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Abstract: The convexity of curves and surfaces is an important property in the field of Computer Aided 
Geometric Design (CAGD). This paper tries to tackle the positive and convex problem of polynomials. Convexity 
can be solved by positivity. An algorithm for the positivity of polynomials is developed by extending the classic 
Sturm theorem. Hence, a necessary and sufficient condition for the positivity of polynomials of arbitrary degree is 
presented in this paper. A practical algorithm to express this condition in terms of the coefficients of the 
polynomials is also given. 
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Convexity of polynomials is often considered in the designing of the curved surfaces of products such as 
air-crafts, ships and cars. It is well known that the convexity of a polynomial over an interval is equivalent to the 
positivity of its second order derivative over the same interval. By considering the positivity of the second. order 
derivative of polynomials, Ref.[9] presented a sufficient condition for the convexity of Bernstein polynomials over 
triangles. Further, Ref.[10] provided an improved convex condition. Suppose the degree of a Bernstein polynomial 
is , the improved convex condition is sufficient and necessary when n 3≤n . However, it is still an open question 
when , where only the sufficient condition is available to verify the convexity. 4≥n

Given a polynomial ),(),( βα∈xxf . Its positivity and convexity are defined as following. 
Definition 1.1 (Positivity). f(x) is positive over an interval ),( βα if for any ),( βα∈x , . 0)( ≥xf
Definition 1.2 (Strict positivity). f(x) is positive over an interval ),( βα if for any ),( βα∈x , . 0)( >xf
Definition 1.3 (Convexity). f(x) is convex over an interval ),( βα if for any ),(, 21 βα∈xx , the following 

formula holds 

 
2

)()(
2

2121 xfxfxxf +
≤







 + . (1) 

For a polynomial f(x), formula (1) is equivalent to the positivity of its second derivative  
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2
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≥
dx

xfd  for all ),( βα∈x . (2) 

So the positivity of a polynomial is considered in this paper instead of the convexity of a polynomials. It is obvious 
that a polynomial f(x) is positive over an interval ],[ βα  if and only if  

(1) f(x) has no roots or has the only roots with even multiplicities within the interval; and 
(2) f(x0)>0 for some ],[0 βα∈x . 

The technique of Sturm Theorem is a conventional way to verify whether a polynomial has no roots over an 
interval. However, Sturm theorem cannot verify whether a polynomial has roots with even multiplicities over an 
interval. In this paper, a necessary and sufficient condition is given to verify whether a polynomial has roots with 
even multiplicities over an interval. A recursive algorithm to verify the positivity of a polynomial is also provided. 

The paper is organized as follows. In Section 1, the technique of standard sequence is further exploited. 
Conventionally, for a polynomial f(x), a standard sequence is considered to verify whether it has roots over an 
interval. Here, the last term of a standard sequence, i.e., the greatest common divisor of the two polynomials f(x) 
and f ’(x), is considered as the starting polynomial for another standard sequence. In this way, an extended standard 
sequence is presented. Consequently, a necessary and sufficient condition (NASC) for the positivity of a polynomial 
over an interval is obtained. In Section 2, a practical algorithm is given to express the coefficients of the standard 
sequences in terms of the coefficients of a polynomial. In Section 3, some examples are given to demonstrate the 
algorithm. Section 4 concludes the paper. 

1   A Necessary and Sufficient Condition for the Positivity of Polynomials 

Given a degree n polynomial with real coefficients 

  )∑
=

=
n

i

i
i xaxf

0
)( , ,( ∞−∞∈x . (3) 

Using the modified Euclidean algorithm, we define the standard sequence for f(x): 

 )(:)(0 xfxf = , 1( ) : ( )f x f x= ′ ,  (4) 

and forming the remaining polynomials  recursively, dividing by , )(1 xfi+ )(1 xfi− )(xfi

 )()()()( 111 xfcxfxqxf iiiii ++− −= , 1,...,2,1 −= mi , )()()(1 xfxqxf mmm =− , , (5) 0)(1 ≡+ xfm

where deg , and the constant are positive but otherwise arbitrary. The final polynomial f1deg)( +> ii fxf 01 >+ic m(x) 
is the greatest common divisor (GCD) of f(x) and f ′(x). 

Lemma 1.1 (Sturm’s theorem). Let  be a polynomial of positive degree  with coefficients in a real 
closed field R and let 

)(xf n
)()(0 xfxf = , 1 ( ),..., ( )m( )f x f x f x= ′ be the standard sequence (1.2) for . Assume )(xf

],[ βα  is an interval such that .0), )( ≠( βα ff Then the number of distinct roots of  in )(xf ),( βα  is 
, where  denotes the number of variations in sign of sequence )( fvβ−)( fvα )( fαv )(),...,(), 1(0 ααα mfff .               

A proof of Lemma 1.1 is found in Ref.[1].  

So the polynomial  has no roots over the interval )(xf ),( βα  if and only if . In this case, 

 for all 

0)()( =− fvfv βα

0)( >xf ),( βα∈x . It is said  is strictly positive over )(xf ),( βα . However, if  has roots within )(xf
),( βα , Sturm theorem fails to verify whether  over this interval.  0)( ≥xf

This drawback is overcome by further exploiting the standard sequence as following. 

If deg , let . We can also get the standard sequence , ,…,  for 

, namely, 

1)( ≥xfm

)x

)(:)(1 xfxf m= )(1
0 xf )(1

1 xf )(1
1

xfm

()( 1fxfm =

 
1 1 1 1

0 1( ) : ( ), ( ) : ( ( ))f x f x f x f x= = ′ , 
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M  

)()()()( 1
1

1
1

111
1 xfcxfxqxf iiiii ++− −= , 11,2,..., 1i m= − , (6) 

0)(),()()( 1
1

111
1 1111

≡= +− xfxfxqxf mmmm ,   

where deg , and the constants are positive but otherwise arbitrary. )(deg)( 1
1

1 xfxf ii +> 01
1 >+ic

Generally, if , let  1)(deg 1
1

≥−
−

xf k
mm

)(:)( 1
1

xfxf
km

k
−

= , 

then we can get the standard sequence , , ...,  for . )(0 xf k ) )(xf k
mk

(1 xf k =)(xf k )(1
1

xf k
mk

−
−

It is obvious that  is the GCD of  and ( ()(xf i )(1 xf i− 1 ))if x− ′ , and 

 ) . (7) ()()( xfxf jiji =+

We denote . Then the main theorem is presented here. )(:)(0 xfxf =

Theorem 1.2. A NASC for the positivity of polynomials). Assume )(αf , 0)( ≠βf , =constant, then 

, 

)(xf K
mK

0)( ≥xf ),( βα∈x  or ,0)( ≤xf  ),( βα∈x , if and only if 

  ),()()()( 121222 ++ −=− iiii fvfvfvfv βαβα
10,1,...,

2
Ki − =   

.  (8) 

where 1
2

K −    denotes the maximum integer which is less than or equal to 2
1−K .           □ 

To prove Theorem 1.2, we introduce some lemmas. 

Lemma 1.3. Assume x0 is a root of f(x) with multiplicity n0. Then x0 is a root of ( )if x with multiplicity 

, or is not a root of , where  is the final polynomial of the standard 

sequence for . 

)(, 00 niin <− )(),( 0 inxf ≤ 1
1

)( −
−

= i
m

i
i

fxf
1−if

Proof.  Suppose  Since 0)(),()()( 0000
0 ≠−= xQxQxxxf n

)()(1 xfxf m=  is the GCD of  and )(xf ( )f x′ ,  

)()( 12
1

xfxf m=  is the GCD of  and )(1 xf ( )f x′ , 

M  

)()( 1
1

xfxf i
m

i
i

−
−

=  is the GCD of  and )(1 xf i− 1( ( )i )f x− ′ . 

If , we get 0ni <

=)(1 xf ,0)(),()( 011
1

0
0 ≠− − xQxQxx n  

=)(2 xf ,0)(),()( 022
2

0
0 ≠− − xQxQxx n  

M  

=)(xf i .0)(),()( 00
0 ≠− − xQxQxx ii

in  

Hence, x0 is a root of fi(x) with multiplicity n0−i.  

If , then  has no root .  in ≤0 )(xf i
0x

Lemma 1.4. Assume ],[ βα  is an interval such that 0)(),( ≠βα ff . Then  does not change sign in )(xf
],[ βα  if and only if the multiplicity of any root of  in [)(xf ],βα  is even or  has no root in )x(f ],[ βα . 
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Lemma 1.5. Assume ],[ βα  is an interval such that 0)(),( ≠βα ff . Then 

 ,  (9) )()()()( 11 fvfvfvfv βαβα −=−

if the multiplicity of any root of  in )(xf ],[ βα  is even, where  is the final polynomial of the 
standard sequence for . 

)()(1 xfxf m=

)(xf

Proof.  Let ljx j ,...,2,1, =  are all of the distinct roots of polynomial  in )(xf ],[ βα ,  are the 

corresponding multiplicities. Since  are all even, we get . 
jn

jn 2≥jn

Let . Since  is a GCD of  and ∏
=

≠−=
l

j
j

n
j xQxQxxxf j

1
00 0)(),()()( )()(1 xfxf m= )(xf ( )f x′ , we have 

∏
=

− ≠−=
l

j
j

n
j xQxQxxxf j

1
11

11 0)(),()()( , 11≥−jn . 

It follows that ljx j ,...,2,1, =  are also roots of . It implies that the number of distinct roots of 

 in [

)(1 xf

)()(1 xfxf m= ],βα  is equal to that of . From Lemma 1.1 we know that (9) holds.  )(xf

Proof of Theorem 1.2.  

First we prove the necessity. Suppose ],[,0)( βα∈≥ xxf , or ],[,0)( βα∈≤ xxf .  

(a) If  has no root in )(xf ],[ βα , then  have no root in [)(xf i ],βα . From Lemma 1.1, we know that (6) 
holds. 

(b) If  has roots in )(xf ],[ βα , by Lemma 1.4 we know, the multiplicity of any root of  in [)(xf ],βα  is 

even. From Lemma 1.3 we know either  have no root in )(2 xf i ],[ βα , or the multiplicities of any root of  

in 

)x(2f i

],[ βα  are even, 20,1,..., Ki =    . By Lemma 1.5 we obtain that (8) holds. 

Secondly, we prove the sufficiency. Suppose (8) holds. 

(a) If  has no root in )(xf ],[ βα , then from 0)(),( ≠βα ff  we get , 0)( >xf ],[ βα∈x , or 
],[,0)( βα∈< xxf . 

(b) If  has root in [)(xf ], βα , we can prove that the multiplicity of any root of  in [)(xf ],βα  must be 
even. Otherwise, assume ],[0 βα∈x  is a root of  with multiplicity )(xf 12 0 +n ,  is an integer. 00 ≥n

From Lemma 1.3 we know that  is a simple root of , and is not a root of . It follows that 0x 02nf 12 0+nf

),()(1)()( 121222 0000 ++ −+≥− nnnn fvfvfvfv ββββ  

which contradicts to (8). The contradiction implies that the multiplicity of any root of  in [)(xf ],βα  is even. By 
Lemma 1.4 we know that  does not change sign in )(xf ],[ βα .  

Corollary 1.6. Assume 0)(),( ≠βα ff . Then  does not change sign for all )(xf ],[ βα∈x  if and only if for 

some does not change sign in )(,2, 12
11 xfKKK K≤ ],[ βα , and 

 ,  )()()()( 121222 ++ −=− iiii fvfvfvfv βαβα 1,...,1,0 1 −= Ki .  (10) 

Proof.  First we prove the necessity. Suppose ],[,0)( βα∈≥ xxf or ],[,0)( βα∈≤ xxf

],[

. From Theorem 1.2 we 
know that (8) holds. Since (10) is part of (8), we get (10) holds. By Lemma 2.4 we know that the multiplicity of any 
root of is even. From Lemma 1.3 we obtain either has no root in )(xf )(12 xf K βα , or the multiplicity of any root 

of  in [)(1 x2f K ],βα  is even. Using Lemma 1.4 again, we obtain that does not change sign in )(12 xKf ],[ βα . 

Secondly, we prove the sufficiency. Suppose  does not change sign and (10) holds.  )(12 xf K

Since does not change sign, by the same process of the proof of Theorem 1.2 the following holds 12Kf
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 , )()()()( 121222 ++ −=− iiii fvfvfvfv βαβα 1 1
1, 1,...,

2
Ki K K − = +   

.  (11) 

From (10) and (11) we know that (8) holds. It follows that ],[,0)( βα∈≥ xxf , or 0)( ≤xf , ],[ βα∈x . 

From Lemma 1.1 it is obvious that 

Proposition 1.7. Suppose )0(0)(),( <>βα ff . Then ),0(0)( <>xf ],[ βα∈x  if and only if .  0)()( =− fvfv βα

Remarks:  Theorem 1.2, Corollary 1.6 and Proposition 1.7 can practically be used to justify whether a 
polynomial is non-negative at any interval. In the next four sections of this paper, the author gives some 
applications.  

2   A Practical Algorithm to Express the NASCs for the Positivity of Polynomials 

Theorem 1.2 has given the necessary and sufficient conditions for the positivity of polynomials. Using it, we 
can justify the positivity of polynomials of any degree in arbitrary intervals.    

However, for polynomials of higher degree, even using a computer program, the conditions in Theorem 1.2 are 
difficult to verify, since those conditions are not expressed in terms of the coefficients of the polynomials. 

From Theorem 1.2, we know if the coefficients of the standard sequences (4) to (6) can be expressed in terms 
of the coefficients of polynomial (3), then the NASC for the positivity of polynomial (3) can be expressed in terms 
of the coefficients of polynomial (3). 

The following is an algorithm to express the coefficients of the standard sequences (4), (5) and (6) in terms of 
the coefficients of polynomials (3). 

Suppose 

  ∑
=

=
n

j

j
j xaxf

0
)( , 0≠na ,  (12) 

then 

 ,  (13) ∑
−

=

=
1

0
,11 )(

n

j

j
j xaxf

where 1,...,1,0,)1(,1 −=+= njaja jj . 

We calculate the coefficients of mixf i ,...,2),( = , recursively. 

Let degree , degree Lxfi =+ )(1 ,)( PLxfi +=  , then 1≥P

 , (14) 0,
1

1,, ...)( i
PL

PLi
PL

PLii axaxaxf +++= −+
−+

+
+

 ,  (15) 0,1
1

1,1,11 ...)( +
−

−+++ +++= i
L

Li
L

Lii axaxaxf

where  and PLia +, 0,1 ≠+ Lia . 

We want to get the coefficient of polynomial . )(2 xfi+

We denote matrices 

  (16) ,:

)1()1(,1

1,1,1

,11,1,1

1

+×++

+−++

−+−++

+





















=

PPLi

PLiLi

PLiLiLi

i

a

aa
aaa

A
MO

L

L
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 =+ :1iB ,

)1(0,11,1,11,1

0,11,1,1

0,11,1

LPiPiPiLi

iiPLi

iPLi

aaaa

aaa
aa

×++−++−+

++−+

+−−+





















LL

OMMMM

L

L

 (17) 

where we denote , if0:,1 =+ jia 0<j , 

 1)1(,1,, ),...,,(: ×+−++= PLiPLiPLii aaaC ,  (18) 

 .  (19) 10,2,1, ),...,,(: ×−−= LiLiLii aaaD

Then we have  

Proposition 2.1. (An algorithm to calculate the standard sequence). If  and  are polynomials 
in (14) and (15), then the polynomial 

)(xfi )(1 xfi+

0,2
2

2,2
1

1,22 ...)( +
−

−+
−

−++ +++= i
L

Li
L

Lii axaxaxf , 

where the coefficients of  are  and  may 
be zeros. 

)(2 xfi+ iiiiiLiLi DBACaaa −= +
−
++−+−+ 1
1
10,22,21,2 ),...,,( 1,...,1,0,,2 −=+ Lja ji

Proof.  From the definition (16)–(19) of matrices , and , we can obtain that iii CBA ,, 11 ++ iD

 . (20) 
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+

+

+

−

+

++

)(
)(
)(

)(

1
1

1

1

111

xf
xf
xxf

xfx

x

x

DC
BA

i

i

i

i
P

L

PL

ii

ii
M

M

M

Since , matrix  has converse . 0,1 ≠+ Lia 1+iA 1
1

−
+iA

Matrix  multiplies (21) in the left, we obtain that 
)2()2(

1
1

1,11

1
0

+×+
−
+

++








−

PPii

PP

AC
I

 .  (21) 
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−
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−
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1
1
11,

11
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iiiiPL
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−
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1

M
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i

i

i
P

x
ACxfxf

xf
xxf

xfx

Hence, 

 . (22) 
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−
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−
+

1
)(

1

1
1
1 M

L

iiii

x
BACD

















−= −
++

1
)()( 1

11 M

P

iiii

x
ACxfxf

We denote polynomial  then ,
1

:)( 1
11

















= −
++ M

P

iii

x
ACxq
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)( 11
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1 xfxqxf
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By definition (5), we know that 

















−=

−

+
−
++

1
)()(

1

1
1
12 M

L

iiiii

x
DBACxf . 

3   Examples 

In this section, two examples are provided to demonstrate the algorithm presented in this paper. 
Example 1. 

∑
=

−−++==
n

i

i
i xxxxaxf

0

32 458.2113.5305.2289.0:)( 87654 4.868.1632.8854.18 xxxxx +++− . 

By the algorithm in Proposition 2.1, we obtain the scaled coefficients of the standard sequence for the 

polynomial as following. )(xf

      

 

0 1 2 3 4 5 6 7
0

0
0

1
0

2
0

3
1
0

.289 2.305 5.11 2.458 18.854 8.32 16.68 8.4 1
2.305 10.226 7.373 75.418 41.6 100.08 58.8 8
0.0135 0.675 4.802 8.363 3.967 16.256 3.548

2.221 14.408 24.123 12.392 47.503 10.327
2.221 14

a b a a a a a a
f
f
f
f
f

− − −
− − −

− − −
− − −
− −

1
1
1
2
1
3
2

0
2

1
2

2

.408 24.123 12.392 47.503 10.327
14.408 48.247 37.176 190.013 51.634
0.43 2.649 21.315 30.001

12.209 61.043 76.304
12.209 61.043 76.304
61.043 152.607

0

f
f
f
f
f
f

−
− −
−

8a

 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

Fig.1  A nonnegative polynomial f(x) in [0,1] 

It is easy to verify that V . By Theorem 2.2 we know that  is 
nonnegative in [0,1] (see Fig.1).  

=− )()( 0
1

0
0 fVf 1)()( 1

1
1

0 =− fVfV )(xf

Example 2. 

∑
=

−+−==
n

i

i
i xxxaxf

0

2522.5566.2297.0:)( .93.0574.5879.553.5397.0 876543 xxxxxx ++++−  

The following is the scaled coefficients of the standard sequence for the polynomial f(x). 

0 1 2 3 4 5 6 7
0

0
0

1
0

2
0

3
0

4

.279 2.566 5.522 0.397 5.53 5.879 5.574 0.93
2.566 11.044 1.191 22.126 29.393 33.444 6.51 8
0.334 2.406 4.124 0.570 3.193 2.690 1.488
2.139 21.073 46.383 8.073 12.547 12.689

1.035 6.

a a a a a a a a
f
f
f
f
f

− −
− − −
− − − −
− − −

−
0

5
0

6
0

7
1
0
1

1

568 21.808 2.222 8.255
0.993 12.08 36.969 22.993
0.366 1.784 1.233

0.102 0.085
0.102 0.085
0.085

f
f
f
f
f

− −
− −

− −
−
−

−

8

1
a

−

 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

 

Fig.2  f(x) polynomial changes sign in [0,1]  
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It is easy to verify that . Hence by Theorem 1.2, we know that  
changes sign in [0,1] (see Fig.2).  

≠=− 2)()( 0
1

0
0 fVfV 0)()( 1

1
1

0 =− fVfV )(10 xB

4   Conclusions 

Convexity is an important property of polynomials, and it is often required in CAGD. It is well known that the 
convexity of a polynomial is equivalent to the positivity of its second derivative. By using Sturm theorem, one can 
verify whether a polynomial is strictly positive over an interval, i.e., whether a polynomial has roots over interval. 
However, Sturm theorem fails to verify whether a polynomial is positive over an interval, i.e., whether it has roots 
with even multiplicities. 

By extending the concept of standard sequence, in this paper, a necessary and sufficient condition is presented 
to check whether a polynomial has roots with even multiplicities. A practical algorithm to express the condition in 
terms of the coefficients of the polynomial is also given. 
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多项式的正性和凸性 

郑津津 1,  陈效群 2,  张建军 1 

1(Bournemouth University 国家计算机动画中心,英国); 
2(中国科学技术大学 数学系,安徽 合肥  230026) 

摘要: 在计算机辅助几何设计(CAGD)中,曲面曲线的凸性是一种重要的特性.旨在解决多项式的正性和凸性问题.
凸性可以通过正性来解决.通过推广经典的 Sturm 定理,得到一种多项式正性的算法.由此提出了任意阶多项式为正
的一个充要条件,也提出了一个实用的算法,从而可以只用此多项式的系数来表示得到的充要条件. 
关键词: 标准序列;最大公除数;正性;凸性;Bernstein-多项式 
中图法分类号: TP391      文献标识码: A 
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