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Abstract: Stumps, classification trees with only one split at the root node, have been shown by Schapire and 
Singer to be an effective method for text categorization when embedded in a boosting algorithm as its base 
classifiers. In their experiments, the splitting point (the partition) of each stump is decided by whether a certain term 
appears or not in a text document, which is too weak to obtain satisfied accuracy even after they are combined by 
boosting, and therefore the iteration times needed by boosting is sharply increased as an indicator of low efficiency. 
To improve these base classifiers, an idea is proposed in this paper to decide the splitting point of each stump by all 
the terms of a text document. Specifically, it employs the numerical relationship between the similarities of the 
VSM-vector of text document and the representational VSM-vector of each class as the partition criteria of the base 
classifiers. Meanwhile, to further facilitate its convergence, the boosting weights assigned to sample documents are 
introduced to the computation of representational VSM-vectors for possible classes dynamically. Experimental 
results show that the algorithm is both more efficient for training and more effective than its predecessor for 
fulfilling text categorization tasks. This trend seems more conspicuous along with the incensement of problem scale. 
Key words: text categorization; machine learning; stump; boosting 

Boosting is an iterative machine learning procedure that successively classifies a weighted version of the 
sample, and then re-weights the sample dependent on how successful the classification was. Its purpose is to find a 
highly accurate classification rule by combining many weak or base hypotheses (classifiers), many of which may be 
only moderately accurate[1]. Stumps, which are classification trees [2] with only one split at the root node, have been 
shown to be effective when embedded in a boosting algorithm.  

Schapire and Singer devised a boosting-based text-categorization algorithm, called ADABOOST.MH, to 
efficiently represent and handle set of labels[3]. In this algorithm, a simple, stump-like one-level classification tree is 
used, as the base hypothesis or weak learner. Its splitting criterion is whether a certain term (all words and pairs of 
adjacent words in a document are potential terms) exists or not. Although this setting does work in improving the 
performance of text categorization, there are still some drawbacks. Firstly, as base classifier, it is problematic to 
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decide one document belongs to or does not belong to a certain class only by checking a single “term” appeared or 
not. As we know, text categorization problem is usually very complex. There are always many classes and many 
intersections among these classes, which make it nearly impossible to represent a document only by one single term. 
This rule is undoubtedly too weak to be practical. Secondly, the higher the error rate of base classifier is, the more 
the iteration times of boosting algorithm will take to achieve reasonable overall performance. Improving the base 
classifier will also reduce the time spent for training. Thirdly, under this splitting rule, complicated computations 
and comparisons have to be made for each possible term to find out the best one for partitioning. One fact is that a 
text document always contains hundreds or even thousands of terms. If the training document set were large, which 
is very likely to happen, the algorithm’s computational complexity would be unbearable for us, reaching O(m⋅s⋅len). 
Here m means the documents number of training set, s means the number of possible classes, and len means the 
average length of training documents. 

This paper introduces an idea to improve the design of stumps, which are specifically shaped by text 
categorization techniques. Experimental results are presented to show how good the new method is. 

1   Pre-Processing of Training Documents 
VSM (vector space model) is currently the most popular representational model for text documents[4]. Given a 

set of m training text documents, D={Doc1,Doc2,…,Docm}, for any Doci∈D, i=1,2,…,m, it can be represented as a 
formalized feature vector V =)( iDoc (val(ti1),…,val(tik),…,val(tin)), k=1,2,…,n. Here n means the number of all 
possible terms in the space of training set, and tik 

represents the k-th term of Doci.  is a numeric value used 
to measure the importance of t

)( iktval

ik 
in Doci, 1)(0 ≤≤ iktval . By this means, the problem of processing text documents 

has been changed to the problem of processing numerical vectors, which is quite suitable to be solved by 
mathematical methods.  can be easily computed by )( iktval
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in Doci. dik denotes in how many training documents

 
tik 

appears. α is a constant. In the experiments 
we choose α=0.5.  

While computing the frequency of terms, a Stop List is used to remove the function word such as “of”, “the”, 
etc. If the task is to classify Chinese text document, Chinese Word Segmentation will be needed before computing. 
With the value of val(tik), feature selection can be executed by defining an importance threshold for each term. Text 
categorization algorithms without feature selection cannot work well in relatively large training sets, but sometimes 
its accuracy might be better than those with feature selection in the sense that the latter algorithms may omit 
important terms or include misleading terms during feature selection. We define a parameter ρ∈[0,1] called feature 
reduction factor to reflect the ratio of selected terms to all the terms in term space. ρ=1 implies no feature selection 
at all and ρ=0 implies no term is selected. In most cases ρ is between these two boundary points. 

2   Improving Stumps 
Now let’s observe the most commonly used accompanying classifiers, those that partition the domain of the 

predictor variables. The most well known example is the classification tree. Each classification tree partitions the 
training document space D into disjoint blocks D0,D1,…,DN whose union is D. All points within a given block are 
classified identically so if Doc, Doc′∈Dj then h(Doc)=h(Doc′). Here h(⋅)is the predicted class of hypothesis. As 
many classifications need to be made in the overall boosting algorithm there has been much focus on using stumps 
to make the classifications. These are just classification trees with only one splitting node so that the classifier, 
h(Doc), splits the data into only two disjoint regions. These stumps are defined completely by the single splitting 
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question that partitions the data. 
As the reasons described in the introductory section, we put forward a general form to describe a new splitting 

criterion: ( ) ( )
( )
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0 . H(Doc,l), one of the base classifiers established by stumps designed for 

multi-class multi-label settings, aims to predict the relationship between a certain Doc and a certain class l by real 
value of c0l (intends to deny) or c1l (intends to affirm). General function Sim(Doc,l) represents any function that 
numerically measures the relationship between any document and any class it may belong to.  is the 

threshold of judging whether a document belongs or not belongs to a certain class. In the design of function 
Sim(Doc,l), we found it is nature to employ the conception of the cosine value of the cross-angle formed between 
two VSM vectors. Therefore, Sim(Doc,l) is devised as following: 
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( )lCV  denotes the central or representational vector of all training documents that belong to class l, the detailed 

computation method of which will be introduced in the next section. Since both ( )DocV  and ( )lCV  can be 

computed out, the only problem left to the base classifier is how to choose the value of .  thrs
In boosting algorithm, for each possible class, each document in training set is bound with a real-value: weight. 

The whole distribution of all weights is denoted as Δ. Let  ( W ) be the weight (respect to the distributionΔ) 

of the documents in partition D
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Sim(Doc,l)<thrs, and D1l, Sim(Doc,l)≥thrs) that are (are not) labeled by l. For each possible label l, for j∈{0,1}, and 
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Since , we need to choose discrete points from domain [ ]1,0∈thrs [ ]1,0  for finding out the best thrs. Let 

, by picking up the series of points of NA∈ 1,1,,2,1,0
A
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− , we can obtain (A+1) points as the possible values 

 may take. The larger the A is, the more accurate the final thrs is. For each point selected by thrs, the 
corresponding score (z) is computed. After all scores with regard to all the possible points of thrs are calculated, the 
thrs with lowest score should be selected as the threshold of stump, the base classifier of boosting.  

thrs
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The output of the stump therefore should be: 
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3   Boosting Algorithm 
Let χ  denote the domain of possible text documents and let y={y1,y2,…,ys} be a finite set of  labels or 

classes. Let D={Doc
s

1,Doc2,…,Docm} denote the training set of  text documents, m χ⊂D . In the multi-label 
case, each document χ∈Doc

( )Doc ⊆

 may be assigned multiple labels in . Thus, a labeled example is a pair 
here Y  is the set of labels assigned to . Formally, the training set  transferred 

to boosting algorithms should be D={(Doc

y
(Doc),  w( )YDoc y Doc D

1,Y(Doc1)),(Doc2,Y(Doc2)),…,(Docm,Y(Docm))}. 
We employ the improved stumps described in Section 2 as the base classifier repeatedly called by boosting 

algorithm. As for the inputted information needed by the stumps, besides the training set D and distributionΔ, the 

central (representational) vectors of each possible label (class) ( )lCV  are also important. The traditional method 

is, for each class , to compute the arithmetical mean of all VSM vectors of the training documents for which 
 is one of the classes they belong to. Another version is assigning different weights to different training 

documents according to their importance and then averaging the weighted VSM vectors to obtain better central 
vectors. Since the distributionΔmaintained by boosting algorithm also reflects the relative importance of training 

documents according to each possible class, it might be nature to useΔ in computing 
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, . This setting is expected to facilitate the converging speed of boosting, 

which, if true, would absolutely be a big privilege over traditional method for computing central (representational) 
class vectors. 

Now we can start to illustrate the boosting algorithm slightly modified for collaborating with the settings 
defined above. The boosting algorithm is shown in Fig.1. This algorithm maintains a set of weights as a distribution
Δt over example documents and labels (classes). Initially, this distribution is uniform. On each round , the 

distribution Δ

t

t (together with the training set  and class central vectors D tCV ) is passed to the base classifier 

who computes weak hypotheses { }th  for all l∈y={y1,y2,…,ys} where Rht →y×χ: . We interpret the sign of 

h(Doc,l) as a prediction as to whether the label  is or is not assigned to Doc. The magnitude of the prediction 
|h(Doc,l)| is interpreted as a measure of “confidence” in the prediction. Since the base classifier aims to minimize 
the training set error, according to the theory of R.Schapire, 

l

tα  should be set to 1. The final hypotheses rank 

documents using weighted votes of the base classifiers. This algorithm is derived using a natural decomposition of 
the multi-class, multi-label problem into S orthogonal binary classification problems. That is, we can think of each 
observed label set Y(Doc) as specifying s binary labels (depending on whether a label l is or is not included in 
Y(Doc)), and we can then apply binary-prediction boosting algorithms. 
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Given: D={(Doc1,Y(Doc1)),(Doc2,Y(Doc2)),…,(Docm,Y(Docm))} where χ∈iDoc , Y(Doci)⊆y={y1,y2,…,ys}, s∈N. i=1,2,…,m. 

Initialize ( ) ( )smlDoci ⋅=∆ 1,1  for all i=1,2,…,m and all l∈y 
For t=1,2,…,T: 
• For each class , compute the corresponding central (representational) VSM vector;  yl∈
• Pass distribution ( ){ liitt lDoc ,,∆=∆ }  and central vectors ( ){ }ltt lCVCV =  to the base classifier, say, the stump; 

• Stump generates base classifiers ( ){ }lt lDoch ,  for all l  where y∈ Ryht →×χ: ; 
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Fig.1  The boosting algorithm for text categorization 

4   Experiments 
We choose “Precision” as the main way for assessing and comparing the performances of text categorization 

methods. We call the new algorithm proposed here as “AdaBoost.SZ”. Three other algorithms are also selected for 
comparison. They are TF-IDF, NAÏVE BAYESIAN, ADABOOST.MH. We have conducted a number of 
experiments to test their validity and to compare the differences of their performances. The parameters, such as m, 
A, s, T, ρ as defined previously, are adjusted to check the performances of these algorithms in different situations. 
For these experiments we used “YAHOO! CHINESE NEWS” as training and testing documents, which can be 
retrieved from http://cn.news.yahoo.com. The classes and corresponding training examples (documents) are selected 
according to the parameters adjusted. Tables 1 to 5 present the results. 

Table 1  Precision on different feature reduction factors (ρ) 
Feature reduction factor Algorithms 

0.01 0.03 0.06 0.10 1.00 
AdaBoost.SZ 0.822 8 0.889 4 0.911 2 0.934 4 0.900 7 

TF-IDF 0.710 0 0.757 3 0.772 2 0.789 6 0.776 5 
NAÏVE BAYESIAN 0.765 0 0.810 4 0.834 4 0.850 5 0.830 3 

ADABOOST.MH 0.784 6 0.840 3 0.876 5 0.890 9 0.901 2 

Table 2  Precision on different training document numbers (m) 
Training document number Algorithms 

500 1000 1500 2000 2500 
AdaBoost.SZ 0.703 3 0.810 5 0.887 9 0.905 1 0.923 0 

TF-IDF 0.626 0 0.715 1 0.759 2 0.775 6 0.781 6 
NAÏVE BAYESIAN 0.670 9 0.730 6 0.794 4 0.832 8 0.865 9 

ADABOOST.MH 0.658 3 0.751 1 0.842 9 0.889 4 0.900 1 

Table 3  Precision on different possible class numbers (s) 
Possible class number Algorithms 

5 10 15 20 40 
AdaBoost.SZ 0.960 0 0.967 3 0.944 3 0.946 7 0.933 5 

TF-IDF 0.824 3 0.819 6 0.800 8 0.792 1 0.772 2 
NAÏVE BAYESIAN 0.889 4 0.875 3 0.866 0 0.854 2 0.841 7 

ADABOOST.MH 0.923 3 0.926 5 0.911 8 0.909 5 0.893 9 

Table 4  Precision on different values of A 
Value of A Algorithm 

10 50 100 500 1000 
AdaBoost.SZ 0.897 2 0.925 6 0.934 4 0.937 3 0.937 6 
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Table 5  Precision on different iteration times of boosting (T) 
Iteration times Algorithms 

50 100 200 500 1000 
AdaBoost.SZ 0.866 3 0.888 2 0.893 7 0.934 4 0.945 6 

ADABOOST.MH 0.801 0 0.834 9 0.859 2 0.890 9 0.901 7 

 
Generally speaking, TF-IDF is a very simple way for text categorization with relatively low accuracy. Naïve 

Bayesian is a little bit better than TFIDF, and since it is a probability-based method, when the training set becomes 
large enough, its accuracy would be improved. AdaBoost.MH is worse than NAÏVE BAYESIAN and even worse 
than TF-IDF when training set is small and iteration times is not large enough. But when parameters are adjusted to 
a reasonable place, its overall performance would be slightly better than NAÏVE BAYESIAN. In most cases 
AdaBoost.SZ outperform ADABOOST.MH.  

From adjusting the parameters we observed some interesting phenomenon. The performance will always 
increase along with higher reduction factor ρ, which implies selecting more terms into feature set. But we found 
after the reduction factor is higher than 0.1, the improvement of accuracy is too little to be noticed. And when ρ is 
very large (close to 1) it is even slightly worse than that of ρ=0.1. The reason may be that, as we choose terms as 
feature, it would be probable to include some useless or even misleading terms. When the feature set is small, such 
“bad” terms are also sparse and hence have only trivial influence to the classification results. But when the feature 
set is large enough, such terms would be likely to play a role in making the final decision. From the experiments we 
also can see the accuracy of classifiers would increase along with the increase of training set size m. Boosting 
algorithms would have overwhelmingly advantages over non-boosting algorithms once m>1500. For each boosting 
algorithm, its iteration times T should be one of the most important parameters for achieving required accuracy with 
reasonable costs (CPU time). As T increases, boosting algorithms increase their accuracies accordingly, and 
over-fitting is hardly observed, which is a phenomenon consistent with others’ theoretical and practical analysis[3]. 
Theoretically the value of parameter A should be the higher, the better. But according to the experimental results, 
after A>100 the improvement of accuracy of such classifiers becomes very trivial and running such programs 

becomes an unbearable task with sharply increased 
consuming of time and space. The reason may be 
that 0.01 as a scale is already good enough for 
distinguishing between useful terms and useless 
terms. 
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We also compared the efficiency of our new 
idea of facilitating the converging speed of 
boosting algorithm with that does not employ this 
technique. Figure 2 presents the results, which 
clearly show the benefits this new idea can provide.  

5   Conclusions 
So far we discussed the idea for improving the performance of boosting algorithm with stumps as its base 

classifiers employed by multi-class multi–label text categorization tasks. In the experiments we proved that this is 
beneficial and promising. The further developments of such ideas might include incorporating the concept of SVM 
to the formation of stumps and using Bayesian theorem to improve the performance of boosting as a whole, etc. 
Stump is a kind of base classifier easy to be implemented, but its performance is still far from being perfect. Maybe 
its more complicated version, i.e. more partitions, or more nodes, can be more suitable to be integrated into boosting 
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algorithms for resolving text categorization problems. 
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用 Boosting方法组合增强 Stumps进行文本分类 

刁力力,  胡可云,  陆玉昌,  石纯一 

(清华大学 智能技术与系统国家重点实验室,北京  100084) 

(清华大学 计算机科学与技术系,北京  100084) 

摘要:  为提高文本分类的精度,Schapire 和 Singer 尝试了一个用 Boosting 来组合仅有一个划分的简单决策树
(Stumps)的方法.其基学习器的划分是由某个特定词项是否在待分类文档中出现决定的.这样的基学习器明显太
弱,造成最后组合成的 Boosting 分类器精度不够理想,而且需要的迭代次数很大,因而效率很低.针对这个问题,
提出由文档中所有词项来决定基学习器划分以增强基学习器分类能力的方法.它把以 VSM 表示的文档与类代
表向量之间的相似度和某特定阈值的大小关系作为基学习器划分的标准.同时,为提高算法的收敛速度,在类代
表向量的计算过程中动态引入 Boosting 分配给各学习样本的权重.实验结果表明,这种方法提高了用 Boosting
组合 Stump分类器进行文本分类的性能(精度和效率),而且问题规模越大,效果越明显. 
关键词:   文本分类;机器学习;stump;boosting  
中图法分类号: TP181      文献标识码: A 
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