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Abstract: In order to solve switching regression problems, many approaches have been investigated. In this
paper, an integrated fuzzy clustering algorithm GFC that combines gravity-based clustering algorithm GC with
fuzzy clustering is presented. GC, as a new hard clustering algorithm presented here, is based on the well-known
Newton's Gravity Law. The theoretic analysis shows that GFC can converge to a local minimum of the object
function. Experimental results show that GFC for switching regression problems has better performance than
standard fuzzy clustering algorithms, especially in terms of convergence speed.
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Switching regression models have been extensively used in economics*™®! and data mining in databases. Many
scholars®™ discussed switching regression models in varying details. Let S={(X0.y),....(Xx,Yn)} be a set of data
where each independent observation xcR' has a corresponding dependent observation y.eR. In switching
regression models, we assume the data to be drawn from C models:

RE :y=f (% 8)+¢, 1<i<C (1)

where f (X, ) isa polynomial function about X, each B e@cRY, k <n,and ¢ isarandom vector with

mean vector u;=0 and covariance is ¢;. When C=1, switching regression models become single regression model
problem, in which we assume that a single functional relationship between x and y holds for all the datain S. In a

single regression model problem, the vector  can be well estimated using classical statistical method. However,

when C>1, this problem becomes very subtle, that is, for a given datum (X, Y, ), it is unknown which regression
model from (1) applies.

At present, there exist three approaches for switching regression model problems. One is based on
mathematical statistics, such as EM algorithm!***¥, The second approach presented by Hathaway and Bezdek!® is
based on fuzzy clustering and the third approach is based on hard partition algorithms'™.

The work initiated by our questioning shows that the best way to solve switching regression problems may not
be by using either fuzzy clustering or hard clustering only. The following example gives a very good illustration for
our suspicion. In this example, we assume that all the data are generated from either of the two regression models

* WANG Shi-tong was born in 1964. He is a professor and doctorial supervisor. His research interests include Al, fuzzy systems,
neural networks, pattern recognition and knowledge discovering. JIANG Hai-feng is a Ph.D. candidate. His research interests include
pattern recognition and knowledge discovering. LU Hong-jun is a professor and doctorial supervisor at HKUST. His research interests
include database/data warehousing, knowledge discovering and data mining, pattern recognition.

© DEEREBAAAIFUN bt/ www. jos. org. cn



1906 Journal of Software 2002,13(10)

(of course, we do not know the optimal regression models for real world data):
vy = fi(x /}1) = PuX+ P+,
Yo = T,(% B,) = ﬂzlxz + PoX+ Pt &,
The data points and the optimal switching regression models are shown in Fig.1.

Data points X
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Regression model 2

Zone borers

Fig.1 Anexample of aswitching regression problem

According to Fig.1, it is obvious that data points in zones 1 and 3 should preferably be hard clustered while
data points in zone 2 is better to be fuzzy clustered in order to reach the optimal state more quickly. Similar cases
exist in most switching regression problems. However, if we use fuzzy clustering, then the data points in zones 1
and 3 will be unnecessarily assigned membership (x) to the regression models that they indeed do not belong to.
On the other hand, if only the hard clustering is applied, then data points in zone 2 will be hard clustered either to
regression model 1 or 2 when indeed they are better off fuzzily clustered to both regression models. Therefore, in
order to effectively solve switching regression problems, we should integrate hard/fuzzy clustering approaches.

The purpose of this paper is to present a new integrated approach for switching regression problems, based on
gravity-based clustering and fuzzy clustering.

Our approach here keeps the advantages of Hathaway's approachl®, that is, this approach will produce

estimates of {ﬁl,ﬁz,...,ﬁc} and at the same time assign a fuzzy label vector to each datum in S. Besides these, our

approach has the following advantages over other fuzzy clustering approaches for switching regression problems:

e Gravity-Based clustering approach (GC) here is a new hard clustering one, based on well-known Newton's
gravity law. It is very suitable for curve/shell clustering.

e The integrated clustering algorithm (GFC) can converge and minimize the objective function simultaneously.
To best of our knowledge, to date, no one gives a clustering algorithm that combines both hard clustering and fuzzy
clustering, although fuzzy clustering comes from hard clustering and their numerous variants have been presented.

e Our experiments show that GFC require fewer iterations than other fuzzy clustering approaches. It is well
known that other approaches, such as EM clustering algorithm, need even more iterations than fuzzy clustering. So,
our approach is superior in terms of convergence speed.
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1 A Gravity-Based Clustering Algorithm (GC)
Consider aregression model:
y="f,(%B)+&,ie{12..,C}. @)

In general, we take y as aline or ellipse or other curves, as shown in Fig.2. We regard curve 1 as object 1 and curve
2 as object 2. These two objects will produce gravity force for data point A. As the result of gravity force acting on
A, data point A will obviously be clustered into curve 1.

Regression models

Data points X

X Curvel

Fig.2 Anexample of GC clustering

It is well-known that Newton’s gravity law can be formulated as:

K-m -
A —'312 T 3
where F denotes the gravity force between object 1 with mass m; and object 2 with mass m,, d denotes the distance
between object 1 and object 2, k is a coefficient and k=2. In order to effectively apply Newton’s gravity law in our
gravity-based clustering problem, we make the following assumptions:

e The quality of each data pointis 1.

e m" data points have been clustered into curve i(i=12) attimet, asshownin Fig.3.

e Each data point belonging to a cluster has the same potential. Based on this, when calculating the gravity
force, we assume all data points flow into a point and its mass is the number of all current data pointsin this curve,
asshownin Fig.3.
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Fig.3 A cluster with m pointsis regarded as a cluster with one point with massm
Based on the above assumptions, the gravity force F® between point A=(X.y) and a curve, say
c=f(X,y)=0, can be calculated as:
(t) (t) (t)
F(‘):klxmc _2m’ 2m; @

d? d® (v (R B)?

Let us define the objective function Jgc as:

C
Joe =2, 2% %).RE] 5
i=1 (% Yk )eS
where § denotes the set of data points clustered to ith regression model RE;, d(X,,RE) is the square distance
between (X,y,) andtheregression model RE, . Intermsof (1), we have

Je =Y Y-t A ®)

i=L (%.Yi)eS

Now we present the following gravity-based clustering algorithm GC for finding the approximation minimum
of Jac.
Algorithm 1. Gravity-Based clustering algorithm (GC).
Given data set S:{()zl! yl)!()zz‘ yZ)r---v(XN 'Y )
Fix C(2<C<N) and set sensitivity parameter » , which must be determined by experts/users
Initialize B = (B2, 59.... BO)T t=0
Initidize S,={(x,y;)|d*((X .y ), RE;)=min, d®((X.Y,),RE)},i=12,...,C

for j=1to N do
for k=1to C do

it d’[(X,,y,),RE]<y then

Noo bk~ 0w DR
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8. Sc=Scu{(x, ¥}
9. end if
10. endfor
. - 2m®Y 2m® . . .
11. Find i(1<i<C) that satisfiess —————— =max,s——————¢,where m =|S|,i.e. m_ isthe
d’[(%;.y;).RE] “1d(%,.y,).RE] IS
number of elementsin S, .
12. § =85 u{(X.y;)}
13. endfor
14. Compute AUV = (gD pEY | BET by solving the following linear systems:
83 . = o, (%, B,
Dae 5 5 (1,8 B) -y P _ @
i Ga Y<S op,
15. if ||/§<‘+1>—/§“>||<g then
16. Stop.
17. €else
18. t«t+1, gotoLine4.
19. endif

The GC Algorithm shown above is quite reasonable from the following intuitive viewpoints:
e It uses Newton's Gravity Law to cluster data points while this famous law seems to be suitable for such
clustering according to the discussion above.

S oJ
e In order to minimize Jg, al —=£

B,

should be zero. Once S is determined, (7) can be solved, i.e. B

can be calcul ated.

e If RE; and RE; are intersected, the sensitivity parameter y, which is very small, can make sure that a data
point very close to RE; and RE; can be simultaneously classified into RE; and RE;. The circled data points in Fig.4
would be simultaneously “hard” clustered to both the clusters.
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Fig.4 Pointsin acirclewill be clustered to both clusters due to the sensitivity parameter y
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2 Integrated Fuzzy Clustering Algorithm GFC

Since Bezdek presented fuzzy c-means clustering algorithm'®, many of its variants have been proposed to
improve its performance to satisfy different requirements. However, to date, no one has integrated it with the hard
clustering algorithm. In this section, we will present the new algorithm GFC that integrates fuzzy c-means

clustering with hard clustering. As shown in the previous analysis, GFC algorithm seems to be very rational and

efficient for switching regression problems.

It is easy to extend standard fuzzy c-means clustering to make it suitable for switching regression problems.
According to standard fuzzy c-means algorithm, the objective function Jcy, for a switching regression problem, is

defined as:
Jow =222 (uy)"d?[(%;, ), RE]
i1 =
where
& di(%;.y,). RE] ™
T e e g
" kz-l[duxj,mREk]]

and me(:l.,oo),ilyij =1.
i1

In GFC, we define the new objective function:

Jore =Joc - Jom -
Based on (10), we present the new integrated fuzzy clustering algorithm GFC as Algorithm 2.
Algorithm 2. Anintegrated clustering algorithm GFC.

1. Givendataset S={(X;, ¥1),(Xs,¥;)s-ees Xy, Yn )}
2. Fix C(2<C<N) and set sensitivity parameter
3. Initidize @ =B, ,.. )T t=0
4, Initidize S;={(x,y)|d%((X ,y;),RE;)=min, d®((%,Y,),RE)},i =12,...,C
5. forj=1toNdo
6. for k=1 to C do
7. if d*[(X;,y;),RE]<y then
8. S =S V{(X,y;)}
9. end if
10. endfor
zm(l) 2ml((l)
11. Find i(1<i<C) that satisfies: ———————=max,{—5—————
do[(X;,y;),RE] d7(%;,y;),RE]

12. § =5 v{(X,y)}
13. end for

14. Compute Jgc using (5)
15. fori=1to Cdo

16. forj=1toNdo

17. Compute 4 using (9)
18. endfor
19. endfor

20. Compute Jcy using (8)
21. Compute S by solving the following linear systems:
03 0Jee

Odem
— = ‘JCM —
op op;

= =0
op,

+Jgc -
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. - of, (%, o (%, B,)

I.€. ‘]CMZ(fi(Xklﬂi)_yk) ( k ﬂ +‘JGCZILI|J (f(xj’ﬂl) y]) T:O (11)
22. if ||/§<‘+1>— ,B(""<g then

23. Stop.

24. else

25. t«t+1, gotoLine4.

26. end if

In GFC, the definition of the objective function J is rational since a clustering algorithm should minimize Jgc
and Jcuy simultaneously in order to solve the switching regression problem efficiently. Now we investigate the
convergence properties of this new integrated clustering algorithm.

Theorem 1. In GFC, yo (i=12...C,j=12..,N) and Bz(ﬁl,ﬁz,...,ﬁc)T is a local minimum for Jgrc

only if

1
B i (12)

¢ (di(x;.y;).RE] ™
Z[d[(ij,yj),REk]J

k=1

C —
subjectto » u; =1 and S isasolution of (11).

i=1

Proof. First, we assume that ,B is fixed. Then the problem is to minimize Jgrc With respect to ; under

C
the constraint Z 4; =1. Using Lagrange multiplier method, we find that the problem is equivalent to minimizing

i=1

- N C
L(B,A)=d cuJec _Zﬂ’j(Zﬂij _1] (13)
j=1 i=1
without constraints. The necessary condition of this problem is
oL(B, 1 m
APA 5 )4 (R, y,), RE) -, =0 (14)
O
aL(ﬂ A) i (15)
J
From (14), we have
1
A, m-1
iy = L . (16)
J m'JGC'dZ[(Xpyj)xREi]

Substituting (16) into (15), we have

1

[ﬁ}m‘l _ 1 . (a7)

c 1 ™1
kz‘i[‘]ecd[()—(i Vi) REk]z]

Substituting (17) into (16), we get (12).
In order to show that # must be a solution of (11), we assume that 4 is fixed. Thus this is an

unconstrained minimizing problem, and the necessary condition is
a‘]GFC

o 0, (18)
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0(Jgc-Ien) 0J ad oJ
s oMt O _g ey Lo

o oF ™ op op
from which we get (11). The theorem is proved. O

i.e

=0 (19)

Theorem 2. Let &U)=Jgc Iy » Where U =[z]c.y B is fixed, and d[(X;,y;),RE]=0, for al

1<i<C, 1<j<N,then U isalocal minimumof @) if andonly if ,3 is computed via (11).

Proof. The only-if part has been proved in Theorem 1. To show the sufficiency, we examine H(®), the
CNxCN Hessian of the Lagrangian of @(U) evaluated at the U given by (12). From (13), we have

0 | ool
hey (U) = ﬁ{%}
st ij

(20)

_m(m=D(ue)™*d*[(%,¥,), REI x Jge S=it =k
0,otherwise

where ug is computed from (12). Thus, H(U)=[hg;(U)] is a diagonal matrix. Since m>1, and d((X,Y,), RE;) forall

1<t<N and 1<s<C, and Jg. >0. We know from the above formula that Hessian H(U) is positive definite

and consequently, (12) is also a sufficient condition for minimizing @U). O
Theorem 3. Let @(f)=Jgc x Iy =Joc (B)Ioy (U, B) , where U =[u;]c, is fixed, d[(%;,y;),RE]#0

for 1<i <Cand 1< j <N, and m>1. Then B isalocal minimum of @(B) if and only if ,B is computed via (11).
Proof. The necessity was proven in Theorem 2. To show the sufficiency, we have, from (18) that

P [a@(ﬁ)}_‘] GZJCM + g aZJec -0. (21)

B
Since f, ()?k,,éi) isapolynomial function about X, , it isvery easy to prove:

B, 0Bj & 0Bi'aﬁj aﬁi'ﬁﬁj

8%J >0, i=]j
c—2 = { . (22)
B, 0B, 0, otherwise
0%J >0, i=]j
oM ——— ={ - (23)
0B, -0p; 0, otherwise
i.e. the Hessian is positive definite and consequently (11) is a sufficient condition for minimizing @(3) .
With Theorems 2 and 3, we can prove that
Jorc (UM B4Y) = Joe (BY)- 3oy UM, ) < I, BY)
= Jac () Jow U, BY) . (24)
In other words, Jgec is a decreasing function with t. So, the GFC algorithm will finally converge. Since the proof of
(24) is similar to Bezdek’s proof in Ref.[6], it is omitted here. O

3 Simulations

In this section, we use the numerical simulation results illustrate the effectiveness of algorithm GFC. This
experiment deals with structure mining involving the mixture of curve and line under three different noise free data
sets and the same data sets with noise. The data sets named as A, B, and C are shown in Fig.5. The dashed linesin
Fig.5 are the initialization models. We run both the GFC and FCRM algorithm (fuzzy c-means clustering) with the
same data and initial models. The two algorithms are nearly equally powerful in terms of finding the terminal
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regression models while our GFC algorithm always needs less iterations. The experimental result is shown in Fig.5
and the number of iterations needed by each algorithm for each sub-experiment (totally 6 cases) is illustrated in
Fig.6. Moreover, as we can see, our GFC algorithm converges to an acceptable result models even in noisy
situations.

Dataset C Data set C with noise

Fig.5 Initial (dashed lines) and terminal models (solid arcs) for different data sets and initializations

In most cases, algorithm GFC detects and characterize the quadratic/linear models generating these data sets
correctly. Although FCRM algorithm can finally characterize the quadratic/linear models even with almost the same
effectiveness as GFC does, we can obviously see that GFC prevails over FCRM in terms of the convergence speed,

which can be seenin Fig.6.

4 Conclusions

In this paper, we present a new integrated fuzzy clustering algorithm GFC. GFC combines gravity-based
clustering algorithm GC with fuzzy clustering. GC as a new hard clustering algorithm is based on the well-known
Newton's Gravity Law. Our theoretic analysis shows that GFC can converge to a local minimum of the objective
function. Simulations are done to show the validity and effectiveness of our GFC algorithm. We find that GFC
algorithm detects and characterizes the quadratic/linear models generating the data sets used in the examples
correctly in most cases. We also run the fuzzy c-means algorithm (FCRM) on the same data and find that GFC
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prevails considerably over FCRM in terms of converge speed.

-] . - . . - . - - :
o PR g oo b
& II e GFC abyaiihe
|
5 |
I 1
2]
c 1 i
s = | f
® | I |
g = ' : |
— | | 1 |
S) | I 1 |
g A | | o f N 7
(- | ol | 13|
S 15 . _ | ,
z A | | I L
. . b -
" P T Y IR &
¥ q'..'. : & ¥ e .-I.'- o
- = v
0 . . . . " . . " .
4 12 14 1H

Sub-Experiment number

Fig.6 Convergence speed of FCRM and GFC
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