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Abstract: A novel class of subdivision schemes based on the hexagonal meshes is presented. It is called 
honeycomb subdivision which enlarges the field of subdivision surfaces. By introducing the concept of central 
control vertices into the schemes, the honeycomb subdivision has the advantages of flexible coefficients selection, 
easy control of shape, less complexity of large meshes, and applicability. Its properties are analyzed and appropriate 
subdivision rules are given to obtain limit surfaces with tangent continuity. It can interpolate the given control 
vertices under certain conditions. The schemes are applicable for shape modeling in computer animation and 
industrial prototype design. 
Key words: surface modeling; subdivision surfaces; honeycomb subdivision; dual operator 

Complicated surface modeling and rendering are huge challenges in computer graphics. Recently, the 
subdivision surfaces, due to their unique simple calculation and arbitrary topological modeling ability, become the 
one of the research hotspots in the computer graphics realm, and have been widely accepted in the computer 
animation applications. Generally, subdivision surfaces are obtained as the limit of a recursive split and refinement 
process applied to initial polygonal mesh. By selecting suitable refinement masks we can achieve special geometric 
continuity. There are several typical types algorithm in the literature: Catmull-Clark’s[1] and Doo-Sabin’s[2] uniform 
B-spline tensor product extended subdivision schemes; Loop's box spline extended subdivision schemes[3]; the 
famous butterfly algorithm[4] and Kobbelt’s interpolatory schemes[5], based on four point algorithm; and recently the 

3 -suubdivision[6]. Doo and Sabin[2], Ball and Storry[7], Halstead and his cooperators[8], and Reif et al.[9], worked 

on strict mathematics analysis of the local limit properties of subdivision surfaces, and developed several optimal 
smooth subdivision rules. In the current researches, various new methods are created and many modern techniques 
are employed. But from our viewpoint and analysis there are three key problems in subdivision algorithms, which 
greatly arouse our interesting. 

Firstly, all subdivision schemes are based on quadrangular or triangular mesh till now. Though they are simple 
and natural, there are still a kind of mesh, hexagonal mesh, in the nature, e.g., honeycomb and snowflake. The 
hexagon, always act as a reasonable approximation of ellipse and circle, can be used in texture synthesize and 
texture mapping, wavelet and finite element analysis. Moreover, notice if the 2D plan is seamless covered without 
overlap by regular polygons, the only three choices are regular triangle, square and regular hexagon. So the 
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importance of hexagonal mesh is self-evident. On the other hand, it is well known that the dual operator is a key 
operator in subdivision schemes. The famous Doo-Sabin scheme can be viewed as a combination of bisection and 
dual operation over original meshes. In a triangular mesh, every regular vertex has the valence 6, and the polygons 
on the dual mesh are mostly hexagonal. Thus some questions may be naturally putted forward as follows: How to 
develop reasonable subdivision schemes over hexagonal based mesh? And how about the continuity of the limit 
surfaces relative to the special subdivision rules? But there are few papers that discussed the hexagonal based 
subdivision surfaces. They are not the simple extension of existing subdivision schemes. In fact, the topological 
structure of meshes greatly influences the subdivision results. In Ref.[10], Zorin pointed out that some triangular 
meshes may result in fairless shapes by employing quad meshed based Catmull-Clark scheme, with large numbers 
of irregular vertices. The main reason is that the regular cases of different subdivision schemes are different. Thus, it 
is necessary for us to research the special reasonable schemes over hexagonal meshes to reach the requirements for 
computer animation and industrial modeling. 

Secondly, several researchers have gone deep into the mathematics analysis of the continuity and smoothness 
of the subdivision surface. But many of their results are generic or limited in the traditional subdivision rules. For 
instance, Reif[9] gave a theoretical framework of local analysis. However, the new subdivision schemes, 
distinguished from the classical schemes, do not fit the conditions given by Ref.[9]. Moreover, when more 
coefficients are added, the precise representation of eigein-structure of subdivision matrix is hard to be obtained, 
which cause the analysis difficulty. But in our hexagonal subdivision schemes, the eigenvalues still can be precisely 
computed out by applying some transforms and due to the good properties of the circulant matrix. And from this, we 
can determine the coefficients to reach the tangent continuity for the limit subdivision surface. 

Thirdly, the traditional subdivision schemes based on the bisection discrete algorithms of uniform spline have 
relative fixed coefficient. Thus the result shapes are relative fix. But in computer animation modeling, especially in 
the biology modeling, the main principle is that lifelikeness models do not have to much fair and just act in their 
natural way. The original Catmull-Clark algorithm, always creates surfaces which seem much artificial and 
unnatural. This makes users have to do more post-processing for bump effects. So we introduce the central control 
vertices into our scheme. By the controls of them, combined with the neatly coefficient tuning and the level of 
details, the artificial problem are well solved. 

In this paper we first review some terms and conceptions in the subdivision schemes. Then we give a set of 
subdivision topological rules over hexagonal meshes and the geometric smooth coefficients based on the continuity 
and limit properties of the subdivision surface. Finally, we list some discussions of implementation and several 
examples are shown in section 4. As the faces of the initial mesh used in our algorithms are mostly hexagonal, we 
call them honeycomb meshes, and relative schemes are called honeycomb subdivision. 

1   Honeycomb Mesh 

In graph theory, a polygonal mesh can be viewed as a simple graph ),( EVGG =  defined on a none-empty 
vertex set and an edge set }|{ IivV i ∈= },,{ rsij eeE …= , where edge },{ ji vvije = . Then the valence of a vertex is 

the number of vertices connected to it, i.e., }E{) evv ijii ∈=(Valence . A polygonal face  in G  is a 

sub-graph which only has one connected branch, and the valence of each vertex is 2. The valence  of is the 
number of its vertices, and it is obviously equal to the number of its edges. If the valence of each face in graph 

 is 6, then it is called a hexagonal mesh, or a honeycomb mesh. Similarly, we say it is a triangular mesh if 
all faces are valence 3, and a quad mesh if valence 4. For convenience, we imprecisely say it is an n-mesh if in 
which most faces are valence n. The set of vertices in the faces which contain the vertex v is called the 
1-neighborhood of v, denoted by .  
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Fig.1  Topological rules of the honeycomb subdivision 

Given a mesh , we can construct a new mesh(graph), in which the vertices is corresponding to the 

original faces, and the edges are defined as the connectivity of the faces. The new mesh is called the dual graph of 
original mesh. Obviously, each vertex in the original mesh is corresponding to a face in the dual mesh and they have 

the same valence. It is well known that to seamlessly cover the  parameter plane without overlapped by regular 
n-polygon, the choice can only be 3, 4 and 6. In the square case, since each vertex is valence 4, the dual is still a 
quad mesh. In the regular triangle case, the dual of the infinite covering mesh is a honeycomb mesh, and applying 
the dual operator twice will make it come back to a triangular mesh. This is the base viewpoint of our algorithm. In 
honeycomb meshes, the valence 6 vertex is called regular vertex, otherwise it is an irregular vertex. 

),( EVGG =

2ℜ

2   Honeycomb Subdivision 

For simplicity, assume the given arbitrary topological mesh has no boundary and has only one connected 
branch, for the multi-branch case it can be viewed as a combination of independent subdivision operations on each 
branch. Distinguished from triangular mesh, the faces of the honeycomb mesh can not guarantee to be coplanar. So 
we introduce the central control vertex, denoted CCV, into our algorithm to improve the shape control and rendering 
abilities. In the later sections, we will discuss the importance of CCV. 

2.1   Topological subdivision rules and their properties 

The topological subdivision rules (see Fig.1) are: 
1) In the original mesh, on every face, create a new edge vertex for each edge, denoted by NEV, which is a 

linear combination of two end points of the edge and the CCV of the face.  
2) In the original mesh, on every face, create a new face, denoted by NFF, by connecting the corresponding 

NEVs of its edges in turn. 
3) In the original mesh, for each edge, create a new face, denoted by NVF, which is composed of the NEVs 

of all faces around it. 
4) In the new mesh, for each face, create a new central control vertex, denoted NCCV. We denote NVCCV 

and NFCCV for the CCV of NVF and NFF respectively. 
By applying the topological rules, we note that each face and vertex in the old mesh generates a new face, and the 
NCCVs(new central control vertices) are produced from the vertices and the CCVs of the old mesh.  

 For a given closed mesh , let V be the vertex set, let E be the edge set and F be the face set. The 

Euler’s formula asserts that 

),,( FVEM

CFEV =+− ,                                         (1) 
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where C is a constant determined by the topological properties of the given mesh. Table 1 lists the topological 
parameters changes after applying one-step operation of several typical subdivision schemes. From this table, we 
can find out that our scheme is the same as other schemes. That is the topological properties are invariant during the 
subdivision operation though new geometric elements are added for creating the new mesh. It is a necessary 
characteristic in practical applications. On the other hand, the increasing speed of the geometric elements in our 
scheme is slower than others. It makes the user more easily manipulate the processing meshes and improves the 
ability of detail control. 

Table 1  Subdivision schemes and topologic parameters 
Scheme Vertex Edge Face Topological constant 

Honeycomb 2|E| 3|E| |V|+|F| C 
Catmull-Clark |V|+|E|+|F| 4|E| 2|E| C 

Doo-Sabin 2|E| 4|E| |V|+|E|+|F| C 
Loop/Butterfly |V|+|E| 2|E|+3|F| 4|F| C 

Moreover, after one step of our scheme, all control vertices, definitely been new edge vertices, are valence 3, 
for it is only connected with the other new edge vertex of the corresponding edge, and the two neighbor new edge 
vertices of the corresponding same old face. The valence of NVF(new vertex face) is twice of the valence of the 
corresponding vertex, and the valence of NFF(new face face) is fixed. Hence, after two steps, the most faces of 
mesh are hexagonal, the number of non-hexagonal faces is the sum of the number of irregular vertex and the 
number of non-hexagonal faces, and it will be fixed in the next subdivision steps. 

2.2   Geometric refinement rules 

To design new schemes, the geometric refinement rules are much important. Popularly, the scheme must have 
the appropriate support, i.e., the influence area of vertices shall be small. Furthermore, the scheme shall have some 
kind of symmetry which will take effects to the limit surface of subdivision. Let P[q;p1,p2,…,pn] be a polygonal face 
p with valence n on the original mesh, where q is the central control vertex and p1,p2,…,pn are the vertices of P. 
Applying one step of subdivision, we calculate the new edge vertex NEV of P by 

1' (1 )
2

i i
i n nb b ++
= − +

p pp q                                     (2) 

and the new face central vertex NFCV of P is 
 ' (1 )na a= − + nq q p ,                                       (3) 

here the weights , the ]1,0[, ∈nn ba p  is the barycenter of P, i.e., 1 /n
ii n

=
= ∑p p (See Fig.2). Let v be a vertex with 

valence n in the original mesh, then the new central control vertex of corresponding NVF is computed by 

1 1
(1 )

n n

n n i i i
i i

c c α β
= =

i
 

= − + + 
 
∑ ∑q v p q� ,                               (4) 

with ]1,0[,, ∈nnnc βα  and , here the 1)(1 =+∑ =

n
i ii βα ip  is the th vertex connected to v, and i iq  is the CCV of 

Fi who contains v (see Fig.3). 

3   Limit Properties of Honeycomb Subdivision Schemes 

3.1   Eigenvalue analysis of subdivision matrix 

 From the last section, we can see the faces on the mesh shrinking after subdivision, and the old vertices 
correspond to new created faces. Additionally, the NEVs and NFCCV in an NFF are only determined by the control 
vertices in the corresponding old face. Thus to investigate the local limit properties, we only consider the influence 
to a given n-sided face P for our subdivision scheme. Let q be face P’s CCV, p1,p2,…,pn be its vertices, 
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and we still denote [ 1 2, , , , T
n=P q p p p…  to be a column vector represented the control vertex series without 

confusion. Then we can write out following formula 
′ =P SP .                                        (5) 

where [ 1 2, , , , T
n′ ′ ′ ′ ′= ]P q p p p…  is the control vertex series of the new face P′  and 
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is the subdivision matrix. From the results of Reif[9], we only need to analyze the eigenvalues of S , because of  
the local invariance of honeycomb subdivision. For convenience, we introduce the symbol of circulant matrix 
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After one step subdivision, the polygonal faces will rotate while shrinking. It naturally forms the edge-vertex 
correspondence. For easily analysis, same as the 3 -subdivision[5], we consider the double step subdivision matrix 
and adjust its rows to rebuild vertex-vertex correspondence. So we select 
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By the properties of circulant matrix, it is easy to know that the eigenvalues are 
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 Imitating the discussions of Reif[9], the limit surface depends on the eigen-structure of S� .To reach the tangent 
plane continuity, the eigenvalues must satisfy 

nλλλλλ >>=>= …3210 1 ,                                    (10) 
Now we analysis the selections of weights  and  for a given . Firstly, we always assume that  

to guarantee that all cases are convex linear combinations. Then the largest eigenvalue of 
na nb n 1,0 ≤≤ nn ba

S�  is 1. Let nn /2πϕ = , 

and note ))cos(()cos( nn jnj ϕϕ −= , so the second largest eigenvalue must be . It follows 2/]cos1[2
nnb ϕ+

2 1
2( ) [1 cosn n n na b b ]ϕ− < + ,                                (11) 

i.e., 
cos( / 2) cos( / 2)

1 cos( / 2) 1 cos( / 2)
n

n n
n n

b a bϕ
ϕ ϕ

< <
+ −

n
n

ϕ

n

.                           (12) 

Thus we can pick some special sets of weight coefficients for practice applications: 
• To obtain a symmetric mask, we pick  and the new edge vertex will be the barycenter of the 

triangle composed by two old edge vertices and the central control vertex. Then pick a
2/ 3nb ≡

(4 cos ) /9n ϕ= − to be similar 

to 3 -subdivision. Figure 5 shows a demo by applying honeycomb subdivision on dodecagon in this set of 
weights. 

• Simply choose n na b const= ≡ . 

3.2   Limit points of honeycomb subdivision scheme 

From last subsection, we find out that the position of the limit point corresponded to the original central vertex 
is a limit value of the linear combinations of the original face’s barycenter and the central vertex. So by the new 
vertex generation formulas, we have 

1( )
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and 
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As 1n na b− < , it follows 
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n n
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∞ −
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q q p ,                                (15) 

Thus, the limit point is lying on the line segment of the original face’s barycenter and the central vertex. It is 
beneficial to user interface design. 

4   Implementation Details and Discussions 

4.1   Data structure 

In our experimental system, we exploit the extended semi-edge structure as the base storage data structure, 
which is frequently used in CAD and computer animation system. The semi-edge structure, which stores lots of 
relationship information of vertices, edges and faces, is efficient in edge-vertex, vertex-face and edge-face search 
processing. It makes the 1-neighborhood search subroutines much fast in our algorithm implementation. Due to the 
dual property of the data structure, we can fast create the dual mesh. Furthermore, the data importing and exporting 
are implemented in our system for data exchanging with other CAD or computer animation systems. 

4.2   Boundaries 

In practical animation and industrial applications, it is usually necessary to be able to process control meshes 
with well-defined boundary which should result in surfaces with user satisfied boundary curves. But the 
1-neighborhood of boundary vertex is incomplete, or in other words, the information is deficient. So we must define 
special boundary subdivision rules. In our implementation, for a given boundary vertex, if the valence is greater 
than 2, then add a new edge vertex into the new vertex face, with the formula 

1(1 )
2b n ns s 2+

= − +
v vv v ,                                  (16) 

where the weight  is a function of  and  are two connected boundary vertices with v . In 

practice, it produces satisfied visual results.  

[0,1]ns ∈ n 1 2,v v

4.3   Selections of NCV 

The central control vertex is vital in our subdivision scheme, since it is a key factor of the limit surface shapes. 
For the traditional original polygonal meshes have no central control vertex, it gives our scheme additional 
freedoms to choose central control vertices. If we choose the CCV of a given face on the original mesh to be the 
barycenter of it, the limit surface will interpolate the vertex due to the limit point property derived from last section 
and will result in the expectable shapes. Oppositely if we choose the CCV to be far from the barycenter of the given 
face, the limit shape will seem much strange and artistic. 

The new vertex central control vertex NVCCV generated from subdivision process is also a freely adjustable 
factor. Especially when the original mesh is relatively simple, it will highly affect the surface shapes. Refer to 
formula (4), if we select cn=0, i.e., the NVCCV is superposed with the original vertex, the final shape will more 
approximate to the original mesh. And if we select cn=1, i.e., the NVCCV is the convex linear combination of the 
vertices and the CCVs in the 1-neighborhood, then the final shape will relatively contract more. Through the 
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adjustment of cn, user can properly control the fairness and approximation of the limit surfaces. Figure 6 
demonstrates the changes of the limit surface shapes of a unit cube by applying the honeycomb scheme, with the cn 
switching from 0 to 1.  

4.4   Mesh converting 

The arbitrary topological mesh can be used in honeycomb subdivision. For a triangular mesh, we take some 
preprocess to convert it to an appropriate mesh for our algorithm. A simple way is to process dual operator. The 
other polygonal meshes including quadrangular meshes can directly process honeycomb subdivision. Furthermore, 
we implement the hybrid subdivision operators by integrating the typical subdivision schemes. This method highly 
extends the modeling ability of solo subdivision schemes and it is significant for complicated surface modeling. 

The converting from honeycomb mesh to other mesh types is flexible. When the mesh is coarser, it is easy to 
create a triangle mesh by connecting the vertices of face with the corresponding central control vertices. If the mesh 
becomes dense, the better way is to process one step of dual operator, since after more than two steps of honeycomb 
subdivision, the vertices on the mesh are valence 3. It creates fewer triangles than the former. Because of the density 
of the mesh, the converting makes little changes. Additionally, for the dual operator is a kind of smoothing on the 
mesh, it improves the fairness of the result. Similarly, by applying more than two steps, the most polygonal faces 
are even sides, the practical way is to connect the every vertex on the face with the central control vertex of the face 
to construct a quadrangular mesh. 

5   Examples and Comparison 

Obey the scheme in this paper, we have done several experiments on our system, and it gives good results, see 
Figs.7 and 8. Figure 7 is a comparison between the honeycomb subdivision and the Catmull-Clark schemes. It is 
easy to find out that the honeycomb subdivision is susceptive to the local stretch and irregular cases, and it can 
produce some goffers as shown in Fig.7(c)(d). Since it gives more lifelikeness results, it is suitable for biology 
modeling. Moreover, because of the strong control abilities of CCVs, we can append more level of details into the 
models by perturbing the CCVs and it produces particular dump effect, see Fig.7(e). 

6   Conclusions 

This paper presents a novel hexagonal mesh based subdivision scheme, named honeycomb subdivision. It has 
many advantages such as the flexible coefficients selection, the convenience of shape control, the slower increase of 
the mesh complexity, and the fargoing applicability. Moreover, it can produce the interpolatory effects by choosing 
special coefficients. Honeycomb subdivision can process on types of mesh very well. It extends the polygonal mesh 
based complicated surface modeling methods. The scheme is applicable for animation modeling and industrial 
prototype design. Due to its flexibility, future works should aim at the applications of it. We will further investigate 

0.00nc = 0.25nc = 0.50nc = 0.75nc = 1.00nc =

Fig.6  Shape changes with the nc  switching from 0 to 1 
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(a) (b) (c) (d) (f) 

Fig.7  The comparison of subdivision schemes. (a) the original mesh, (b) the result of Catmull-Clark schemes,
(c) the result of Honeycomb schemes, (d) a local zoom view of (c), (e) the result after perturbing the CCVs 

(b) The Triceratops (a) The fighter model 

Fig. 8  Honeycomb subdivision examples 

the interpolatory algorithm to interpolate the given point set, the sophisticated boundary constraints and the 
accelerating rendering algorithms based on subdivision method. 
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蜂窝细分 

张宏鑫,  王国瑾 

(浙江大学 CAD&CG国家重点实验室 计算机图像图形研究所,浙江 杭州  310027) 

摘要: 给出了一类新颖的基于六边形网格的细分方法.该方法拓广了细分曲面的种类,被形象地称为蜂窝细分方
法.通过引入中心控制点的概念,使蜂窝细分具有参数选取灵活,形状控制容易,网格复杂性增长缓慢,适用范围
广等优点.分析了蜂窝细分方法的极限性质以及参数选取规则,可保证细分曲面处处达到切平面连续,并在适当
条件下具有插值能力.该方法适用于动画造型和工业造型设计. 
关键词: 曲面造型;细分曲面;蜂窝细分;网格对偶 
中图法分类号: TP391      文献标识码: A 
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2002年全国软件与应用学术会议(NASAC2002)——软件工程专题 

征 文 通 知 

2002 年全国软件与应用学术会议由中国计算机学会软件工程专业委员会主办,将于 2002 年 11 月 4 日~6
日在北京召开.届时将进行软件工程等方面的技术与应用交流,会议将出版正式文集,并将优秀论文推荐到核心
学术刊物上发表.欢迎大家踊跃投稿. 
一、征文范围包括但不限于:需求工程、软件过程、质量保障、软件工具与环境、软件工程实践、软件工

程教育、操作系统、中间件、软件复用、软件语言、应用软件等. 
二、论文要求 
1. 论文未曾在其他杂志、会议上发表或录用. 
2. 论文长度: 每篇限定在 6页(A4)内. 
3.  请以 PDF 或者 PS 格式提交论文.有关文章的版心、字号、题目、各级标题、正文格式及参考文献格
式与软件学报相同,具体模版可参考http://www.jos.org.cn网址的“相关网站”一栏. 

三、重要日期 
1. 征文征稿截止日期: 2002年 8月 1日 
2. 论文录用通知日期: 2002年 9月 20日 
四、联系方式 
联系单位: 100871北京大学软件工程研究所 
联系电话: 010-62757801    联系人: 王千祥 
E-mail: wqx@cs.pku.edu.cn 
关于会议的更详细内容请访问下面的网址: http://www.sei.pku.edu.cn/academic/NASAC.htm 
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