1000-9825/2001/12(10)1447-17 ©2001 Journal of Software 8% 4 % .38 Vol. 12, No. 10

A Well-Evaluated Cohesion Metrics for Software Quality
LEE Ming-chi', SHIH Kuo-chen(Timothy)'*, HUANG Teh-sheng'*, DENG Yu-kuang'-*

"(Department of Buisness Administration, Ping Tung Institute of Commerce. Ping Tung):
*(Department of Computer Science and Information Engineering, Tamkang University, Ping Tung)
E-mail; g8190070@ tkgis. tku. edu. tw

Received November 6, 2000; accepled March 5, 2001

Abstract. Without software metrics. software would be error prone. expensive and with low quality.
Cohesion is one of the most important factors for software quality as well as maintainability, reliability and
reusability. The module of poor quality should be a serious obstacle to system guality. In order to design and
maintain good quality software, software managers and engineers inevitably need to introduce cohesion metrics to
measure and produce desirable software. In this paper, based on the analysis of live variables and the visualized
live span, a function-oriented cohesion metrics is proposed. A series of experiments are shown to support the
cohesion metrics, and a set of properties to evaluate the proposed cohesion metrics. Therefore, a well-defined ,
well-experimented and well-evaluated cohesion metrics is proposed to indicate software cohesion strength and
thus improve software quality. Furthermore, this cohesion metrics can be easily incorporated inte software
CASE tool to help software engineers to ensure software guality.

Key words: software metrics; cohesion; software quality; live variables

Module tohesion is defined as a critical quality attribute, which secks for measuring the singleness of purpose
of a module. Cohesiveness is a measure of an individual module’s internal strength, which is the strength of the
interrelationship of its internal element™. Fifty percent of the highly cohesive procedures are fault free, whereas
only eighteen percent of procedures with low cchesion are fault free!), Software production is often cut of control
due 1o the lack of measurement™. Cohesiveness is one of the possible measurements for program modifiability™..
This implies that sofiware quality can be improving by maximizing the degree of module cchesion. However,
Stevens, Myers and Contantine firstly define the notion of cohesion {(SMC Cohesion} on ordinal order of seven
levels thar describes the degree of madules, The factors are functional, sequential. communicational, procedural ,
temporal , logical and coincidental™®), The cohesion strength of a specific procedure is increasing from coincidental
1o [unctional. A highly cohesive software madule has one hasic funcrion and is indivisible!”). And. the coincidental
is the least desirable but the functional is the most desirable cchesion level.

Live variahies describe the extent of variables to be referred within a module. while variable span captures the

* LEE Ming-chl was born in 1960. He received his Ph. ID. degree in the computer science of Tamkang University in 1994, He
Is now an associate professor in the Ping Tung Institute of Commerce. His major researches include object oriented database and
software testing. SHIH Kuo-chen (Timothy) received his Ph. D. degree in the computer engineering of Santa Clara University in
1993. His research interests include multimedia computing, scftware engineering, and formal specification and verification.
HUANG Teh-sheng received his MA in the Tamkang University in 1986. He is now a doctoral candidate at Tamkang University.
His research focuses on software engineering, distributed object computing and distributed multimedia system. DENG Yu-kuang
received his M. S. degree in the computer science of Tamkang University in 1999. He is now a doctoral candidate at Tamkang

University. His researches include multimedia presentation and software engineering.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

1448 Journal of Software HAFI 2001,12(10)

range of variable to be used in a module™’

. Mbodule cohesion aims to measure how tight between output processing
elements!* 1%, In this paper. the proposed [unction-oriented cohesion metrics is hased on an analysis madel of live
variable semantics. We examinc the function-oricnted cohesion metrics (FOCM) for each output function, the
most tightest function-oriented cohesion metrics (MTFOCM >, the lcast tightest function-oriented cohesion metrics
(LTFOCM . and the average tight function-coriented cohesion metrics (ATFOCM » of a specific procedure,

In general, we always strive for a high cohesion. The mid-range of the cohesion spectrum is often
aceeptable”™, And, a module mway exhibit more than one type of cohesion. ITowever, we will show that the
proposed metrics not only closely match SMC Cohesion and Fenton’s cohesion strength specrrum-, but also meet
nanlinear cohesion scale of cohesion that was stressed by Pressman and Sommervillel#%]. For past twenty years,
resezrchers constantly attempt to develop meaningful scftware measures, and practitioners have strong willing to
introduce the measures as tools to control software quality. But, sofrware measurement must be well-grounded in

U1 The remainder of the paper is organized as

theory and he obtained through well-designed experimental works
follows. We address basic works about live variables semantic and formal definitions in Section 1. We propose
visualized analysis model and cohesion metrics in Section 2. Section 3 addresses an experimental evaluation and
theoretical evaluation to validate the cohesion metrics, Section 4 presents related works and comparisons, We give

the conclusions in Section 5.
1 Basic Definitions

A module is a contiguous sequence of program statements that are bounded by boundary elements, and has an
aggregate identifier™. A module is usually defined as a segment of vodes that is independenily cornpilablet®.
However, many researchers define a module to be a compilation unit of code, a view of program, or a procedure.
By functionality, the processing elements in a procedure could be categorized into the following four categories;:

+ Input variable (IV): a set of the variables that are the input arguments of a procedure.
« Internal variable (INVJ; a set of local variables that are declared in a procedure.
« Global variable (GV): a set of global variables of a procedure.

Qutput variable (QJV 3}, a set of variahles that are the cutput functions of a procedure.

In general, variables in an individual modizle may be used in assignment statement, initial statement. decision
predicate and output function, iteration constructor and Boolean semantics which will construct the main body of
the whole procedure. A module will contain specific funcrion semantics. In practice, it will be the key issue to
develop a suitable model to construct the overall reference scenarios of the function in the procedure scope. Live
variables of a statement in module are the processing elements that arc referenced in the statement. For sake of
explaining the concept of live variables, a procedure example is given as follows.

As SumAndProd listed in Fig. 1, sem in line 4 is a live variable. Both I and N are live variables in line 6. On
the other hand. sum is only referred as two statements in the procedure. Should software engineers concern sum in
other statements other than lines 4 and 77 The answer is “yes™. However, software engincers constantly have to
keep in mind where sum may be referred between statements £ and 7. Software engineers always realize that in
each iteration sum has a different status in the for_loop, sum will be incremented, though the statements do not
refer to sum in lines 5 and 6. Finally,. the summation operation will exit. Situilarly, prod has the same scenario like
sum. And, Comprehending software artifacts are important software engineering activities. A significant amount.
of time of a software engineer is spent in locking at the source code to discover information during testing, review
and code inspection’™!. We also know that programmers must be aware of the status of a number of data items
during the programming process/®!. Thus, the more data items a programmer must keep track of when construet-

ing a procedure, the more difficult it is to construct. Based on the above issues, live variables of a statement are

© HEERERKLEIF hps/ www. jos. org. cn

¥ F AEBENRR AN UBEA RS L F 1449

not limited to the number of variable reference in that statement. In the past years, there are several possible
scopes of live variables to be defined inevitably-*'%). The first is the live variable computes from the beginaing of a
procedure to the end of the procedure. According to this definition, the computation is simple, but this violates the
live variable abstract. The second is at a particular statement , only if variable is referenced by a certain number of
statements before or afrer that statements. Depending on the second definition, we may calculate lifespan. But
there is no agreement on what “certain number of statemenis” should be and no suceessful use has heen
reported™ . The third one is from its first reference to its last reference within a procedure., However, the third
definition not only meets the principles of live variable abstraction, but also can he counted algorithmically as well.
We believe that the third is a suitable domain for computing module cohesion. Therefore, we will adopt the third
as the definition of live varizbles in this paper. We use mathematics to define the live variables and use live span to
visualize a live variable scope. Therefore, we denoted the lifc span of a variable to be the occurrence domain that
begins at the first referenced and extends through the last occurrence,

1 Procedure SumAndProd (N ;integer ; Var sum ; prod :Integer)
2 Var I:Integer

3 Begin

4 sumi=0;

5 prod:=1;

8 For I;=1 to N do begin

7 sum —sum—+1;

8 prod:= prod % I';

% end

10 end

Fig.1 A procedure example

Pefinition 1. The lifespan of a variable in s procedure is a set, denoted by L8(var_nam>. The elements of the
set are the names of the variables which are referenced from the first (i-th line) to the last (j-th line), LS{var—
nam) = {var_nam;var nami_ ... var-nam,;}. And, the size of lifespan. |LS(var_nam)|=j—i+1.

As an example in Fig. 1. we investigate the live span of variable sum., The set LS (sum)= {sum, » sums » seeme »
sums by with a size of 4. The .S set also represents a mapping from the references of sum to different location (. e.
lines 4,5,6 and 7).

Definition 2. The live variables (1.V} of a specific procedure (sp) is the set union of the lifespan of each
variable. which belongs to IV, INV, GV or OV, We denote LV (sp) = LS(var . nam;) where var_ nam; €1V
INVUGVUOV and 1€ N.

In Fig. 1. we could construct L.V (SumAndProd). First, we know the processing elements are IV— (N}, OV
={sum.prod}, GV=1{J, and INV—={I} respectively. Next, LSGw)={N,} where iv€ IV, LS(ow) = {sum, ssumis
Sumy s sum; s prods . prods. pord; . prods} where on €OV, LS(gv) =2 where gv € GV, LSUGnv)={!;.1,.1:} where
trv CINV. Finally, LV (SumAndProcd =15 Gv) ULS{v) U 1.8(go) ULSGnr). For simplicity, we can describe
the live variables of a procedure as Fig. 2.

The live span and live variables of Fig. 1 are illusirated in Fig. 2. For instance, sum is firstly referenced in line
4, the last reference is in line 7. According to Definitien 1, the software engineer have to keep the reference of sum
from lincs 4 and 7, although sum does not appear in statements 5 and 6. Therelore, line 4 1o line 7 are che live
span of variable sum and we use a symbolic “[” to describe the live span of a variable. Together, a live span could

clearly be viewed as a visualized scope of live variables in a specific procedure.

http:// www. jos. org. cn

1450 Journal of Software R4 FH/ 2001,1210)

Lire LV (SumAndProd) Count Live Span
4 sumy 1 sumy
5 sy prod, 2 sumy prods
6 stmtgs prodesJ5 3 Ng 4 sums prods Ty Ng
7 stz prods Iy 3 sum; prod; I,
8 prody. Iy 2 rody Iy
1z

Fig. 2 Live variables and live span of SumAnd Prod

2 Cohesion Metrics

According to the previous section, we know that not all variables involve the computing of output functions in
a specific procedure. Logically . a module is the function that processes input, internal and global variables to pro-
duce a result. The output functions in OV (sp) are on behalf of the result of the module. In fact, not all elements
of live span of a variable contribute to the result of the autput function of the procedure. For instance. the LS
Cprod) consists of prads, prods. prod:, and prody. in which no element influences the result of output sum. But
both prods and preds may involve the value of the output function prod through the assignment statement. As of
the results prods and prody are the [unction-oriented live variables of output function prod. Similarly, variables [,
Iy« Ny are the function-oriented live variables of prod. Both I and N; may change the value of the output function
and compute the multiplication via Iy indircctly. Thercfores function-oriented live variables of prod is a set,
denoted {prod;ds, Ny prods I, }. Therefore, the function oriented live variables (FOLV) and the function orient-

ed life span (FOLS) of the procedure SumAndProd are shown in Fig. 3.

i.ine FOLV(SumAndProd) | Count FOLS
4 ey 1 e,
5 prods 1 prods
6 Lao Ny z Io N
7 sumz Iz 2 Sunty Iy
8 prodyIy 2 prody | Us
8

Fig. 3 The FOLV and FOLS of SumAndProd

However, it is not formal enough that we express function-oriented live variables and live span just rely on the
above description. Thercfore, firstly we will define direct varizble and indirect variable of an output function before
giving the definitions of function-oriented live variables.

Definition 3. Direct variable of an output function is an element of LV (sp), which may perform the result of
the output function in the same statement.

For instance. variable I, contributes to the value of the sum; direcity. Thus, I, is the direct variable of the
output function sum,. According ta Definition 3. output variable surely is the direct variable by itself.

Definition 4. Indirect variable of an output function is an element of .V (sp), which may decide the executivu
uf the output function or the result of the output function via direct variables.

For instance . variables Is and N of iteration statement in line § contribute the value of the sum; indirectly. So
I and Ny is the indirect variable of the output function sum;.

Definition 5. The function-oriented live variables of an output function in the specific procedure is a set,
denotes FOLV (ov:) = {lv€ LV (sp) |fv is a direct or indirect variable of ov:; ov, EOV(sp)).

Definition 6. The function-criented live span of zn output function in the specific procedure is a set, denotes

FOLS(ov;) = {lv € LS(sp) |{v is a direet or indirect variable of ot ; ov, €OV {(sp)).

© PEEREBAAEEISUR hip:/ www. jos. org. cn

RS F RERTHRRAMNEF R E SRS 5 E 1451

According to Definitions 5 and 6. the function-oriented live variables and function-oriented live span of sum

and prod are depicted in Fig. 4,

Variables FOLV Csum) FOLV (sum) M FOLV(prod) FOLV { prod)

sum Sumty (ST

I Ig,dy Is IsvIs

N N N Ny

prod prods, prody
) 5 2 5

Fig. 4 The FOLV of sum. prod and their intérsection

In Fig. 4, the FOLV of the output functinm sum is the set {sum,, 75, Ngrcumsr I} The size of the FOLV
(um) is 5. On the other hand. the FOLV of the output function prod is the set of {prod: 15, Ng, prod: I3}, the
size of the FOLV (sum) is 5. We know each element in FOLV (SumAnd Prod) will appear either in FOLV (sum Y or
in FOLV (prod), which is defined by FOLY (Gum) NFOLY (prod) as shown in Fig. 3. More importantly, the
function-oriented live span can help software engineer to friendly visualize the scope of function oriented live
variables in the specific procedure Swmdnd Prod.

In general, the size of the FOLV (0z;) is the number of elements which belonging to LV {sp), and influence
the value of ovi direetly or indirectly. Then. the size of FOLV (o,) implies the number of live variables in the
specific procedure, which shall contribute to the result of the output function ov. More precisely speaking, the
proportion of [FOLV (ev:) | in [LV {sp) | can be viewed as the cohesion strength which just restricts on output
funetion ov;. Therefore, the function-oriented cohesion measure restricts on ov: is defined as follows ;

FOCM(gv.) = FOLV(ov) |/|1.V(sp)| for each np, SOV sp).

From the perspective of the eohesion, module cohesion aims to measure how tight it is between output procession
clements, And, the relation levels of output function pairs determine a cohesion level of a modulel®3. Therefore,
the common shared function-oriented live variables of sum and prod are the most eritical elements, We define the
most tight function-oriented cohesion measure of the specific procedure (sp) as follows

MTFOCM (Gsp) = | NFOLV (ov) |/ LYV (g for each ou; EOV (p).
In a sperific procedure, some elements of live variables may not really involve in influeneing the result of output
functions. This implies that not all of live variables have function-griented relation with each oo. Obviously, the
live variable L.V (sg) excluding the function-oriented live variahle FQLV (sp) 1s a subset of live variables, which is
defined as LV (5p)-FOLV (5. The subset is the least function oriented relation with each output function. There-
fore, we define the least tight function-oriented cohesicn measurement as;

LTFOCM{sp) = |LV (sp) — CLJFOLV ()Y [/ |V Gsp) | for each ov, €OV ().

However, it is also an important reference puint for software measures that the average strength of all live vari-
ables involves the results of output functions. We propose the average tight function-oriented cohesion measure-
ment of the specific procedure as follows ;

ATFOCM (sp) = | UFOLV (ov.) |/ |LV(sp) | for each 0w, EQV (sp).
Consequently, we proposed four function-oriented cohesion measures in a specific procedure. The values of the
four proposed cohesion measures are in the range between 0 and 1. Therefore, the numerical system of the

function-oriented cohesion measures is a well normalized cohesion.

EHCKAIFTON httpu/ www. jos, org. cn

1452 Journal of Software #HAFFHE 2001,12(10)

3 Experimental and Theoretical Evaluations

In general, there are three validation approaches to validate a mew metrics, which are experimental
evaluation. theorctical evaluation and empirical evaluation. In this paper, we will adopt experimental evaluation
and theoretical evaluation to validate the cohesion metrics.

3.1 Experimental evaluation

In this section, there are aix typical cohesion procedure implementations to he given to make an experimental
wurks using our proposed cohesion measures. ‘The purpose of measuring the distinctive cohesion examples is 1o
check the results of experiment of the propesed function-oriented cohesion measurements and to estimate whether
they comply with the cohesion strength spectrum and are non-linear scale. Six specific procedure implementations
are coincidental s logical, procedural, communicational, sequential, and functional cchesion examples. We believe
that the experiments will nor affect the completeness of the empirical siudy though the six implementations will not
include the temporal one. A system initialization module can be considered as a typical remporal cchesion.

In general, there are many definitions of the seven levels of cohcsion in Refs. [7.17]. A functional cohesion is
the strongest cohesion in the cohesion strength spectrum. Therefore, the functional cohesion is the most desirable.

Coincidental cchesion is to estimate whether a module performs more than one function, and whether there
are unrelated'?). In the coincidental cohesion example, there is no significant relationship between the output ele-
menis. Similarly. it is hard to describe module purpose. However, a typical coincidental eohesion example and its

abstract function diagram are given in Fig. 5.

01 Procedure SumAndProd (Niinteger; var sum, prod: integer; arrl,arr2: int array);
02 wvar Jsintegers

03 begin module { N arl N a2
04 sum: = \
05 prod==u0,

06 for J:=1 to Ndo
n7 sum: = sum-+arr1{]

funection
08 forJ:=1 1 Ndo

09 prods = prod % are?{ £ Abstract function diagrem Information flow diggram
10 end

Fig. 5 A typical coincidental cohesion implementation

By definitions 1 and 2, we know LV (SumAndProd | = {sumq.sunts, prods s sute prodss Is« Ng o+ surmy , prody .
arrlysfosprods s Iy s Nos prods varr2s, Iy}, and |LV (SumAnd Prod) | =17. We express LY and LS of the coincidental
tohesion example in Fig. 8. On the other hand, FOLV Gum)= {sum,, Iy, Ng,sumz,arrl, I}y, FOLV (prod) =
tprodss oo Ny prodssarrZs 05}, They are shuwn in Fig. 7. The FOLY of sum, prod and their interscetion are il-
lustrated in Fig. 8.

Line LY (SumAndProd) Count L3
4 Sy i - sum: a -
5 surttg prod; 2 sumg prods
6 sunte proces Iys N 1 sumg prody Iy Ns
H sumyg. grodearrl. I; 4 samiy prods Iy arrd;
8 prod; In, Ng 3 prods | Iy Ny
9 prodysarrZe. Ty 3 prody Is arrdg
L 17

Fig. 6§ The L.V, 1.5 ol a caincidental cohesion example

© HIEERES AT hip:/ www. jos. org. cn

FALE F AR REHANEFFT ZARALS SR 1453

Line FLOV (8umAndProd) | Count FOLS

4 sumty 1 SHIR,

5 prods 1 I; prods

6 Is: Ns 2 wim; Ts N

7 sumyzarrlydy 3 I arrl:

8 I Ny 2 Iy Ny

9 prody,arr2s, Iy 3 prody Iy arr?,

12
Fig.7 The FOLV and FOLS of a coincidental cohesion example
Variables FOLYV Csum) FOLV {sum) NFOLV{ prod) FOLV{ prod)
sum Seemty SUMT
I fg. 0y Igody
N N : Ne
arrl arrly
arr? arr?y
prod prods, prody
6 0 6

Fig.8 The FOLV of sum, prod and their intersection

According to the function-oriented cohesion measures as expressed in Section 2, we know FOCM (sum)
=0.353, FOCM (prod) = 0. 353, MTFOCM (SumAndFProd) = 0. LTFOCM (SumAndProd) = 0. 29, and

AVFOCM<{(SumAndFrod)==0. 71. In this example, there are no common processing elements used 1o produce both

output functions. And. the value of MTFOCM of the coincidental cohesion is equal to zero. The Coincidental

cohesion type is the lowest cohesion level.

Logical cohesion is to check whether the module performs more than one function, and whether there are

related logically

17,

In a logical cohesion example, the module performs some related functions. Onc or more of

them are selected by calling module. However, a typical logical cohesion example and its abstract function diagram

are shown as follow.

01
02
03
04
05
06
o7
08
09
10
11
12

Procedure SumAndProd (MN:integer; var sum, prod: integer; arrl,arr2s int array):
var [, J flagtinteger:
begin flag>1?

sum: =03 module o =
I Narl I N a2

0|

funiction (sum) [prod

prod:=1;

if (flag>1);
for 7 1=1 to Nde begin
sum: = sum—arr][/]

else

for Jt=1] to N do begin —-% cantrol path - —
en. dprod: =prodk arrz[I3 Abstract function disgram Information flow diagram

Fig. 9 A typical logical cohesion implementation

By definitions 1 and 2, LV (SumAndProd) = {sum, ,sums, prods ssume prods, flags . sums, prod; oI Ny vsumsg
prodys arrle Iy, Ny, prodys Ios Noy prodig Doy Ny prodyyarrZy I by and | LV (SumAnd Prod) | = 24, which are
diagramed in Fig. 10. Tn other way, we may have FOLV (sum) = {sumy, flages Ir+ N7y sums, arrlz, Iy} end
|[FOLV (sum} | =7, FOLV (prod}=1prods, flags Jos Ngyprodssarrlic, Iy} and |FOLV (prod) | =7, and they are

shown in Fig. 11. The FOLYV of sum, prod and their intersection are illustrated in Fig. 12.

EBKAIITIN httpi/ www. jos. org. en

1454 Journal of Software # A F I/ 2001,12Q00)
Line PV (Swum And Prod) Count 1.5
4 SUy 1 SEery
5 sunts . prody 2 sum; prods
& sumg . prod., flags 3 sumy . prods flags
7 sumaq, prodys I Ny 4 sumg iprud-, I, Ny
8 sumg s prodyarrlg g Mg 5 sumy prod; Iy arrly Ny
9 prodsIs, Ny 3 prod, I, N
10 prod-asdin N 3 prodyy |y Ny
11 prodsarr2in Iy 3 _prody u o arrin
24
Fig. 10 The LV and LS of a logical cohesion example
Line FOLV (SumAnd Prod) | Count FOLS
9 Sty 1 A
[prod; 1
prod;
7 Slage 1 Flags
8 I Ny 2 rl; N
9 swmg arrlyg, Ig 3 SHers Iy arrly
10 G
11 InaNg 2 o, ‘;'“ N“’Z
12 pradysarriy 3 L arrin
13
Fig. 11 The FOLV and FOLS of a logical cohesion example
Variables FOLV Gum) FOLV Gum) (Y FOLV (prod) FOLV (prod)
st SER Y » SUFR ’
I Iy YT
N N3 Nig
Hag Siags Flage Hflage
arrl arrly
arr2 urrly
prod prody, prod
7 1 7

Fig. 12 The FOLV of sum. prod and their intersection

According to the definitions of function-oriented cohesion measures, the values of function-oriented cohesion
measures of logical cohesion example are FOCM Gieern Y =0, 29, FOCM (prod) = 0. 29, MTFOCM (Sum And Prod)=
0, 041, LTFOCM (SumAnd Prod) = 0. 46, and ATFOCM (Sum AndProd}=0. 64, In this example, there are some
common elements used to decide which function to be requested logically. The value of MTFOCM of the logical
cohesion is equal to 0. 041. From the viewpoint of cohesion strength, this logical cohesior is just a little stronger
than coincidental cohesion.

Procedural cohesion is to evaluate whether the module performs more than one function, and whether the
madule is related to a general procedural affected by the software”). This means that if each function in the module
needs to execute following in a specific order, it has the strong procedure cohesion. Explicitly . both functions are

elements of some iteration or decision operations!'®,

However, a typical procedutal cohesion example and its
abstract function diagram are given as follows .
By delinitions 1 and 2, we knuow LV (SumAnd Prod) — {sumiys surmg s prod; s sumgs prodes Igs Ngs sumqs arrls .

prody. I, preds,arr?y Iyt and |LV (SumAndProd) | = 14, we express LV and LS of the procedural cohesion

© *hIHRRES

http:// www. jos. org. cn

¥R4 X . ZEREHBEAMNES S ABASELR

1455

01
02
Q3
04
05
G6
07
0§
09

Procedure SumAndProd (Niinteger; var sum, prods integer; arrl,arr2: intarray);
var [iinteger;

begin module arrl I N arr?
sum:={_; LA,
prodt=1; In same repition or

0

function

for J1=1 to Ndo

sumt =sum—+arr1[I]

prod: = prod * arc2[1]
end

condition construct,
without same inputs

——
....... 5 t sequence path

Abstract function diagram Information flow diagram

Fig. 13 A typical procedural cohesion implementation

example in Fig. 14. And, we may have FOLV (sum) = {sumy 15, N¢,sum; sarrl,; I, } with size of 6, FOLV (prod}=
{prods.Jes Ny, produsarr2e 1o} with size of 6. and their visnalized FOLS is displayed in Fig. 15. The FOLV of

sums prod and their intersection are presented in Fig. 16.

Line [V (SumAnd Prod) Count LS

4 stpiy 1 Sumi,

g sumsy ., prods 2z sums | prods

[J suntg s prods . Je. N 4 Sumy Prﬂds Is N

7 sumyy prodyarrley Iy 4 suny prod,; I; arrl;

L] Pfﬁda»arng;Ia 3 rody Ia arrds

14
Fig. 14 The L.V and LS of a procedure cohesion example
Line FOLV (SwmAndProd} | Count FOLS
1 Sumy 1
Sum,
a rocl 1
prods prods [T, N,
§ I N 2
Ty Iy arrly
7 sty arelo o J; 3
prods Iy arrle
8 prodgsarrly . Iy 3
10
Fig. 15 The FOLYV and FOLS of a procedure cohesion example

By the definition of function-oriented cohesion measures, we can derive the values of function-oriented cohe-

sion measures of coincidental cohesion example, they are FOCM (sum)=¢. 428, FOCM {prod) = 0. 4128, MTFOCM
(SumAndProd) = 0. 143, LTFOUM (SumAndProd) = 0. 288, and ATFOCM (SumAndProd) = 0. 712. In this

example, a number of elements are involved in different activities. But the activities are sequential. The value of

MTFOCM of the procedural cohesion is equal to 0. 142. From the cohesion strength perspective, procedural cohe-

sion is a little stronger than logical cohesion.

Varjables FOLV (s2m) FOLV (Gsum) N FOLV (prod) FOLV (prod)

sum STy Surty

I Toadg s Igo03

N N N Ns

arrl arrl;

arr? arrg

prod prods, prodg
6 Z §

Fig.16 The FOLV of sum, prod and their intersection

Communicational cohesion is to indicate whether the module performs more than one function, and whether

the module is on the same datal?’.

This means that whether everv function in the module operates on the same

data. However. a typical communicational cohesion example and its abstract function diagram are given as follows;

© RS

http:// www. jos. org. cn

Journal of Saftware

€1 Procedure SumAndProd ¢ Ntinteger; var sum, prids

€2 var Itinteger;
63 begin

int-array);
I N ar
b e

integer; arrl

module

HFAEH 2001,12¢10)

G4 sumt =0;

o5 proci=1;

06 for I:=1 o Ndo begin
o7 sum:=sum+arrly I]
(8 prod: =prod % arr1[[
ok} end

10 end

(| n same repition ur

SUTL) -3 prod' condition construct,
function withour same irpots

I)ar.e \E’ared/

= sequence path

Abstract fumerion diagram

Information ilow diagram

Fig. 17 A typical communicational cohesion implementaiion

According to definitions 1 and 2, we know LV (Sumdnd Prod) = {swrn sy s prods s semss prodesds s Ne o sumq s

which zre depicted in Fig. 18, Again, FOLV

Csum) == {sum, s Igs Ngsstmgsarrls I3} with size ol 6, FOLY (prod) —= { prods.Je» Nes prody sarrly, s} with size of 6,

prodqarr 1, Ly prodys arrlg Ist and

and their visualized FOLS is sketched in Fig, 19, The FQLV of sum, prod and their intersection are ilustrated in

Fig. 20.

Line LV (SumAnd Prod) Count LS
4 RREFH 1 |-31¢rr14
b sumis s prodr, Z sums | prodg
5 suma . prodsJs Ny 4 SumiG prods J-IG Ne
7 sumy, prod;arrly, I, 4 LSuPl; prod; f; [arr? T
& prodg.arrls, [y 3 preds Iy arrly
€
Fig.18 The LV and LS of & communicational cohesion exampie
Line | FLOV(SumAndProd) | Count | FOLS
1 Sumy 4
Suh,
5 Feief 1
prods prods Tl Ne
€ I Ny 2
Sum I arrly
7 sumq arrley . J; 0 [
prods Ay arria
8 proade vorr 1y Iy 3
4 6§

Fig. 19 The FOLV and FOLS of communicational cohesion example
Variables FOLV (sum) FOLV (sam Y N FOLV proed > FOLV{ prad)
Fum SHTH W SHT
I feo 1y iy Jos1s
N NR j\rﬁ 1‘\75
arrl arrls arrly
prod prods. prod

[2 [

Fig. 20 The FOLV of sam. prod snd their intersection

However, the values cf function-oriented cohesion measures of coincidental cohesion example are FOUM
(sum) = 0. 428, FOCM (prod y=10. 428, MTFOCM (SumAndProd) = (0. 142, LTFOCM (Sumdnd Prod) = 0. 288,
and AVIFOCM (SumAnd Prod)=0.712.

In this example, a number of clements are involved in different activities, bhut the activities are sequential,
The value of MTFOCM of communicational cohesion is equal to 0. 112. That is net significantly strenger cohesion
strength than procedural cohesion.

Scquential cohesion is to estimate whether the module performs more than ane functian, Function dependency
oteurs in an order, which is described in the specification ™, Generally, the cutput data from a function is the input

© HEREEBHAIT

http:// www. jos. org. cn

EFRF ¥ .FABRESERAMNTFEZARAKELT 1457

for the next function in a module. However, a typiczl sequential cohesion example and its abstract function

diagram are given as follows .

01 Procedure SumAndProd ¢ Nrinteger; var surn, proc: integer; arr: ipt_array);
Bt

02 var [tinteger; I N arr
03 begn b
04 sums == C; . .

05 prod: = ; / cduced by su (') (suml
06 for Ii=1 10 Ndo begin sum}__._.

07 sum: =sum--art I]; function!

a8 prod: = prod # sum; \-‘_;/ I

09 end ~_prod|

Abstract function diegram Information flow diagram
Fig, 21 A typical sequential cohesion implementation
By thc definition of live variables and function oriented live variables, we have LY (SumAndProd) = {sumy,
sums s prods sumes prods, Ly, Ny sumy o prodssarrs 1,4 prods.sumy) and | LV {(SumAndProd) | =13, We express LV
and L8 of the sequential cohesion example in Fig. 22. FOLV Gum) = {sumy+Jos Ny ssumyarr; I} with size of 6,
FOLV(prod) = {sumy, prods, s, Ng sum, [7, prodg ssums ! with size of 9, and their visualized FOLS are depicted in
Fig. 23. The FOLV of sum, grod and their interscetion arc illustrated in Fig. 24.

Line | LV(SumAndProd) Count | LS
4 Sumy 1 S
5 s prod’; z S prod,
6 sumg prode s fg Ng 4 SHMg prods Is Ne
7 sumiy \ prod; arrs, I, 4 sum; prod; [17 arr;
8 prods sumg 2 Sumty ruds

13

Fig. 22 The LY and LS of a sequential cohesion example

[Lire FOLV(SumAndProd) | Count [FoLs
4 Sty 1 Simy
3 prods 1
VN Z prods
6 15 Ny 2 A
7 sumz . 2rrd; 3 sint; I:
17 arrs
8 prody,sumy 2 gy prody
6 6

Fig. 23 The FOLV and FOLS of sequential cohesion cxample

Varables FOLY (sum) FOLV (s) (| FOLV (prod) FOLV {prod)
sum SUIRA SUM 7 SUR Y SUMT SUBT, o Sid¥edT y SWTH
y/ Iosdy Iy I, I I
N Ng Ny Ng
arr arry arrs arry
prod prods, prody

6 6 9

Fig. 24 The FOLV of sum, prod and their intersection

cohesion
measures of Sequential cohesion example are FOCM (sum) = 0. 46, FOCM (prod) = 0. §9, MTFOCM
(SumAndProd) — 0. 46, LTFOCM (SumAndProd) = 0. 31, and AVFOCM (SumAndProd} = 0. 60. In this

example, some elements involved in different activities. But the activities are sequential. The value of MTFOCM

According to the definitions of function-oriented cohesion measures, the values of function-oriented

of the sequential cohesion is equal to 0. 46. The values show that sequential cohesion is a little stronger than

communicationzl cohesion.

http:// www. jos. org. cn

1458 Journal of Software *f:ﬁ'—#‘-"ﬁ 2001,12000

Functional cohesion is to check whether the module performs on a single function-”’. The module is the one on
which all of the elements contribute to exactly one function. However, a typical functional cohesion example and

its abstract functicn diagram are given as follows;

01 Procedure Sum (Niinteger; var sums integer; arr: inl—array);l
02 wvar Jtinteger,
93 begin module I N ar

04 sum:==0; \ /
05 for J:1=1]1 to N do begin P

06 sums ==sum—arr[I} { %um
07 end unction _

Abstract fum:rlon diagram Information flow diagram

Fig. 25 A typical functional cohesion implementation

Rely on definitions 1 and 2, it is easy to know that LV(sum)t‘{sumg s SUMIg ,I;oNG s Sty ,arr's.I\;} with size of 7
and FOLV Gum) = {saum Iy Noysume.arre, I} with size of 6. Their visualized LS and FOLS are developed in
Fig. 26 and Fig. 27 respectively. However, there is a single output function in the funcrional cohesion

implementation. In Fig. 28, the FOLV of the single output function sum are depicted.

Line LV {SumAnd Prod) Count LS
4 Sty 1 Sty
5 sums oI5, Nx 3 Stints I, Ns
& stertg sarrg . dg 3 Seemg [Ir, arrs
7 |

Fig. 26 The LV of a funcrional cohesion

Line | FOLV(SumAndProd) | Count FOLS Variables FOLV (sum)
4 Sty 1 summy Sum SHMy SUME
) ‘ I Teue
5 Is N5 2 sumg Iy Ns N Ns
i} sumg varres Ig 3 I; arrg
arr arrg
é 6
Fig. 27 The FOLV of functional cohesion Fig. 28 The FOLY of an output function sum

However, the values of function-oriented cohesion measures of functional cohesion example are FOCM (sum)
= 0. 86, MTFOCM Csum) = 0. 86, LTFOCM (sum) = 0. 143, and ATFOCM (sum) = 0. 857. The value of
MTFOCM of the functional cohesion is . 8. Functional cohesion is a stronger cohesion strength than sequential
cohesion. The Functional cohesion is the highest cohesion level.

3.2 Analysis of experimental results

Cohesion of a module measures the sirength of the relationship between the elements within the module: good
modules should be highly bound”?!, Cohesion can be evaluated on a one-dimensional scale’”. A scale of several
points can identify different types of cohesion and give their associated strength!. According to SMC Cohesion
level and Fenton’s cohesion spectrum, we know that the cohesion strength spectrum can be illustrated as follows:

In the previous section, we know the values of the cohesion of all experiments are in [0,1]. This also implies
that the proposed cohesion measures are well-normalized. In particular, the values of MTFOCUM cn the six typical
cohesion examples from coincidental to functional are increasing between U and 1. In the other words, the cohesion
strength of coincidental is the weakest type. but the functional cohesion strength is the strongest type. According
to the above experiments, theres is not significant difference between the cohesion strengths of procedure cohesion
and communication cohesion. More importantly, MTFOCM does match the SMC Cohesion and Fenton's cohesion

strength spectrum. The quantitative values of the levels of cohesion in the MTFOCM experiments are sketched in

Fig. 30.

©|v

SCBAFIEICE httped/ www. jos. org. cn

FRF ¥ AERENREAMNEFEARASH4 SR 1459

coincidental temporal

communicational fung¢tional

sequential

Bad - Good

Fig. 29 Cohesion strength spectrum

ity of cobesion kevels

)
J

P ! & : /

e &
s o5
&

Fig. 30 The non-linear curve of cohesion levels

However, the curve of the quantitative values of MTFCOM shows that low-end cohesiveness is worse than
middle-range. The value of MTFOCM of logical cohesion is just 0. 041. This implies that both coincidental and
logical cohesion may be undesirable cohesion levels. The value of MTFOCM of procedural or communication cohe-
sion is 0. 142, And. the curve of cohesion strength rises slowly from logical type to procedural or communication
type. This means that procedural and communication are low-end cohesion levels. The curve of cohesion strength
climbs up sharply at the point of procedural or communication. This means that sequential cohesion is a high-end
cohesion type. The cohesion strength soars from sequential to functional. Therefore, the functional cohesion
should be the most desirable cohesion type. Furthermore, the nonlinear scale from coincidental cohesion to
functional cohesion consists with the assertions of Pressman and Somerville in their software engineering articles.

According to the empirical experiments, the proposed cohesion measures have some paradigmatic characteris-
tics: (1) MTFOCM (sp)<<FOCM (ov,) <<ATFOCM (sp) for each ov,» (2) LTFOCM (sp) +ATFOCM (sp) =1. 0.

From the viewpoint of software quality, reusability, and maintainability, coincidental and logical cohesion are
hard to describe the module purpose. Logical cohesion has more than one action to be intertwined logically, which
is not only difficult to understand but also difficult to maintain and reuse. Procedural cohesion performs a series of
sequential actions with weak connection. Communicational cohesion is a similar procedural cohesion when perform-
ing on the same data, and may be a little better than procedural cohesion for software quality. The cohesion
strength of sequential cohesion is much stronger than communicational or procedural cohesion. However,
functional cohesion accomplishes a single specific action, which can more readily be reused in a variety of
situations. This type of cohesion is easier to understand and maintain. In practice, software engineer may not
concern the cohesion categories in a specific procedure. Rather, the cohesion concepts should be realized and

low-end cohesion should be avoided when software is designed.

© HIEERES AT hip:/ www. jos. org. cn

1460 Journal of Software B EFIR 2001,12(10)

3.3 Theoretical evaluation
Validation of a software measurc is “the process of ensuring that the measure is a proper numerical characteri-

zation of the claimed attribute”™),

Again, a software measurement should be based on an essential scientific
baris), In this scetion, we adopt Property Cohesion as a theoretical evaluation framework , which is proposed by
Brians et al.!"!, and the Property Cohesion usually can guide the development of new metrics. Lherefore, it is
necessary thet we take the proposed cohesion measures to validate against Property Cohesion. The Praperty
Cohesion is considered as follows:

* Property Cohesion. 1; Non-negativity and Normalization

This means that the cohesion of & module belongs to a specified interval , and normalization allows meaningful
comparisons hetween the cohesion nf different modules.

* Property Cohesion, 2: Null value

This means that if there is ne intra-module relationship among the elements of a medule, the module cohesion
i null.

+ Property Cohesion. 3. Monotonicity

This mezns that adding intra-module relationships dees not decrease module cohesion.

* Property Cohesion. 4. Cohesion Modules

This means that the cohesion of a module obtained by putting together twe unrelated modules is not greater
than the maximum cohesion of the two original modules.

The Property Cohesion characterizes and formalizes intuitively cchesion measuremens concept. However, it is
essential to validate 2 new proposed module cohesion measurement by verifying the four properties, we will take
the proposed function-oriented cohesion measurements to be evaluated against them. The Praperty Cohesion will
make the proposed cohesion measures more rigorous. Additional, the Property Cohesion provides necessary but
not sufficient conditions for cohesion measures™?

Proposition 1. All of the proposed function oriented cohesion measurements are Non-negativity and Normal-
ization.

Proaf. For a given specific procedure (sp). the set of the oucput variables of the sp is OV. By Jelinitions 2
and 5, FOLV (o0,)ZLV (sp) hold for each ov, 0OV, At first, FOCM (ow) = |FOLV (ov) | /| LV {sp) | €[0.1]
since |FOLV (ov,) [« [1.V (sp) |, Next, since [FOLY (pu,) SFOLV (0w,) S LV {sp) for each nw, © OV. Hence
MTFOCM Gsp)= | UFOLV Cop; 3 [/ LV (sp) | €[04 1], And, since UFQLV (90,)SLV {5p) for each ov: £ OV,
Hence ATFOCM Gpy = | UFOLV (oy) [/| LV (sp) | €10,1]. Finally, LV{sp) U FOLV{on,) =LV (5p) hold for
each v, € OV. Hence LTFOCM (sp> = | LV t55) — LJFOLV (ov) [/| LV (sp) | € [0,1]. Therefore. all of the
proposed function-oricnted wohesion measurements are Non-negativity and MNormalization. Especially, the tightest
function-oriented cohesion of the specific procedure is Non-negarivity and Normalization.

Proposition 2. If there is ne intra module relationship among the elements of a module, the function-oriented
cohesion is null,

Proof. For a given specific procedure (sp), let OV be the set of the output variables of the praocedure and
10V (sg)| =n. Suppose there is no intra-module relationship among the elements of a module. this implies that
there are no processing elements to involve in the computing of each output function. By definitions 2 and 5, the
FOLV of each output variable is empty and the intersection of any two FOLV is empty. By induction, if n=1 then
| FOLV (Y| =0 (.e. FOLVY(or)=07) hold for ow€ OV. If n=24 and (FOLV{ou:) =0 (.e. FOLY (ov) =2}
for each ov, €OV where 1<(i<lk then | _ Fl] JbFOI,V (o) | =0 and I! L1J IB1”“0I.'\/'(m;.) | =90 hold, Now, suppose

n=k+1 and |[FOLV (ov,}|=0 {i.e. FOLV{0w,)= @) for each oy, & OV where 1=li<lt+1, toshow |

i=1.k41

© HIEERES AT hip:/ www. jos. org. cn

P4 FAEBENER IR EFTEURATHSZA 1461

FOLV{(ov;} | =0 and U FOLV(ow,)|=0hold. Since M FOLV(ow,)=¢(ﬂ&F()LV(ov,-))ﬂ(FULV(OUH]))
==l h+1 f—1. k1 =

=@NEF=&, weknow | N FOLV(er,)| —0. On the other hand, | U FOLV(aw.)|=]|¢(UﬁFOLV(nv,))
FE A 22 | fi=] k-] i=1..

J(FOLV (otys 2 | = | (FLHJF()LV (ovi) | + 1 (FOLV {ovey 30 | — | ('=LLJJF(")LV(07J,)) U (FOLV (owpry) 3 | =0,
Therefore, the values of FOCM, MTFOCM and ATFQOCM are zero. This implies that function-oriented cohesion
FOCM, MTFOCM and ATFOCM are null values.

Proposition 3. Adding intra-module relationships does not decrzase module function-oriented cohesion.

Proof. l.et sp with n output variables be a specific procedure and |LV{(s)| be the size of live variable of
sp. Suppose L= |NFOLV (ov,) | Jd,= |FOLVY Cov.d |« M=|LV (spY |, MZ1L and MZ=7..

Case 1: There are % elements from original LV (sp) which contribute to the computing of 6v,. It is trivial that
WML A LY/ MY and (J)/ (MY +HEY/ (M) where L— | FOLV (ov,) | vr Ji— |FOLV (o) |y M—
|[LV(sp)) and MZ=L,

Casc 2; There are 4 elements other than original LY (sp} which contribute to the computing of ov;. To show
that (L)/(MY(L+R)/ (M+k). We know (L+E&)/ (M) — (L) /(M= ((ML+MkE)— (ML4LEY)/ ((M+k)
My=((MEY— (LED/CCMA-EOMY = (M — LR/ ({M+-R)M)Y 220, Thus (LY/ (MY UL+4)/(M44). Similarly,
we have (J}/(MO<(J:4+4)/(M+k). Thus, FOCM, MTFOCM and ATFOCM are monotonicity.

Proposition 4. The cohesion of a2 module obtained by putting together two unrelated modules is not greater
than the maximum cohesion of the two original modules.

Proof. lLet OV, and OOV, be output set of two unrelated specific procedure sp, and sp. respectively, and (V)
NOV.=F. Let sp1iDsp, be the procedure with ourput set €3V, |JOV,, that is obtained by purting together two
unrelated module sp; and sp;. Suppose |LV (sp,)| =M. LV Gp) =M., L= | NFOLV (00),) | =FOLV (sp1) and
Li={NFOLYV (ouz;) | =FOLV (spy). We know MTFOCM (sp,)=1.,/M, and MTFQOCM (sp,) = I.,/M,. Since some
processing elements of FOLV (sp,) and FOLV (sp:) may commonly involved the computing of cutput function in
OV, U OV, So the intersection of FOLV (sp,) and FOLV (sp,) may be not empty. This can imply that
[FOLV (sp1Psp:) | = | NFOLV (oue) | = [FOLV (G) N FOLV (spo) | =0y 055ns<C L <M, and 0sins{L,<IM, for
each ovy € OV U OV, To show that MTFOCM Cspy M sp;) < max (MTFOCM (sp,) MTFOCM (spy). Since
MTFOCM (spyBspa) = [FOLV G Pspo) |/ 1LV GpBspad | = (nd /(M + My —n) < (n) /UM)L Y (M)).
Similarly, o)/ (M) + M, —)<< () /(M) < (L) /(M). Thus MTFOCM Gspy spy) < max (MTFOCM (g,),
MTFOCM (sp;)). On the other hand, since OV, {1 OV, = &, FOCM (v)= |FOLV Cova) [/ LV (sp1Pep) | =
[FOLV Cow) | /(M M, — 2)<< |FOLV (ove) /(M) <% |FOLV (o) [/ 1LV (sp) | for cach o, EOV,, & OV, Like-
wise, FOCM (ovi) = [FOLV (oo) | /| LV Gp Bspe) | = [FOLV Cowe) | /(M + My —) << | FOLV (ot) | /(M)1
[FOLV (ou) /|LV{sp,) | for each ov, € OV,, & OV,., Thus, it is clear that FOCM (ov,) <imax (FOCM (o),
FOCM (ovs)) for each ovy €OV, or & OV,. Therefore, FOCM and MTFOCM hold the Cohesion Modules property.

The proposed function-eriented measures have heen shown to preserve the Property Cohesion. Especially,
The MTFOUM restrictedly hold Properties Cohesion. 1 ~ Cohesion, 4, Therefore, there is no contradiction
between the proposed function-oriented cohesion measurements and the definition of the cohesion measures on a

ratio scale.

4 Related works and Comparisons

In this section, we describe the related works and bring the proposed metrics to compare with them. We
srovide a list of criteria to establish an objective and a meaningful comparison of cohesion measures. A number of
important criteria of comparison are explained below.

* Quantitative definition; indicate if the original definition of the measure is able to quantify software cohesion

© rhmE

PEUFFTE hitpi/ www. jos. org. cn

1462 Journal of Software HHEFI 2001.12¢10)

or not.

+ Well normalized ; check if the measure is well normalized.

+ Language independence: the measure is rot language specific, and is applicakle to other language.

* Experimental evaluation: whether the measure to be checked vsing well designed experimenial examples.

* SMC Cohesian ; indicate (f the experimental result preserves the SMC Cohesion spectrum.

* Nen-linear scale: show whether the curve of the quantity of the experimental result is a non-linear scale.

* Thecretic evaluation: whether there is a solid theoretic evaluation to validate the measures and hold
Property Cohesion.

According to the previous sections, we have proposed the well-normelized funetion-oriented cohesion metrics
with quantitative definition. The experimental evaluation is 10 give typical and well-designed cohesion examples to
examine the metrics. And the experimental result shows that the metrics we proposed daes not only comply with
SMC Cohesion, but is non-linear cohesion scale. More importantly, the theoretical evaluation shows that the
function-oriented cohesion metrics hold the Property Cohesion.

In the past decade. a [ew researchers wark on cohesion measures. Ott and Thuss®s approach based on slices
profile and processing clement flow graph to express lour types of module cohesion' . Therefore, this approach
does not consist with SMC Cobesion. And, this method docs not provide a quantitative definition to perform
module cohesion. In Ref.[11], Biemen and Ot proposed a program slicing based cohesion measures. The metrics
provides a numerical system, and there is a set of well-designed examples 10 be provided and to be experimented.
The mechanism is a quantitative definition, language independence and well normalized. But the approach seems
not to be checked against Froperty Cohesion with a thearetical evaluation. For complex program functionality , the
program slicing method can produce slices that are either oo large to understand or 1o sicple but not signiticant
to comprehend!®!! Lakhotia developed 1 methad 1o investigate cohesion types hased on logical analysis™. The
approach is language independen:. Al-hough the resule of the experimental evaluation of the logical apaiysis meets
the SMC Cohesion levels logically, does not provide a quantitative definition to compute module cohesion strength
and cheoretically check against Property Cohesion. Basili ez af, % proposes a high-level cohesion metrics based or
Data declaratico-Data declaretion (1) interaction graph of Ada. The metrics is a quantitative definition, is well
1101}11111“2&13] + and provides a <heoretical evaluation 1o check against Property Cohesion. but this approach is language

dependent and does not provide an experimental evalvation.
5 Conclusions

Cohesion is an important atribute corresponding 10 the quality of soliware cup-ured by the module under
consideration. Researchers constantly attempt to develop meaningful software measures, and pracritioners have
strong willing to introduce suitable software metrics as tools to control softwarc quality. But. software
measurement must be well-grounded in theory and bhe validated through well-evaluzted works. In this paper, we
proposed function-oriented cohesion mezsures based on the function-crierted live variables and the visualized live
span semantic analysis models. We gave experimental and theoretical evaluations to validate the cohesion metries.
The experimental evaluation i¢ to examine the metrics using a set of well-designed cohesion examples. The theoret-
ical evaluation is to check the cohesion metrics against Property Cahesion carefully. Accarding to the result of rhe
validation system, the proposed metrics does not only meet SMC Cohesion and match a nonlinesr scale of cohesion,
but also preserve the Property Cohesion,

The major contribution of this paper is that we have proposed objective, robust. well-normalized, well-
evaluated, language independent. sasy measure and algorithmically function oriented cohesion metries te improve

software quality. Moreover, it is note worthy that the cohesicn metrics can be easily incorporated into software

© HIEERES AT hip:/ www. jos. org. cn

¥PE F AEABEAREAMNTFEARAE S A 1463

CASE tool to enhance software development and quality. Furthermore, it is one of several possible applications to
introduce the proposed cohesion metrics into the reverse engineering paradigm to extract higher quality software

comporents from legacy systems.

References:

{1] Brians, L., Moeasc, S. , Basili,» V. R. Property-Based software engineering measurement. IEEE Transactions on Software
Engineering, 1996,22(1).
(2] DeMarco, T. Controlling Scftware Projects. New York, Prentice Hall, 1982.
3] Martin, J., McClure, C. Software Maintenance the Problem and Its Solutions. Englewood Cliffs, New Jersey: Prentice-
Hall, Inc.. 1983,
4] http//osiris. sunderland. ac. uk/~e¢sOhed /campbell /chap~7. html.
5] Yourdon, E., Constantine, L. L. Scructured Design. Prentice Hall, 1979.
6] Stevens, W.G. . Myers, Constantine, L. Structured design. IBM Systems Journal, 1874,13(23:115--139.
"7] Fenton, N, E. Software Metrics; A Rigorous Approach. London: Chapman & Hall, 1991,
8] Conte, S.D., Dunsmore, H.E. , Shen, V. Y. Software Engineering Metrics and Models. The Benjamin/Cummings Pub-
lishing Company, Inc. s 1986.
[9] Ott, L.M., Thuss, J.J. The relationship between slices and modules cobesion. In; Proceedings of the 12th International
Conference on Software Engineering (ICSE-12). 1989.
[10] Bieman, J. M. Kang, B. K. Measureing design-level cohesion. JEEE Transactions on Software Engineering, 1998,24(2).
[11] Bieman. J.M., Ott, L. M. Measuring functional cohesion. IEEE Transactions on Software Engincering, 1994.
{12] Pressman, R.S, Software Engineering: A Practitioners Approach. MeGraw-Hill International Editions, 1988,
[13] Sommerville. Software Engineering. 5th ed. Addison-Wesley. 1696,
[14) Baker, A.L., Bieman, J. M. , Fenton, N., ¢ a/. A philosaphy far sofrware measurement. Journal of System and Soft-
ware, 1069,12;277~281.
{15] Canfora, G., Lakhotiz, A. Program comprehension. Journal of Systems and Software, 1099,44.70~80,
[18] Curtis, B. Iluman Factors in Software Development. Silver Spring, MD: Computer Society Press, 1981, 170~ 176,
[17] hup://www. dis, unimelb, edu. au/staff/jacob/leciures/csdl/modularity /tsid013. heml.
[18] Lekhotia, A. Rule-based approach to computing module cohesion. In: Proceedings of the 15th International Conference
Software Engineering (ICSE-15). 1993.
[19] Gupta, B.5. A critique of cohesion measures in the object-criented paradigm|MS Thesis |. Michigam Technological Uni-
versity, 1997.
[20] Fenton, N, E. Software measurement; a necessary scientific basis, JEEE Transactions on Software Engineering, 1994, 20
(3).
[21] Lucia, A.D. , Fasolino. A.R. Understanding function behaviors through program slicing. In: Proceedings of the 4th IEEE
Workshop on Program Comprehension. Berlin, Germany: IEEE Computer Society Press, 1996, 9~~18.
[23] Morasea 1. €. 8., Basili, V. R. Defining and validating measures for shiject-based high-level design. TEEF. Transactions on
Software Engineering, 1859,

SEWIE MR N MBS & R A KRR
BE, KER, FBEIT, AL

"RARLRAFE S EEER R
Ik E WO TRARKN.ER)

BE: AL SN ER TRIRKEREFTLITIAANES. RENASBHASATER T2 - wREHP R,
TERFEF AR RS BRURFORELE S AR ZIAOEE. ATEHF AP RS ARG . £A LS
BARSHIARATRELEN ALARARANELRHEL A AHA ARG R EAEHAETTAMNELETH
BAFHABZARFARRABNES £ # D, A - RAEFEAREERIEE, F ol — MR R AR BREN
FHREFT S BA— SR LT DL SR AT EMEZRE NI MR A TEREBREARANHS
PELHEHASR. SRE AN ETERE S S A CASE sl ¥ B TR RB &4 5K,

%A £4NEREH KT A ;ERTE

MEES %S, TP311 X MIRIREG, A

© IR

SEAFIEII httped/ www. jos. org. cn

