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Abstract: At Auscrypt’92, Harn and Yang first proposed the conception of (t,n) threshold undeniable signature, 
in which only subsets with at least t members can represent a group to generate, confirm or disavow a signature. 
Later, several schemes are proposed, but none of them is secure. So up to now, how to design a secure (t,n) 
threshold undeniable signature scheme is remained an open problem. In this paper, based on discrete logarithm 
cryptosystem, a secure and efficient (t,n) threshold undeniable signature scheme without a trusted party is presented. 
This scheme has an attractive property that member’s honesty is verifiable because a publicly verifiable secret 
sharing scheme is used to distribute secrets and two discrete logarithm equality protocols are used to provide 
necessary proofs of correctness, which are proposed by Schoenmakers at Crypto’99. 
Key words: digital signature; threshold undeniable signature; cryptography; information security 

Undeniable signature is a special kind of digital signature with the appealing property that an alleged signature 
cannot be checked without the cooperation of the signer. (t,n) threshold signature is one kind of group-oriented 
signature, in which only the subsets with at least t members in a group U can generate a valid signature and any 
verifier can simply verify an alleged signature if he/she knows the group public key of U. However, in a (t,n) 
threshold undeniable signature scheme, any subset of t members out of n, denoted by UB, can represent the group U 
to generate a signature, but without the cooperation of t group members, a verifier cannot verify the validity of an 
alleged signature even if he knows the group public key. At the same time, any subset of less than t members cannot 
generate, confirm or disavow a signature even if they cooperate maliciously. Generally speaking, a threshold 
undeniable signature scheme consists of the following three main sub-protocols. 

(1) Signing Protocol: t members in a subset UB run this protocol to produce a valid signature for any message, 
but any attacker I cannot forge a valid signature of group U with non-negligent possibility unless I has corrupted at 
least t members or the group private key has been compromised to I (i.e., nonforgeability). 

(2) Confirmation Protocol: By running this protocol between a subset UB of t members in U, i.e. the prover, 
and a verifier V, V is convinced that an alleged signature is indeed signed by U. Confirmation protocol should 
satisfy the following three properties. 

• Completeness: A valid signature of group U will always be accepted by V if all the members in UB and V are 
honest (i.e. they properly act as the protocol described). 
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• Soundness: Even a cheating subset UB cannot convince a verifier V to accept a non-valid signature of group U 
with non-negligent possibility. 

• Zero-Knowledge: On input a message and its valid signature, any possible cheating verifier V interacting with 
a subset UB does not learn any information aside from the validity of the signature. 
    (3) Denial Protocol: By running this protocol, prover UB ensures a verifier V that an alleged signature is not 
signed by group U. Denial protocol also should satisfy three similar properties as follows. 

• Completeness: If all the members in UB and V are honest, a non-valid signature will always pass through the 
denial protocol such that V believes that it is not a valid signature of group U. 

• Soundness: Even a cheating subset UB cannot successfully deny a valid signature of U with non-negligent 
possibility by running denial protocol. 

• Zero-Knowledge: On input a message and a non-valid signature, any possible cheating verifier V interacting 
with a subset UB does not learn any information aside from the fact that this non-valid signature is in fact not a valid 
signature of group U. 

After the first undeniable scheme was proposed by Chaum and Antwerpen[1], extensive investigations have 
been studied to this special kind signature. Chaum presented a zero-knowledge undeniable signature scheme with 
many useful applications[2]. By incorporating both concepts of the undeniable signature and group-oriented 
signature[3,4], Harn and Yang[5] proposed the conception of (t,n) threshold undeniable signature and designed two 
concrete schemes in respect of t=1 and t=n. But Langford[6] pointed out that their (n,n) threshold undeniable 
signature scheme only possesses the security level of (2,n), because any two adjacent members can generate a valid 
signature. Later, Lin et al. presented a general threshold undeniable signature scheme without a trusted party[7], but 
their scheme is also subjected to the same attack. In 1999, Ref.[8] generalized Chaum’s zero-knowledge undeniable 
signature[2] to a (t,n) threshold undeniable signature scheme, but this scheme has two shortcomings: (a) it needs the 
help of a trusted party; (b) invalid partial signatures cannot be detected. All these threshold undeniable schemes are 
based on discrete logarithm cryptosystems, but none of them is secure and does not need the help of a trusted party. 
So up to now, the problem of designing a secure (t,n) threshold undeniable signature scheme without a trusted party 
is remained open.  

Based on the first undeniable RSA signature scheme[9] and a revised version of Shoup’s practical threshold 
RSA signature scheme[10], Ref.[11] presented the first threshold undeniable RSA signature scheme with a trusted 
party.  

In this paper, based on discrete logarithm cryptosystem, we present a secure and efficient (t,n) threshold 
undeniable signature scheme without a trusted party. Essentially speaking, our scheme is a generalization of the 
Chaum and Antwerpen’s undeniable scheme[1] to threshold environment. By making use of a publicly verifiable 
secret sharing (PVSS) scheme, proposed by Schoenmakers[12], and two non-interactive discrete logarithm equality 
protocols, our scheme has an attractive property that each member’s honesty is verifiable in all the following stages: 
distributing secrets, establishing group public key, generating signature, confirming and disavowing an alleged 
threshold undeniable signature. We call these two non-interactive discrete logarithm equality protocols as DLE 
protocol, proposed by Perderson and Chaum[13,14], and DDLE protocol, which is a modified version to a protocol 
proposed by Stadler[15]. 

This paper is organized as follows. Several notations are introduced in Section 1. Then, in Section 2, DLE and 
DDLE protocols are reviewed concisely. Afterwards, the new threshold undeniable signature scheme is described in 
Section 3. Finally, some brief discussions to our new scheme are given in Section 4.  
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1   Notations 

n members Ui (i=1,2,…,n) consists of a group U and t is the threshold value. Let B denote a subset of size t in 
the index set {1,2,…,n} and UB={Ui|i∈B} be a subset of size t in U. The notation x∈RX means that an element x is 
selected randomly and uniformly from the set X. 

q, p′ and p are three primes such that q|p′−1 and p|p′−1.Gq is the unique multiplicative subgroup of order q in 
finite field Zp′, and Gp′ is the unique multiplicative subgroup of order p′ in finite field Zp. 

H1, H2, and H3 are three hash functions such that  and . Where, l is a 
security parameter ( ). Then, for every original message M such that 

lH }1 ,0{}*1 ,0{  :2 → pp ZGZH ⊆→ ′  :3

1)(3 ≠100≈l = MH

p mod .ZM ∈

m

M )(

, m is a generator of 
group . Such special kind of hash function  can be constructed as follows: after choosing a hash function 

 and a generator g of , we define  as ,
pG ′

Z→
3H

pZH ′′   : pG ′ 3 gMHm )(3 ==H H ′ ∀  

2   Discrete Logarithm Equality Protocols 

    Knowledge proving protocols, especially of which based on the discrete logarithm problems, are extensively 
used in modern cryptography[16]. In this section, we will describe DLE and DDLE protocol briefly. 

2.1   DLE (g1,h1;g2,h2;α) protocol 

    and  are four public numbers such that  are two generators of group . The prover P 

knows a secret number  such that 
121 ,, hgg 2h 21 , gg qG

*
qZ∈α α==1 21 loglog h gg 2h , i.e. ′  and . By 

running the following DLE(
pgh = mod11

α ph ′mod2
αg=2

α;,; 221 hg,1 hg ) protocol, the prover P produces necessary proof to convince a verifier 
V that he indeed knows the secret α  but does not reveal which is the α . 

(1) P randomly selects ,qR Zw∈ computes   and ,mod11 pga w ′= , )||( 211 aaHc =mod22 pga w ′=

qcwr modα−= . P publishes Proof ),( crP =  as the proof of knowing the secret α . 

(2) V determines whether P knows the secret α  by checking  ).||( 22111
crcr hghgHc ≡

   The completeness of these protocols is obvious, and the soundness and zero-knowledge are consulted to 
Refs.[13, 14]. 

2.2   DDLE (h1,A;h2,g,B;α) protocol 

Stadler[15] designed a knowledge protocol to prove that a discrete logarithm is equal to a double discrete 
logarithm. In this subsection, we present an improved version of Stadler’s protocol and call it as DDLE protocol. 
This protocol is constructed under the same frame of Stadler’s, but it reveals less information. Therefore, it is at 
least as secure as Stadler’s original protocol. In addition, the structural format of proof is also different with Stadler’s. 

Let h1, h2 be two public generators of Gq (i.e. two elements of order q in ). Suppose that at most the prover 
P knows the discrete logarithm  g is a public generator of (i.e. an element of order p′ in ) such 
that computing discrete logarithms to base g is difficult. 

pZ ′

.log 12 hh pG ′ pZ

Now, suppose that the prover P knows a secret qZ∈α  such that two public numbers A and B satisfy 

 and .  Then P can run the following DDLE(hphA ′= mod1
α mod2 pgB h α

= 1,A;h2,g,B;α) protocol to convince a 
verifier V that he indeed knows such α but does not reveal which is the .α  

(1) P first selects l random numbers qRi Zw ∈  and computes the following 2l values: 

               ,    i=1,2,…,l.  pha iw
i ′= mod11 ,mod22 pga iwh

i =

(2) Then P evaluates the following hash function value c as the challenge: 
c=H2(A||B||a11||a21||…||a1i||a2i||…||a1l||a2l)                            (1) 

(3) P computes l responses: ri=wi−ci α mod q (i=1,2,…l) where ci is the i-th bit of c. 
(4) At last, P publishes the proof Proofp=(c,r1,r2,…,rl)  
(5) When V want to check whether P knows the secret α he first computes a1i and a2i by using of :  PProof

                          (2) , .mod)( )(1
2 2 pBga ir

ii hcc
i

−=mod11 pAha ii cr
i ′=
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Then, V checks whether equation (1) holds. If yes, he receives the knowledge proving of prover P; otherwise 
rejects it. 
    Theorem 1. (Completeness of DDLE protocol) If the prover P and the verifier V all are honest, then V always 
receives P's knowledge proving. 
    Proof.  Because P is honest, so he selects l random numbers qRi Zw ∈  such that 

pha iw
i ′= mod11 ,                             (3) .mod2

2 pga iwh
i =

Then, P computes the challenge c by Eq.(1) and the l responses  by ir qcwr iii  modα−= . On the other hand, in 

the above step (5), the verifier V computes a1i and a2i from Eq.(2) by using the proof (c,r1,r2,…,rl). Note that the 
following equations hold: 

.1or  0  whether ,modmodmod)(

;modmod)(mod
2222 )1()(1

2

11111

=====

′=′=′=
−−+−

−

ii
hhchchcc

i

wccwcr
i

ccpgpgpBga

phphhpAha
iwiciw

iiirii

iiiiii

αα

αα

 

It is known that V obtains the same values a1i and a2i as P does (i.e. equation (3)). Therefore, V founds that equation 
(1) holds, i.e. V always receives the knowledge proving of P if they run the DDLE protocol honestly. 
    About the soundness and zero-knowledge of DDLE protocol, similar discussions can be addressed as Ref.[15] 
did. 

3   Description of the Proposed Scheme 

   In this section, we present a threshold undeniable signature scheme based on discrete logarithm cryptosystem 
without any trusted party. In the design of this scheme, we adopt the publicly verifiable secret sharing scheme 
(simple denoted by PVSS), proposed by Schoenmakers in Ref.[12], to make our scheme satisfying the attractive 
property that the honesty of each member is verifiable. More specially speaking, we use the DLE and DDLE 
protocols described in last section to construct necessary proofs such that the operations of each member in all the 
following phases are verifiable: group public key generation, secret distribution, threshold undeniable signature 
generation, confirmation and denial. 
Stage 1. System initialization 
   Group U selects the system public parameters 3,,,,,, Hgqpp βα′  such that: 

(1-1) p, ,  and q are large primes such that p′ 1| −′pq  and 1| −′ pp . 
(1-2) g is a generator of order p′  in finite field  .pZ
(1-3) α  and β  are two generators of order q in finite field  and nobody knows the discrete logarithm pZ ′

βαlog  and .log αβ  As Gennaro et al. pointed out in the Section 4.1 of Ref.[17], a generic distributed 
coin flipping protocol will accomplish the generating of α  and β . 

(1-4)  is a hash function from Z to  (as described in Section 1). 3H pG ′

Stage 2. Secrets distribution 
   (2-1) Each member Ui selects his private key  then computes and registers the following t,*

qRi Zx ∈ i as his 
public key (ti is a generator of Gq): 

.mod pt ix
i ′= α                                       (4) 

   (2-2) Member Ui randomly chooses a polynomial fi(x) with order at most t−1:  

where  

],[)( 1

0
xZxaxf q

t

j
j

iji ∈=∑ −

=

.qRij Za ∈
   (2-3) Member Ui computes yi and Yi as follows: 

py if
i ′= mod)0(α ,   Y  .mod pg iy

i =
        Ui signs Yi and publishes it, but keeps , i.e., and secretly. )0(if 0ia iy
   (2-4) Ui runs the PVSS protocol[12] to distribute the secret yi. Following is the procedure in detail.  

In the first, Ui publishes Cij as his commitment to each coefficient of the polynomial fi(x) and Tik as the 
encrypted shadow sub-key for member Uk: 
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};1 ,... ,1 ,0{     ,mod −∈∀′= tjpC ija
ij β    T         (5) }. ,... ,2 ,1{     ,mod)( nipt kf

kik
i ∈∀′=

Now, let 

) modmod(  mod )(
1

0

1
0 pppCX kfkat

j

k
ijik

i
t
j

j
ijj ′=′∑=′=

−
=

⋅−

=
∏ ββ .                (6) 

It is easy to see that every member can work out the values of  by using the public information  
( 0 ). 

ikX ijC
1−≤≤ tj

Then, Ui shows that all the encrypted shadow sub-keys (ikT nk ≤≤1 ) are consistent by constructing a proof of 
knowledge of the unique )1( )( nkkf i ≤≤  satisfying: 

. ,... ,2 ,1     )),((loglog nkkfTX iiktik k
===β  

For this seek, applying Fiat-Shamir's technique[18], Ui selects n random numbers  to compute the 
following values  and 

qRik Zw ∈

ika ika : 

,mod pa ikw
ik ′= β    ,mod pta ikw

kik ′=    . ,... ,2 ,1 nk =  
And then Ui compute the challenge  as follows: ic

).||...||||||...||||||...||||||...||( 11111 iniiniiniinii aaaaTTXXHc =                   (7) 
Using the challenge ,  computes the response  for member U : ic iU ikr k

,mod)( qckfwr iiikik −=   . ..., ,2 ,1 nk =  
Finally, Ui constructs the knowledge proof as following: 

). ,... ,  ,(Proof 2,1 iniiii rrrc=  
Each member can verify whether Ui distributes secret honestly by checking the equality (7). Here is the reason. 

By using the public information  and cikikkikij rTtXC ,,,, i, he can work out the values  and ika ika  as follows: 

,mod pXa iik c
ik

r
ik ′= β    ,mod pTta iik c

ik
r
kik ′=    . ,...,2 ,1 nk =  

   (2-5) Now, Ui sends fi(k) to Uk secretly. Uk checks whether the following equality holds: 

.mod/1)( pT ki x
ik

kf ′≡α  

   (2-6) If any member fails in above steps, then the total scheme aborts. Otherwise, all members in group U pass 
through above steps without any dissent, then Ui computes values  and Sii TXif ,),( i as follows: 

).modmod)((  mod

; )modmod(  mod

; )modmod(  mod

; mod)()(

)(./1)(/1

)()(

1

)()(
1

1

1

1

pptpTS

ptptpTT

pppXX

qifif

ifxif
i

x
ii

if
i

if
i

n

k kii

ififn

k kii

n

k k

ii

n
k k

n
k k

′=′=′=

′=′∑=′=

′=′∑=′=

=

=

=

∏

∏

∑

=

=

=

α

ββ
                 (8) 

Here, Si is the sub-key that Ui gets. In addition, member Ui publishes Ti and Xi publicly, but keeps Si and f(i) 
secretly. 
Stage 3. Generation of the group public key 
   (3-1) Using the public information , all n members in group U connect in a ring and run the 

following RING1 protocol to generate the group public key Y as 
) ,...,2 ,1( nkYk =

.modmod21 pgpgY yyyy n ==                                (9) 
where pyyyy n ′= mod...21 is the group private key and nobody knows it. 

RING1  Protocol ) , , ,( YYyg ii

For convenience, we assume these n members connect in the following order: 
.11121 UUUUUUU niii ⇒⇒⇒⇒⇒⇒ +−  

    Step 1. U1 uses Y1 to sign a public message m0 agreed by group U as below (m0 can be selected as the identity 
of group U or member U1, or anything else). 

.mod1
00 pmY y=  
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And let ).mod(  mod , 11
1010 pgYpYYg yy ====Y  Now,  runs DLE1U );,;,( 11000 yYYYm  protocol and 

broadcasts )Proof,,( 110 UYY . 

Step 2. By using )Proof,,( 110 UYY ,  (and each member) checks whether 2U )(  loglog 110 00 yYY Ym == . If not, 

he declares this fact and stops running the protocol. Otherwise,  first computes  2U

.mod2
12 pYY y=  

Then he runs DLE );,;,( 2212 yYYYg  protocol, constructs proof and broadcasts )Proof,( 22 UY . 

    Step  By using ).3(  nii ≤≤ )Proof,( 11 −− iUiY , Ui (and each member) checks whether log  =−1ig Y

)1−= iy(  log 12 −− iY Y
i

. If not, he declares this fact and stops running the protocol. Otherwise, Ui first 
computes  

.mod1 pYY iy
ii −=  

Then he runs DLE );,;,( 1 iiii yYYYg −  protocol, constructs proof and broadcasts )Proof,( iUiY . 

Step n+1. By using )Proof,( nUnY , all members check whether )(  loglog
1 nnYng yYY

n
==

−
. If yes, this 

protocol outputs the following Y as the group public key: 
.modmod21 pgpgYY yyyy

n
n ===  

(3-2) After the generation of Y, ),,,,,,,,,,,( 321 iU tIDYHHHgqpp βα′  can be submitted to a Certificate 

Authority for getting a registered certificate of the group public key of group U. 
Stage 4. Generation of threshold undeniable signature 

If t members in UB want to sign message m, then each Ui (i∈B) does as follows. 
(4-1) Each Ui (i∈B) first computes 

).mod( mod )( p pSS ifC
iBi

Bi ′=′=′ α                             (10) 

where andBiC )(if  are defined respectively by 

,mod
}{\

q
ij

jC
iBj

Bi ∏
∈ −

=   and .mod)()( qifCif Bi ⋅=  

(4-2) All these t members Ui (i∈B) connect in a ring and run the following RING2 protocol to generate 
threshold undeniable signature z. For convenience, we assume that they are the first t members in group U 
(i.e. B={1,2,…,t}) and connect in the following order: 

.11121 UUUUUUU tiii ⇒⇒⇒⇒⇒⇒ +−  

RING2  Protocol );,,;,;( 1 zzzTtm ii
C

ii
Bi

−α

Step 1. U1 computes his partial signature z1 as follows: 

).mod(  mod )1(
1

1 pmpmz f
B aS == ′  

Then he runs DDLE ))1(;,,;,( 111
1 fzmTt BC α protocol and broadcasts . Each member can verify 

whether 

),Proof( 11 zU

)).1((  )(log 1 fzm =αlog)(log 1
1

1 T C
t

B =  
Step . When U)2( tii ≤≤

1−iU
i sees , according to Eqs.(2) and (1), he verify whether member 

 generated  properly. If not, U
),Proof( 11 −− iU zi

iz
1−iz i declares this fact and stops running the protocol. Otherwise, 

Ui computes his partial signature : 

)mod(  mod )(
11 pzpzz ifBi

i
S
ii

α
−

′
− == .                        (11) 

Then he runs DDLE ))(;,,;, 1 ifzzTt ii
C

ii
Bi

−α( protocol and broadcasts . Each member can verify 

whether 

),Proof( iU zi

)).((  )(log 1 ifzizi =
−αlog)(log T C

it
Bi

i =  
(4-3) If  is generated properly, then we define tz tzz =  as the threshold undeniable signature of group U on 

message m. From above description, it is not difficult to see the following equation holds: 

 .                          (12) modmod1 pmpmzz yS
t

t
i Bi =∏== =

′
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Stage 5. Confirmation of threshold undeniable signature 

It is the goal of above RING2  protocol that t members U  generate the 
threshold undeniable signature z defined by equation (12). At the same time, each member runs the 
DDLE

);,,;,;( 1 zzzTtm ii
C

ii
Bi

−α )( Bii ∈

))(;,,;,( 1 ifzzTt ii
C

ii
Bi

−α  protocol to generate necessary proof such that Ui’s neighbor Ui+1 (and all other 
members) can verify the validity of partial signature . In our confirmation protocol, t members  and 
|B|=t) of U need to compute the following value R as the response to a challenge W provided by the verifier V: 

iz BiU i ∈( 

).mod(  mod 11)( pWpWR ySBi Bi −
∈

−
=∏= ′  

Note that every member can compute  and that we have the following two equations BiC
iT −

.modmod

;modmod)(
)()(

)(1

ptptT

ppSS
if

i
ifC

i
C

i

ifC
iBi

BiBi

Bi

′=′=

′=′=′
−⋅−−

−−− α
                            (13) 

It is easy to know that these t members can compute the response R by running RING2 (  
protocol. Where, is defined by 

);,,;,; 1 RRRTtW ii
C

ii
Bi

−
− α

iR

),mod)((  mod )(1

1
)(

1 pRpRR ifBi
i

S
ii

−−

−
′

− == α   and .0 WR =  

Now, we present the confirmation protocol as below. 
    (5-1) Verifier V selects two random number pR Zba ′∈, , and sends the following W to all the t members 

: )( BiU i ∈

.mod pYzW ba=                                   (14) 
where (m, z) is an alleged signature message pair and Y is the group public key of U. 

    (5-2) t members )( BiU i ∈  connect in a ring to run RING2  protocol. If success, 
they send the output R to V. 

);,,;,;( 1 RRRTtW ii
C

ii
Bi

−
− α

(5-3) V accepts the signature (m, z) if and only if the following equality holds: 
.mod pgmR ba≡                                   (15) 

Stage 6. Denial of threshold undeniable signature 
    If verification Eq.(15) does not hold after V and t members have run the confirmation protocol, then they run 
the following denial protocol to convince V that signature z is not signed by group U. Like the denial protocol in 
Ref.[1], two successful denials to an alleged signature (m, z) serves as the denial protocol. 
    (6-1) By running the confirmation protocol with t members of group U for two times, V gets two triples (R, a, 

b) and ),,( baR , but any of them does not satisfy the verification Eq.(15). Then, verifier V believes that 
(m, z) is in fact not a signature of group U if and only if the following equality holds: 

.                              (16) mod)()( pgRRg abab −− ≡

4   Analysis of the Proposed Scheme 

Now we briefly discuss the validity and security of our threshold undeniable signature scheme. In the first, it is 
easy to know that our scheme is correct, i.e. if t honest members generate valid partial signatures, then the getting 
undeniable signature will be passed through the confirmation protocol. In the second, we combine the Shamir’s 
secret sharing scheme[19] and Schoenmakers’ PVSS[12] together to distribute secrets such that less than t members 
cannot deduce the group private key and each member has to distribute secrets honestly otherwise his cheating 
behavior will be detected. In the third, the group public key can be generated efficiently and securely by running 
RING1 protocol because DLE protocol are employed to provide proof of correctness. In the last, each member has 
to run DDLE protocol to produce necessary proof in all the following stages: generation, confirmation and denial of 
a threshold undeniable signature. Any cheater in these stages will be detected. 

Therefore, based on discrete logarithm cryptosystem, we have proposed a valid and secure threshold 
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undeniable signature scheme without a trusted party. 
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不需要可信任方的门限不可否认签名方案 

王贵林,  卿斯汉 

(中国科学院 信息安全技术工程研究中心,北京  100080); 

(中国科学院 软件研究所 信息安全国家重点实验室,北京  100080) 

摘要:  在 1992年澳大利亚密码会议上, Harn and Yang 第一次提出了(t,n)门限不可否认签名的概念.其中,只有成员
个数不少于 t 的子集才能代表群体产生、确认和否认签名.随后,一些研究者又提出了几个方案,但这些方案都是不
安全的.因此,到目前为止,怎样设计一个安全的(t,n)门限不可否认签名方案仍然是个公开问题.提出了一个基于离散
对数密码系统的(t,n)门限不可否认签名方案.该方案不仅安全、高效,而且不需要可信任方.另外,方案还具有一个很
好的性质,即成员的诚实性是可以验证的.这是由于在分发密钥时,采用了 Schoenmakers 在 1999 年美洲密码会议上
提出的可公开验证秘密共享方案和两个用来提供正确性证据的离散对数恒等式协议. 
关键词:  数字签名;门限不可否认签名;密码学;信息安全 
中图法分类号: TP309      文献标识码: A 
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