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Abstract: In many models of optical routing, a set of communication paths (requests) in a network are given, 
and a wavelength must be assigned to each path so that paths sharing an edge receive different wavelengths. The 
goal is to assign as few wavelengths as possible, in order to make as efficient use as possible of the optical 
bandwidth. Much work in the area has considered the use of wavelength converters: if a node of a network contains 
a converter, any path passing through this node may change its wavelength. Having converters at some of the nodes 
can reduce the number of wavelengths down to congestion bound. Thus Wilfong and Winkler defined a set S of 
nodes to be sufficient if, placing converters at the nodes in S, every set of paths can be routed with a number of 
wavelengths equal to its congestion bound. In this paper, the minimum sufficient set problem in bi-directed 
networks is studied. The problem is transformed into minimum vertex cover problem and some algorithms are 
developed for the problem. 
Key words: approximation algorithm; WDM network; wavelength conversion; vertex cover; sufficient set 

The assignment of wavelengths to communication paths (requests) is a basic optimization problem for optical 
networks based on wavelength division multiplexing (WDM)[1,2]. The basic model for an optical WDM network 
consists of a graph with nodes and edges. Communication requests from source nodes to destination nodes are to be 
carried out by paths in the graph connecting each pair of source and destination. Two such paths may share some 
edges in the graph. In this case, the message set between these two paths must be transmitted with different 
wavelengths. Given a set of such paths, the problem here is to decide whether this set of requests can be carried out 
using a limited number of wavelengths. 

The problem can be modeled in the following standard way. We are given a directed graph G, and a set P of 
paths in G, and wish to assign a color (or wavelength) to each path in P, so that no two paths sharing an edge 
receive the same color; we will call such a wavelength assignment valid. The goal is to minimize the number of 
colors used in a valid assignment; we will denote this minimum by χ (P). 

Typically, WDM networks have been thought of in two broad categories. In a wavelength selective (WS) 
network the edges in the route assigned to a communication path must all allocate the same wavelength to that path 
whereas in a wavelength interchanging (WI) network the edges in the route assigned to a communication path may 
allocate different wavelengths to the path. Clearly, the nodes in a WI network require some sort of hardware that 
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takes incoming signals on the different wavelengths and permutes them for the outgoing signals. We call such a 
device a wavelength converter. Placing a wavelength converter at a node v enables any path containing v to change 
its color as it passes through v. In a network with converters, our notion of a valid wavelength assignment must 
become more general: it is now an assignment of a wavelength to each edge of each path, with the restriction that 
the sequence of color assignments to a path can only change when the path passes through a converter. Note that if 
we were to place a converter at every node of G. the minimum number of colors required in a valid assignment 
would be equal to the following natural congestion boundυ (P): the maximum number of paths passing through any 
single edge. In the absence of converters, χ (P) can be arbitrarily larger thanυ (P) on some instances; even with 
converters, we cannot get away with fewer thanυ (P) colors because a different color is required for each path that 
passes through the most congested edge. 

Since wavelength converters are expensive components of a network, one would like to use them as 
parsimoniously as possible while still achieving a substantial reduction in wavelength usage. Motivated by this, 
Wilfong and Winkler[3] defined a subset S of the nodes of a graph to be sufficient if it has the following property: 
with converters at the nodes in S, any set P paths has a valid wavelength assignment with onlyυ (P) colors. They 
then proposed the following basic network design problem: Given a graph G, find a sufficient set of minimum size. 
They proved this problem to be NP-complete, even on planar graph[3]. 

Obviously, in the absence of converters, any set P can be allocated a valid wavelength assignment withυ (P) 
colors if a network is a bi-directed path. Wilfong and Winkler[3] considered the problem for a ring network. They 
showed that there is a polynomial time algorithm that will realize a valid assignment with at most υ2 (P) 
wavelengths without wavelength conversion. LI Guo-jun et al. improved the performance ratio by designing an 
approximation algorithm that assigns the wavelengths no more than υ(23 (P)). If the ring network has wavelength 

converters, Wilfong and Winkler showed that only one node of the ring needs to place a converter. 
In this paper we mainly study sufficient set in bi-directed tree networks (Section 2) and general bi-directed 

networks (Section 3). Fortunately, this problem can be transformed into vertex cover problem. We only need to 
study the algorithm for the minimum vertex cover problem. 

1   Preliminaries 

A network, in this paper, is a bi-directed graph G=(V,E). For each edge e={u,v}∈ E there correspond two 
directed links (u,v) and (v,u) of the network. The skeleton of the network G, denoted s(G), is the undirected graph 
obtained from G by replacing each bi-directed pair of links by a single undirected edge. For the sake of simplicity, 
we will assume that s(G) is connected for all networks G that we deal with. We will also assume that G does not 
contain multiple copies of the same edge in the same direction. 

A routing R is a collection of directed paths. Let P denote a set of directed paths in G. We will assume 
throughout that no individual path in P passes through any vertex more than once. The congestion of P, denoted 
υ (P), is defined to be the maximum, over all the directed edges e of G, of the number of paths containing e. The 
conflict graph of P is an undirected graph L whose vertices are the set of paths in P; two paths Pi and Pj are joined 
by an edge in L if and only if they share a link in G. The minimum number of wavelengths(colors) in a valid 
wavelength assignment for P denoted χ (P), is simply the chromatic number of the conflict graph of P . 

2   Sufficient Sets in Bi-Directed Trees 

In this section, we begin with a description of the efficient algorithm for bi-directed trees. 
We now look at a type of subgraph that necessitates a converter. Consider a graph consisting of a bi-directional 

path with at least two bi-directed pairs of links at each of its two ends. For concreteness, let the path be P and its 
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ends be u and v. Suppose that we have two bi-directed pairs of links at each of its ends, i.e., u1 and u2 are adjacent to 
u (u1≠u2). Similarly, v1 and v2 are adjacent to v (v1≠v2). Let us call such a graph an H -graph. The bi-directional 
path P of an H-graph will be called its characteristic path. 

As shown in Fig.1, one can place 5 paths in an H-graph whose conflict graph is a 5-cycle. Soυ (P)=2 and 
χ (P)=3. Thus we have  

Lemma 1. Let G be a bi-directed tree, S a sufficient set for G, and K an H-graph in G with characteristic path 
P. Then S∩P ∅. ≠

 

Fig.1  An H-graph 
Wilfong and Winkler[3] have defined a spider to be a tree with at most one vertex of degree greater than 2 and 

given the following theorem. 
Theorem 1[3]. The empty set is sufficient for G if and only if G is a spider. 
Now let us show that H-graphs are the structures that necessitate converters when s(G) is a tree. 
Lemma 2. Suppose s(G) is a tree, then the empty set is sufficient for G if and only if G has no H-graph. 
Proof.  By Lemma 1, we know that if the empty set is sufficient, then G has no H-graph. It is easy to prove the 

converse by Theorem 1.  □ 
If K and K' are H-graphs in a bi-directed tree G, we say that K' encloses K if the characteristic path of K is a 

subset of the characteristic path of K'. Enclosure, defined in this way, imposes a partial order on the H-graphs of G, 
and we say an H-graph is minimal if it is minimal with respect to enclosure. We say that a node of a path P is an 
internal node if it is not one of the two endpoints. The following lemma is obvious. 

Lemma 3. (i) If K is a minimal H-graph in G, with characteristic path P, then there is no edge of G\K incident 
on an internal node of P. (ii) The characteristic paths of two minimal H-graphs are edge-disjoint. 

We now use some definitions from Ref.[3]. For a subset S V, define the graph G⊆ s(S) as follows. The nodes 

V(S) of Gs(S) are the nodes in V\S together with pairs 〈s,e〉 for each s∈ S and each edge e incident to s in s(G). The 
edges of Gs(S) consist of the edges {u,v} of s(G) where u, v∉ S, together with {〈s,e〉,v} whenever e={s,v} and 
{〈s,e〉,〈t,e〉} whenever s and t are adjacent nodes of S. We may think of Gs(S) as the result of splitting each node s of 
S into degree-of-s-many copies. 

We are now ready to prove the following characterization theorem. 
Theorem 2. Let G be a bi-directed tree, then a set of nodes S in G is sufficient if and only if it intersects 

characteristic path of each minimal H-graph.  
Proof.  Lemma 2 implies that S must meet the characteristic path of each minimal H-graph. Conversely, 

suppose that S has this property, and consider the graph G' obtained by splitting G (as above) at each node in S. 
Each component X of G' has the property that it contains no H-graph, and s(X) is also a tree. By Lemma 2, we get 
the result.  □ 

By Lemma 3, the characteristic paths of the minimal H-graphs in G form a collection of edge-disjoint 
bi-directional paths {Pi}, each of whose internal nodes has degree 2 in s(G). Given any sufficient set S for G, we 
can therefore transform it into a sufficient set S' of no greater size that meets each Pi at one of its ends. 

Let G' denote the graph obtained from G by replacing each of the Pi by a single bi-directed edge e'i between its 
endpoints, and deleting the internal nodes and the other bi-directed edges that are not in the characteristic paths of 
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the minimal H-graphs. As a consequence of Theorem 2, our problem is equivalent to finding a vertex set of 
minimum size that intersects each of the edges in s(G'). Obviously e'i is the edge set of G' and s(G') is a forest. So 
this problem can be directly reduced to the standard vertex cover problem in a forest. We now present an efficient 
Greedy algorithm. The algorithm relies on the observation that every tree has at least two vertices of degree 1, and a 
vertex of degree 1 never needs to be included in an optimal cover, because the adjacent vertex may always be 
included instead without loss of optimality. 

Algorithm 1. 
Input: s(G′) and S ∅; ←

While vertices of degree 1 remain { 
select a vertex of degree 1; 
add its adjacent vertex to S; 
remove this vertex , its adjacent vertex and all the edges incident to them from s(G′); 

} 
Output: S. 

3   Sufficient Sets in General Bi-Directed Graphs 

In general bi-directed graphs, Kleinberg and Kumar[4] have given a description of the 2-approximation 
algorithm. Here we want to give a further discussion. In particular, we see the relation between the minimum 
sufficient set problem and the minimum vertex cover problem. 

First we give some definitions. Define a vertex v to be a branching node if its degree in s(G) is greater than 2. 
Analogously, define a straight node to be a node whose degree in s(G) is less than or equal to 2. We will assume 
that s(G) contains at least one branching node, since otherwise s(G) is either a path or a cycle, and the sufficient sets 
of the two structures have been considered by Wilfong and Winkler[3]. 

Wilfong and Winkler[3] have also developed some basic properties of converters in a bi-directed graph. The 
following theorem is proved in Ref.[3]. 

Theorem 3[3]. Let G be a bi-directed graph. A set S of nodes is sufficient for G if and only if each component 
of Gs(S) is a spider. 

In Ref.[4], a sufficient set is said to be canonical if it contains only branching nodes. A straight node never 
needs to be included in an optimal sufficient set because any path passing through a straight node does not 
necessitate a converter. 

Proposition 1. Let G be a bi-directed graph. If S is a sufficient set for G, then there exists another sufficient set 
S' for G such that |S'| |S| and S' (as a subset of vertices in G≤ s(S)) does not contain any straight node. 

In Ref.[4], Kleinberg and Kumar constructed a graph H=(VH,EH) as follows. VH consists of all branching nodes 
in s(G). For u,v∈ VH , (u,v) is an edge in EH if and only if there exists a path in s(G) between u and v such that all 
internal nodes in the path are straight nodes. Note that H may have self-loops, which we retain as part of the graph. 
The following theorem is proved in Ref.[4] by Theorem 3. 

Theorem 4[4]. Let S be a canonical sufficient set, and consider S as a subset of VH. Then S is a vertex cover of 
H. Conversely, every vertex cover of H is also a sufficient set of G.  

By Theorem 4, we can get the following conclusion: 
Corollary 1. If there is a polynomial-time c-approximation for the minimum vertex cover problem, then there 

is a polynomial-time c-approximation for the minimum sufficient set. 
Proof.  Let S denote the set output by a polynomial-time c-approximation algorithm for the minimum vertex 

cover of the graph H. Let denote the minimum vertex cover of H. Thus, we get |S|∗C ≤ c| |. By Theorem 4, both S ∗C
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and are sufficient sets of G. Let denote the minimum sufficient set of G, so | |∗C ∗S ∗S ≤ | |. Therefore, we get 
|S| c| |, i.e., S is also a sufficient set whose size within a factor c of minimum.  □ 

∗C
≤ S ∗

From Corollary 1, we see that the minimum sufficient set problem in general graphs can be transformed into 
minimum vertex cover problem. We know greedy algorithm is a 2-approximation algorithm. We present Algorithm 
II by revising the traditional greedy algorithm. 

Algorithm 2. 
Input: H, S ∅; ←

while edges remain { 
while vertices of degree 1 remain { 

select a vertex v of degree 1; 
add its adjacent vertex u to S; 
remove u, v and all the edges incident to them; 

} 
select an arbitrary edge (i, j) with its each end of degree ≤ 2; 
add i and j to S; 
remove the edge (i, j) and all the edges adjacent to (i, j); 

} 
Output: S.  
We can get a PTAS (polynomial time approximation scheme) algorithm of sufficient set in planar bi-directed 

networks by applying the Lipton-Tarjan planar separator theorem[5] for vertex cover in planar graphs. We can also 
use an efficient polynomial algorithm for maximum matching in bipartite graphs to get a minimum sufficient set in 
bipartite-shaped networks. Please read Refs.[6,7] for the detailed algorithms. 

Similar to the proof of Corollary 1, we can show the following resolution by applying Theorem 4. 
Corollary 2. If there is a polynomial-time c-approximation for the minimum sufficient set problem, then there 

is a polynomial-time c-approximation for the minimum vertex cover problem. 

4   Remarks 

Our work proposes some practical and efficient algorithms for a natural class of optical networks. These 
algorithms are natural and it would be interesting to empirically test whether these perform well in reality. 

It has to be mentioned that the paper draws a lot of techniques from Ref.[4]. 
The existence of a polynomial-time c-approximation for the minimum vertex cover with c<2 remains a 

longstanding open question. We can consider the interesting question. 
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全光双向网络中的波长转换 
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摘要:  在许多光学路由中,对于给定一组通讯路的集合,必须对有公共边的路安排相同的波长.为了充分利用
光学的带宽,目的是安排尽量少的波长数.但有时候也考虑使用波长转换器.如果一个顶点安装转换器,任何经
过这个顶点的路都可以改变其波长.因此在某些顶点安装波长转换器后可以将波长的数目减少到一个拥塞界,
因此,Wilfong 和 Winkler 定义了一个顶点集 S,在 S 上安装转换器后,任何路集都可以分配数目等于拥塞界的波
长,这样的集合 S被称为充分集.研究在双向网络中的最小充分集问题,并把他转化为最小顶点覆盖问题.对此问
题给出几个算法. 
关键词: 近似算法; WDM网络;波长转换;顶点覆盖;充分集 
中图法分类号: TP393      文献标识码: A 
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