequence S, find all 〈A,B,s〉 so that A(T)→B(s) is satisfied with:  

Lsupp (A(T)→B(s)) ≥ ms and Lconf (A(T)→B(s)) ≥ mc, 
where s is a subsequence in S. 

Since which pattern exists and in which periods of time a pattern exhibits frequent are both unknown 
beforehand, previous algorithms for global pattern mining are either inapplicable or have extremely poor time 
complexity for G-LSP discovery. One method for local patterns is sliding a window through the sequence, and 
mining for global patterns in each window. This approach has been used in some applications and the time 
complexity of it is not bad. However it can only find a small part of all the local patterns, of which the valid 
subsequences are of the same length. A method that finds all local patterns can be derived by applying the previous 
methods to all the possible subsequence. However, the time complexity of this method is usually poor.  

2   Method for G-LSP Discovery 

Our method for discovering G-LSPs is: going through the sequence step by step and carrying out a mining 
process in each step. A mining process includes two phases: candidate generation and G-LSP generation. In the first 
phase, a suffix-tree-like index structure that we term the local pattern tree (LP tree) is maintained for efficiently 
pattern counting and the G-LSP candidates are derived. Then in the second phase, each candidate is verified, and 
G-LSPs are generated.  

For the rest of this paper, the following notational conventions will be used: locus(A) denotes the first node in 
the indexing tree encountered after A is spelled out; subsequence(t) denotes the subsequence spelled out in the 
suffix tree by following the path from root to node t; T(A) denotes the sub-tree of which the root is Locus(A); T(t) is 
the sub-tree of which the root is node t; and {Leaf (t)} denotes the set of all leaf nodes of T(t). 

2.1   Index structure 

LP tree consists of a standard suffix tree[9], a set of leaf pointers and a leaf chain. A sequence S is mapped to a 
LP tree L whose paths are the suffixes of S, and whose leaf nodes correspond uniquely to positions within S. The 
data structure of a LP-tree is as follows: 

Internal node t: (t.Child, t.Ancestor, t.Next, t.Start, t.End, t.FirstLeaf, t.LastLeaf) where t.Start and t.End 
indicate the starting position and ending position of the subsequence associated with the branch to t, t.Child stores 
the pointer to the first child of node t, t.Ancestor stores the pointer to ancestor node of t, t.Next stores the pointer to 
the next node with the same ancestor node of t. In order to locate and count the leaf nodes efficiently, all the leaves 
are linked, forming a leaf chain. For each internal node t, t.FirstLeaf and t.LastLeaf store the pointer to the first leaf 
node and the last leaf node of the sub-tree T(t). 

Leaf t: (t.Ancestor, t.Next, t.Position, t.NextLeaf) where t.Ancestor and t.Next have the same meaning as that of 
an internal node, t.Position is the position of corresponding suffix in S, t.NextLeaf stores the pointer to the next leaf 
node in the leaf chain.  

Similar to Suffix tree, the LP tree L for sequence S has the following properties: 1) Any common subsequence 
can be spelled out according to the path from the root to an unique internal node. 2) Each internal node except the 
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root has at least two children. 3) The tree has |S| leaves 
and the number of nodes is at most 2|S|−1 for each 
nonempty input sequence. The insertion and 
construction method for a LP tree is similar to that for a 
suffix tree. The only difference is that the relative leaf 
chain pointers need to be updated correspondingly, 
including the data member FirstLeaf, LastLeaf and 
NextLeaf. Such operations can be easily done by simple 
forward and backward scanning in the index.  

Given a LP tree, the local frequency of subsequence 
A in any subsequence S[sp,ep] can be calculated by 
counting the number of leaf nodes of the sub tree rooted 
at locus(A) that satisfies the position restrictions. That is: 
Lf(A,S[sp,ep])=|{leaf(tA)|sp≤leaf(tA).Position≤ep−|A|+1}|. 
Benefiting from maintaining the leaf chain, the number 
of leaf nodes can be easily and efficiently obtained by a 
simple traverse in the leaf chain between t.Firstleaf and 
t.Lastleaf. 

Example 1.  The construction processes of the LP 
tree for the sequence ‘dsuududds$’ are shown in Fig.1~Fig.3. Here only parts of all the leaf pointers and the leaf 
chain are shown for the sake of clearness. Suppose we are interested in the ‘d’ and ‘ds’ in subsequence ‘dsuud’, then 
the local support can be calculated as follows: 
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Fig.1  LP tree for S=“dsuududds$”, S[6,10] inserted 
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Fig.2  LP tree for S=“dsuududds$”, S[8,10] inserted 
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Fig.3  The whole LP tree for S=“dsuududds$” 

Locus (‘d’)=t1, locus (‘ds’)=t2, 
leaf(t1)={t4,t5,t6,t7}, leaf(t2)={t4,t5}, 
Lf(d,‘dsuud’)= |{leaf(t1)|1≤leaf(t1).Position≤5−|‘d’|+1}|=|{t4,t7}|=2, 
Lf(ds,‘dsuud’)=|{leaf(t2)|1≤leaf(t2).Position≤5−|‘ds’|+1}|=|{t4}|=1. 

2.2   Generation of G-LSP candidates 

In the candidates generation phase, all subsequences that are frequent enough in the possible periods are found, 
i.e. to find all 〈B,s〉 so that Lsupp (B,s)≥ms. Note that, if Lsupp(A(T)→B(s))≥ms, since Lsupp(A(T)→B(s))= 
Lf(AB,s)≤Lf(B,s)=Lsupp(B,s), there is Lsupp(B,s)≥ms. This enable us first find all the frequent subsequences B, 
which we term G-LSP candidates, and then mine for G-LSPs by searching the records in front of it.  

The method for generating G-LSP candidates is: After a leaf node t is inserted, search the nodes in the path of 
traveling from node t to root. For each node t1 in the travel path, search all the leaf nodes (p1,p2,…,pn) in T(t1) to 
find all the subsequences D=S[pm.Position,t.Position] such that the Lsupp (subsequence(t1),D)≥minimal support. 
These 〈subsequence(t1),D〉 are outputted as G-LSP candidates.  

Note that, let (p1,p2,…,pn) denote the starting positions of subsequence A, we need only consider the 
subsequences whose starting positions are pm instead of scanning all the possible subsequences. This reduces the 
time complexity dramatically without losing expected candidate.  

2.3   Discovery of G-LSPs 

After a candidate is generated, a simple subsequence counting method is used to generate G-LSPs. Given the 
candidate 〈CB,S[sp,ep]〉, the detail process is as follows: 

1) Retrieve all the positions of the instances of CB in S[sp,ep] by going through the leaf nodes of subtree(CB) 
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in the LP-tree. Denote the results by (p1,p2,…,pN). 
2) Retrieve the subsequences sn=S[pn−T+|CB|, pn−1], and search through (s1,s2,…,sN) to find all subsequence A 

that fulfill: 
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The number of possible A is at most (T−|CB|)(T−|CB|+1)N/2. For each A, ∑Lf(A,sn) can be easily calculated by 
searching Leaf (locus(A)) in the LP-tree or counting through (s1,s2,…,sN). 

3) For the resulting subsequence A of step 3, calculate the local frequency of A in subsequence S[sp,ep] by 
going through the leaf nodes of subtree(A) in the LP-tree. If A(T)→B(S[sp′,ep]) is a G-LSP, 
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the pattern A(T)→B(S[sp′,ep]) is outputted as a G-LSP. 

2.4   Overall method 

The overall mining method for G-LSPs is:  
1) Go through the sequence S and insert each subsequence S [n,…,|S|] into a LP tree.  
2) After a leaf node t is inserted, find all the G-LSP candidates 〈subsequence(t1),D〉. 
3) For the candidates 〈CB,D〉, find all subsequence A that fulfill A(T)→B(D′) is a G-LSP.   
4) Repeat the process 1~3 until the whole sequence has been scanned. 
The storage complexity of a LP tree is the same as that of a suffix tree, which is about O(|S|)[2]. Compared to 

traditional mining algorithms in which the core operations are pattern generation and tuple counting, our method 
costs more storage for the LP tree. The new prospects for the data, which result from our algorithm, may justify the 
added expense. And, it also reduced the mining time expense, which is a crucial factor in the KDD problem.   

3   Experimental Results 

Synthetic dataset was generated using the following parameters: L: length of the sequence; PT: maximal time 
duration, i.e. T of potential G-LSP A(T)→B(s); PN: The number of potential G-LSPs; PL1: length of A in potential 
G-LSP A(T)→B(s); PL2: length of the B in potential G-LSP A(T)→B(s); PD: average duration of local patterns, i.e. |s|; 
PS: support of potential G-LSPs; PC: confidence of potential G-LSPs. The dataset is generated as follows: First, 
generate a sequence with length L, where each record is randomly selected from the symbol set {a…z}. Second 
generate both the starting position and the ending position randomly for each pattern. And the corresponding length 
is normally distributed with PD means. Third, according to PS, PC and PT, generate positions of the instances of 
the corresponding pattern in the sequence, where the positions are uniformly distributed. Then fill in the letters of 
this pattern at the positions. 

In the experiments, minimal support and minimal confidence are set to be 80% of the corresponding PS and 
PC. The parameters for generating datasets are given in Table 1 together with the results. Our method successfully 
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discovered all the potential G-LSPs. There are some additional patterns that had also been found. Some of them are 
parts of the expected patterns, e.g. A(T)→B of expected pattern AB(T)→C. These redundant patterns can be easily 
phased out in the post-recessing stage. Furthermore, there are a few unexpected patterns that are not related to the 
patterns we generated. They come from the randomness of the method of generating experimental data. 

Parameters 
 PT PN PL1 PL2 PD  PS PC 

Discovered expected 
patterns 

500 5 2 2 2 50 0.2 0.5 2 
500 5 10 1 1 50 0.2 0.5 10 
500 10 10 2 2 70 0.2 0.5 10 
1K 10 10 1 1 70 0.3 0.8 10 
1K 10 20 2 2 70 0.3 0.8 20 
10K 10 10 1 2 70 0.3 0.8 10 
10K 15 20 2 2 70 0.3 0.8 20 

We also implemented the naïve frequency counting algorithm that scanned every possible subsequence 
(introduced in section 1), and carried out experiments using generated sequence with varying length for the purpose 
of performance comparison. In the experiments, both the method introduced in this paper and the naïve algorithm 
were used. The results verified the superiority of our method to the naïve one in terms of both the absolute value 
and the scaling speed of the execution time. 

4   Conclusions 

This paper presents a problem class: discovery of generalized local sequential patterns (G-LSP) in a long 
temporal sequence. The problem has a two-dimensional solution space consisting of patterns and temporal features, 
previous algorithms are either inapplicable or have extremely poor time complexity for this problem. In this paper, 
we propose an index structure and a two-phase method. Using this method, prerequisite node searching and 
counting are accelerated by using leaf pointers and leaf chain during the mining process, and all G-LSPs are 
discovered after one scan of the sequence. We evaluated the behavior of our problem and the performance of our 
algorithm on synthetic datasets. The results correspond with the definition of our problem. In addition, experiments 
using sequences of various lengths verified the superiority of our method to the naïve one. 

Discovery of G-LSPs is useful in its own right as a tool for the analysis of temporal sequence data. In future, 
we intend to use it as a subroutine in other KDD applications such as segmentation of sequences, exploration by 
feature, and mining of second order knowledge[10]. 
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