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Abstract This paper is to suggest that traditional 2-valued Boolean algebra is not sufficient for representa-
tion of VLS circuits at logic gate level. alihough it is the case [or combinational circuits. Instead of using the
Register-and-Transfer technique ar RT level to represent sequential circuits, an alternative is sought and
[ound. That is, all unceriain veliages such as oscillations and floatng voltages are identified by the same val
ue, denoted as | (ealled boeeom ), The two certain voltages are, as usval, grownd and power; they are denot-
ed by 0 and 1 respectively. An invertor » a nor-gate and a nand-gaie are defined according to the physics of VI-
81 circuits instead of the Boolean algebra. As a result. a logic is obtained which coincides with Kleene 3-valued
logic provided tha: Kleene’s o= 1 . As it is well known, Kicene 3-valued logic is functionally incompiere. This
means that net every function {or gate) can be constructed from invertors. nor-gates and nand-gates. Howev-
er. by introducing a partial order & into the logie, by using general [ixed point operators instead of the least
fixpoint operator 1o deal with feedbacks in VISI circuits. and by applying CPO (complete partial order) do-
main theory to the derived 3-valued logic system, the result obtained means that this system is functionally
monotonic complete. Also. the canonieal normal farms for this Kleene 3-valoed logic are ohtained. Although
the present results are mainly semantic. it is very interesting in pursning the research further by investigating
the syntactical derivability. Such research would derive more secure cireuits close 10 reality . which is 10 make
the work compatible with VHII.. Verilog HDL and/or EDIF. Incidentally, Mukaidono has ohtained similar
results, although his approach is not as coherent as the one presented in this paper.
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1 Introduction and Overview

Traditionally, 2-valued Boolean functions are used to represent VLSI circuits at gate-level (or logical-
levell. 0O represents the low voltage (GROUNDY and 1 represents the high voltage (POW/R). For instance, an
INVERTOR, & NANT)-gate, and a NOR-gale are delined as follows;

1. INVERTOR

a 0 1
fery 1 0
2. NAND
x 0 0 1 1
¥ o1 0 1
fuannlz,yy 11 1 0
3. NOR
5 O 0F 17 1
¥ o 1 0 1

Suxfxyy 10 0 0
The application of 2-valued Boolean algebra to combinational circuits is very successful. However, this is not
necessary true for sequential circuits. It is simply because that 2-valued model excludes the possibility of repre-
senting [loating voltzges or oscillations within the model. The following example illustrates this point.

Consider a NAND-gate with a [eedback represented by the equation (see Fig. 1)
(1.1)

= uannlxaz)

-1 {r Ay) (the function feawre is called the combinational function of Eq. (1. 13},

S e _}“)CHI

Fig. 1 Fig. ?

where [rannCisy)

Assume that the input on line r is 1; then. regardless of the input on line = (either | or 0). the output val-
ue on line 7 is always the complement of the input value. Since the input z and the output z are connected, their
values should be identical. Howcever, they can be neither € nor 1. i.e. the value on line = cannot be represented
i a 2-valued model.

To cvercome this problem, the Register-and-Transfer technique has been used. However, we suggest that
this solution is unsatisfactory and does not correspond to the physics of VLSI circuits.

Another exsmple in uncertain voltages occurs in a flip flop; see Fig.-2.

Assume that & =.4,=1. The question arises; what are the values on lines z; and 2,7

There are two possibilities for their stable values.

1) z;=J and =.=1, or

(i) ;=1 and £,=90.
Which of these two occurs is completely dependent on the details of the particular circuit {i.e. the implementa-
tion or the delay of the individual gates, so-called racing hazard). Assuming one or other of the two is too arbi-
trary. Allowing bath pessibilities requires the modelling of a complicated nen-determinism phenomenon. As a
compromise » one value 1o designate uncertainty seems to be a bhetter choice.

Thus. we introduce new values into 2 valued switching theory to preserve the advantage ol digital logic in
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circuit design and to solve the problem illustrared earlier ai the same time.

For our present purposc, the design ol VLSI systems. uncertain inputs would eventually lcad ro uncertain
cutputs anyway. In this sense, a single exira value | (besides 0 and 1} is sulficient. Tn other words , examples
of urcertain voliages such as glitches, oscillations, floating voltages and initial nternal) voltages of [lip-flops
arc vonsidered to be the single value | . Of coursc. by introducing more values into switching theory. we can
reap some ather benefits (see Refs. [1~-4] for some relerences). However, :his is outsicde the main interest of
this paper.

We define cur sementics domain as a natural extenion of B={0,1}. .e. B, =81 {1 } with its usual natu-
ral partial order & CGoe. | & 0 and | & 1), That is. »C v means that the certainty of the voltage on vy is
greater than that on .

We ean nxtend the partial order & pointwise to any product of #2,. The definitions of monctonie and contin-
neus Are as uSua::

(a) fis monotonic Hl fF(DE (3 [or each pair # &y

{b) fis continuous iff lim, ... { fCe) )= fim, . {r, )} for every (monotonic) sequence (o, ).

We now give definitions for an INVERTUR (negation}, an AND-gete {conjunction) and an UR gate (dis-
junction), in 1the extended /| as follows:

1. negalion

xr 1 01
fj(.z‘) L1 o0

2. conjunction

ax L 1L L0 1 90 0 1
¥ 4 0o 1 1L £ 6101
falosyy L0 1L 0o 1 © 0 0 1

3. disjunction
L L L 0o 1 9811
¥ 4L 6 1 1 1 ¢ 10 1
Sokrsyy L4 1L
The movitation {or these delinitions is as lollows

(1') H for an INVERTOR (negation] its ppet 8 uncertain, s6 s its ouipual,

(2') 1f for an AND-gate (conjuncrion) one of its inputs is 0. and then whatever value its uther input has,
its output 1s determined by the input 0, i.e. 118 output is 0; if one of 18 two inputs is 1, then i1s output cannot
be determined by this input; we have to know the value of its other input before we know its output with
certainty,

(3") U for an OR-gate (disjunction) one of irs two inputs is 1, then whatever value its other input is, its
output 15 detcrmined by the input 1, Loe. its output 18 1: if one of 1ts two inputs 15 0, and then its output cannot
be determined by this input; we have to know the value of its other input before we know its qutput with
certainty.

Note that the conjunction and disjunction cperations defined above are not strier (zlthough they are mono-
tonic and continuous ) and they together with the above defined negaticn coincide with the 3-valued logic defined
by Kleene-'-.

Now, we introduce a general fixpoint operator (see Rel. (6] for furdher details of general fixpoint
aperators) , instead of the least fixpoint operator (which is commonly used in computation theory-""*),

Consider the example (see Fig. 1} as & way of introducing general fixpoint opcrators. Suppose the external
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inpul .= 1 and the initial internal juput < (e, the iselated voltagey is €. Then. the question is, what 35 the
possible outpit an fine 27
To abiain a reasonable answer, we have the [oliowing analysis
Fity = Fooman (1 T b= - 2= and
Zaera = Foaun i V2o )= —_ Zoep =1L
We undersiand that the scquence of (2.} is divergents written as lmpe {20 = L. In the physics of VLS cir-
vaitsy this divergence indicates that 1he cutpus voltage of the gate is ssciffating. However, if r=2,~0, theu =,
=1 for wll na20; 1. he vequence L2} (s corvergen: « written as lim, .. (e} =1, and we say that when x==0,
i} hath 0 and 1 are convergence poims of By (1 1) ond
Gid | s the fixpoint of Fyq. (1. 13 under the condiiion that either z,=00r z,= 1.
Taus.
() the output in the [irst czse (ueo »=17 should be the uncertain valve, 1, and
(b the ouput In the second case (Le. o=0) should be 1.
However. or the ether hand, when r=1, the least fixpoint of Fr. (1, 1Y is {5 .o, the result of the least fix-
pouit of Fr, (11) under =71 1s not the resalt of the actual output on line = in the circuit of Fig. 1. Therelore,
wo have no choice but o use the gencral fixpoint operators defined as follows instead of the least {ixpoint
Speratne.
Formally . given & (eombinations]) Tunction £.5 —E'_ and the initial values 5,€ B, . where B s R} for

some izl Cor B3y XA KL )R yand B is B9 for some w2l for By KB Mo X H | Gelzal, the sutput

of / can be defined

. either by the equation
E"—‘f(‘i'\s.f‘-_ﬂ_-. s 5Ky oy vf) ¥
where #= {2y .2ee. .. am, by 7 s the Jth external input of F. and 2, s the jth internal input {feedback) of f3
2, or by using the general Axpolm operator fimé:z siees Srp lowrry (Y (ogarg e s arasa 10(E: T . where

(a) corry, (B =84 ) BY "8 s such that

(TR B SO IR SIS | TS UURNT S T i 0 T I ST ST 28
(b)Y fiaw (B -+ 8RB B s such that
: — T . g 4
if(hm, ) if fis convergent at by

[}

i ()= : '
oz S iz (NG otherwise

* P . s iF A .
whure bioy = 0  Tor 120 and ) = (B aebyne.. . o Bl0} with

w. .
f),‘.n“-

g by i {dy 5} 1s convergent
{ otherwise
By the weli-founded property of the partial order & in products of £ » and by the Jeast fixpoint theorem in
CPO feomplete partial order) domain thears 7™, we know that ﬁ“‘i has its value i J s monotonic.
Techrologiealiy ., we forus our sttention on hardware which zan he huilt by one-input and one-ouput IN-
VERTORs. two input and one-output NAND-gates, two-input and one-sutput MOR-gates: theoretically, we
nced to show rhat this coliection of basic circuits (or gates) is funcrionally complete, Unfortunately. this is im-
possible since Wleene 3-valued logic is well-known to be funciionally incomplete. However, in this papers we
show that cur model is functionally monotonic complete. In other words . the Kleene 3-valued fogic is Munction-
ally menptoaie complete. This implies that all gates have the following property: wohenever the certainty of mput

vollages frreases. so does the coertainty of the output voltages.
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We also present some resulls which are of theoretical interests for exawple, canonical normal forms of
Kleene 3-valued logic.

We Lope that the results in this paper provide a more realistic and theoretically sound model for hardware
{device behaviour) than traditienal 2-valued Boolean algebra. The reason is that our 3 valued logic is a sub-logic
of both 9-valued logic used in VHDL (when considering {X.0.1} out of {I7,X,0, 1.2, W, L. 1{.—} provided
that | =X and 4 valued logic used in Verilog HDL (when restricted 10 {0.1.x} from {3,1,x.z) provided
that Lix)[”'l.

For case of understanding, we choose a semi-formal presentation in giving our resulrs.

For the mament, we deliberately omit the treatment ol shared communication in circuits. For example, we
do not consider the case n which twn components share an nutput line. However, we allow two or more compo-
nents to share ore input line.

8o fer. our resnlts are mainly semantic. We are, however, interested in pursuing this research [urther but
from a different point of view, from the viewpoint of symtactical derivability, sincc this would enable us to de-
rive secure circuits for actual circuit design.

Mukaidonot® independently obtained the similar results. He uses the term “regular”™ instead of

. . ] 3 1 . 1 . . ‘ )
“monotonic”. He defines his domain as V= {0, o 1} (i.e. —- is the third value) and his parual order as oc
FA

(i.e. Qeoc and | = %). The part:al order o¢ is naturally extended pointwisely to any product of V.

1
3!
Mukuidono®s regufar [unction Fis tae function satislying that iff f{AYE BE—=1{0,1! then JUA"Y=F{A) [or every
A’ such as A'ac A, He also defines en A-ternary logic function as a monotonie lunction; 1. e. + his monotonicity is
the opposite monotonicity to ours (since woCy iff y& r provided that | _%)' He observed that his regularity
was equivalent te his A-rernary [unctior. (i.e. his monotonicity) at the end of Scetion 3 of Rel. [127] but he nev-
er went on to formally prove this observation. He chrained his regular functional completeness and his canonical
forme in Sections 3 and 4 of Ref. [12], respectively. His completeness is obtaired by a semantical method in
contrast with his syntactical method for obtaining his canonical [orms. However . his approach is not as coherent
(or systematic) as the onc presented in this paper. By the way. Yamemoto '™ and Hata er al. ! extended
Mukaidona’s work further.

Lastly, we ronclude this section by an assumption or a hypothesis, which is presumed throughout this
paper.

Assumption 1. 1. We assume that for any hardware (device or circuity, all of the initial values on its feed-

back lines arc | s.
2 Some Properties of Kleene 3-Valued Logic

In this section, we briefly state some useful properties of Kleene 3-valued logic, which will be used later.
We shall use inlix notations —1 {negation}, A (conjunction), and V (disjunction) instead of prefix nota-

tions f_. f, and fy respectively. For example, we use

Silxy=xV T
instead of
filey= = (fysn (DG, L) diag)) ).
where
(iy = is the usual composirional functional (function};

(i) &3 is the prefix notation for the usual {f.g ¥ [unctional;
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(iii} diag is the usual diagonalizer; and

(iv) @ is the vsual projection function.

Below are some easy-verilied laws and [acts of Kleene 3-valued logic.
Law 2. 1.

1. Negative negation:

1 1axrTa.

2. A Kleene:

(AT AGY y)=x a.
3. V Kleere;

(z ANV (Y )=V 1.

Fact 2. 2.

.o Azs Ao A, =0 iff for some 7 ;=03

2. sy Ao Ao A, =1l for all i =1,

3. nVmV.. . Vr.=0iff forall i x=0;

1. meVr V... Vao,=1iff for some { x.=1;

5. Are A Axa=_1 iff for all i 2,750, and for some j ;= | ;

6. i Vue V.. Vu,= | ifforall i 2.1, and for some j ;= | .

Obvicusly , we have the following.

Theorem 2.3. Any hardware with or without feedbacss is said to be unfictitious; or in other words, for any
hardware (circuit). whether it is a (combinational} function f (i.e. withoul feedbacks) or it is represented by
recursive equations like Eq. €1. 2) in Section 1 (.c. with feedbacks) . if all of its inputs (including all the initial
values of its feedbacks) are | , then its outputs arc | also.

Proof. By structural induction. O

This theorem states that, if the inputs of a device S are undefined, then its outputs are. ln other words, i
the input cannot be deterministicly identified as either 0 or 1, then the output of it cannot be, either. So, in or-
der to increase the reliability of circuirs (especially of sequential networks), a technology or theory must be pro-

vided to reduce the asynchronousness of inputs (or te guarantee their synchronization)' 7%,

3 Preliminary Theorems

[n order to understand better the proof for the main theorem (Theorem 4. 17, and also to understand better
the nature of hardware feedbacks, we provide some preliminary results in this section.

We say that the inputs of & hardware are definite if they are deterministically identified as either 0 or 1.

Theorem 3.1 (combinational theorem). For any combinational hardware (circuit), i.e. for any {combina-
tional) function f, if al! of its inputs are definite, then all of its putputs arc definite, also.

Proaf. DBy structural induction (]

From Section 1, we know that circuits using negation, conjunction and disjunction cannot prevent the un-
certain value | from being propagated in 1it. Hence, a question arises:

“CCan a circuit generate the uncertain value | at its output if all of its inputs are always definite?”

We have already indicated in Section 1 that the answer to the question is positive (see Fig. 1). Circuits do
create the uncerrain value. Even worse, there is a circuit whose cutputs are the uncertain value regardless of its
inputs. This is exemplified by the constant function /| in the proof of Theorem 3. 2 below (see Fig. 3). We re-

fer 1o this type of [unclion as an srdeterminate {unciion {or nunsense function). This indicates how bad a careless
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design may de.
Theorem 3. 2 (indeterminate lemma). There is an indeterminate function.
Pronf.
Let folr, )=V T12)Ay) and
r=fula.z), 3.

2 fiag Lewrry (300 (20 (3.17)
where the linearizer curry is a construction functional and 2, is the initial value of line =, Whatever the initial
value z. and the input x are. the ouput on line = is always | . |

The logical circuit of the irdeterminate device Cor furction) given in the proof of Theorer 3. 2 is shown in

Fig. 3.

xoy DO..QO - BO I

Fig. 3

Since the outpu: on line = specified in Eq. (3. 1) does not rely on either the input .« or the initial value =
we can simply regard the device as a constant {unction /| (), or simply | .

Aithough indeterminate devices are undesirable in hardware implementation , they play an imporiant role in
their theory. Th's is demonstrated in Thcorem 3. 3 below, i.e. for the unary functions, we have sevdos complete-
ness.

Theorem 3.3 Cunary strict completeness). All strict unary funetions Cor devices or cireuits) can be built
from {1, AL V1.

Proaf. We use truth-tables to define all strict urary functions (totally 9)

j“ ‘,]C’ ',)(-] ')“2 !f.H "f.d ’.f‘:') '.f‘ﬁ"){‘?

as shown below

ESN R P ST S PR T PR S
e L e e T
O L 1L I 0 14,0 0% 1¥ 1
1 L " LN v @l U 1

We can implement these tunctions as follows .

L. f1{a) is the same as in the prool of Theorem 3. 2 (see Fig. 3)

Lo Lley=aV S
L Aln=aV ftey

b Sl = (e S Ge))

PRI Rl F1 G WV

6. filx)=sAxr

7. fele)=u
8 Silr)y=—"r
9. film)=xV ur. Ul

Combining the unary constant functions 0 and 1 with the functions listed in the proof of Theorem 3. 3. we

have the unary [unctional completeness in monotonic sense. In the remainder of the paper, we will see the sig-
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nilieant roles playec by he lirst live unary functions {/ «fu. /1.2 F: - especially the first three.
Theorem 3. 4 (definite completeness or hardware completeness ). 1 the inpurs of a aardware device are re-
strictzd to deflinite values. then for any (combinational) function /it can be built from { = . ALV 1,
Pronf. Foroa given assignment 000000, 10 (e area. o wr s which satisfies
FAR TRV IR o N
we choose

Woze Cempey list) il £, =1, and

LoF. - i b0
and construct a formula
B Ao A o A H L (3.2
carresponding to the s argument inputs rs.
For all (3. 2)s. we construct & [ormnls
(3220 V(3. 20,V .0 V33 2. (3.3
We understand that
Flrarpe. oo, Y= 1AMMGs. 80 — %
2000 flrare e =0thes (2.3)=10 (nat the converse); hence. all (3. 233 are 0.
This means that the set of inputs which satisfy
(3.2)=0
is o superset of the inpors which satisfy
Jlryers e i =10,
Therelore. we have 1o drop some of the latter inputs off. The technique {or doing so is similar to the
:ll)ﬂvl‘.
For a given assignment {0, a0 oba? 10 (r eraen L ora s which satisfies
JOr e v v,y — 0,
wo choose
it =i by 0, and
2, #Ho=cil h=1

and comsiruct a formula

WS T, . AT L, (3.4
and then construct @ formuela (3, 5) [rom all these (3. 4)s
(GoAn VI ARV, VG, [3.5)

Now . we know that
S s, =0l (3.5)=1.
Henee . we have
F=3.33V f,0C3 0. M

From the above theorcms . it follows that there are two types of hardware ;. combinational vs sequential. (One
of the types always has delinite output whereas the other doesn’t. even when the inputs are definite. The de-
vices in the latter type prosably have uncertain output value. |+ because of feedbacks.

Since we can understand any seqaential circuit (. e, hardware with feedbacks) by its combinational func-
liomes it 1= betrer (oignore the leedbacks and coneentrate our attention on combinational functons. For this pur-
post, we otly need o extend the basie funetion set from {2 VAWV b to {1 AN W f 0 Fen /3. By this

means » we do not inerease the fonction space available but we increase the exvressive power. From now oa. we
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will assume this and the will not coasider fecdbacks further in this sensc.

4 Monotonic Functional Completeness

We present now the main theorem (Theorem 4. 1} of this paper together with its proel,

Theorem 4. 1] (monstonic functional completeness). Any monotonic funetion can be construeted from the
basic function set { 13 ALV 1.

From the caomment at the end of Section 3, we know that the basie building blocks arcin {7 ALV ).
Fo i fe il

First. let us introduce some notations to facilitate our prescntation. Note that we limit cur artention to
moenctonic functinns only in 1this and the following sections (i.e. Sections 4 und 5. Also. we will give a prool
based on one-output devices, There is no difficulty in exrending the proof ta more general case of multi-output
devices.

Given f{rivroe .. wrwd and b= by vinoe o b € B, les

I Ve =181 Fi63 5 |}, the set of inputs for which f yiclds definite ourputs;

2. VL (Y= 14| (Br=0}. the set of inputs for which f yields the cuiput 0; and

5. V= {h’l_f'(i;)= 115 the set ol inputs fer which £ yiclds 1the outpur 1.

Clearly .

@ VH=vV. (OUVLO

M VAOHNVI( =&, where & means an emp:y sct.

For a sub-domain ¥ of V. V' is said 10 be up-closed f a € V"o 6€V and « © &, then 4€ V', Naturally. by
nenotonicity. we have

() Vu(f) is vp-closed;

1) Vi <{F Y s up elosed; and

(i) V9 s ur-closed.

Given b where b, # | (e b=( Lo v Lol Looosdvhadoalobya Lo o A0 len &7 = b

£y aes . obk ), and we define

Ft€y=1and & satisfics )

Pl 1) = f, ' .
L 1 (f (."J) l; ﬁq"[-‘w ‘;\ t;r,_,fr, /\‘ .. /\. “r,,-l‘.,("o J?

where ﬁ,) is cither T or & (for all j-=1.2.... &) according to whrher bJ) <0 or =1 respectively; and the
lormula ®. e AR e, A A s obtained as explained in (3. 2) {and (3.4));

2.
Fehy=0rad b* satisfies

B AR Al AR v =0

L]

Vel f)) = {z

where T—I'.{_ is cither Tor e (for all j=1,2s...,&) according to whether b =0 or by =1 respectively; and the
lormula #°, i A #' v A ARy is oblained as explained in (3.4) Cand (3.2)).
Then, we have that V,; (/) (8) is up-closed (the proof is bascd on monotonicity of ). Similarly, V()
(6) is up-closed,
Lemma 4. 2. For a given £, we have tha
Loif JG)=1, then
VOISV
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2. if F(A)=0. then
Vi(DISV (DB,

Note that the abave lemma shows that the corresponding formula Hoog AR, A AH s of & mey
collect more Os i V40 ( /s than in V, (/). Also. it shows that the corresponding formula o AE o A
A W'}y"& of & may collect more 1s in Va(/ s than in V.

Froof of Lemma 4.2. We will prove (he [irst half of Lemma 4. 2. The second half can be similarly de
rivee.

Suppose b 7 L in b Goee b=l v Loty Laoos Dby Laevos Loy Lo L3, From fFG) =1,
we hnow that 7 € Vy(f) weans & satislies

Hoog N, Ao AT = \ Y

We need to show thar it is impossible for ¥ satisfy T A T—i;z.r,z R

Let us assume to the contrary, i.e. 3 satisfies — A 1&,-2:,-2 Ao AR x, = 1. Byitem 5in Fact 2. 2,
we know that all H,Jr’:'.;=] except for some (at least one) ﬁjjb’,,=4_. Thai is,

o )
b ,l,f) e ,k>§(b,-1 shisa bl
On the other hend, let &' oy, be a sub-part of ' by taking off elements in iy siys. . . ,is positions, i.e.
[T /P

b','1+|«. RN 1
R =

fpriga iy
k [f’.'2+iv.-. -b’f

PR
b”'k"* P L
and similarly 54 ., ., be a sub-part of » by taking off elements in ,.¢;,... ,i; positions, i.e.

Brae ooy

f"t-u Yo e 1b.-’z-1!

-
’51‘#1.?,..‘..5!7 5. b H
fgti e s P —ts

!rf;*+1 PO/

T J);I T g,,. 8 yb'fl—u
F),1“,,.. .b,z,,, b','l“.. 4N "b"z 19
rhen we abviously have (] .1, ...1}= S .
: bizH'--- 1")5*—733 b,2+|1...-b,‘7|,

r }
blk‘f*l""’bui b‘k”""'bm
Therelore , let

Eiaoa. ,b’,-i_l oy s

! s
D O R S
4= ,
bri Hv---ﬂ’f,fk 1;!3-*|

Bty B
and we have both # S5 and sChe.

Now, by &' =4, we have (5" )= f(4' )= 0 because ol function /s monatonicity. On the other hand, by &
Z4°, we have f(b" )= Fib)=1 because of function fs moenolonicity. Thus, {function f has both values of §
and 1at 4. ‘L'ais is impossible. [

Now . we are ready ro prove the main theorem {Theorem 4. 1),

Proof of Theorem 4. 1. For a one-output monotonic f:
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1. If all output values of fare | s, then
flry, oo vz =F1 (e Vo V.. V).
2, H at least one of the outputs of f is nat | , then there are two cases.
(a) For each & in £ which satisfies
Flay e amady =1,
we choose
1. xyand #,= it bh=0,
. z;and #,=eif b =1, and
iii. € (e, nothing) if b= |
and construct a formula
oo Ao Ao A (4.0
This way be simplified to
For AT, Moo A Haax, 4,13
Later, we will assume this type of simplification witheut commenz.
We construct a formula (4. 2) from the instances of (4. 1)s
@1V 1,V VU D (4.2)
(b} For each &, in & which satisfics
Flarsazse s 2 2m) =0,
we similarly choose
I. ziand H,= —if =0,
il. mand H,=¢if =1, and
il nothing if bi— |
and construct a formula
B, A Fam, Ao Az, (4,3
We construct a formula (4. 4) from the instances of (4. 3)s
(430 V 4 3), V. L V (4.3 (4. 4)
3. We discuss the czses above as follows .
(a} if there is ne case for which f(ry,2,.... s2.)=1, then
Flapsmsse o sitm) = Fo ({4, 4));
(h) if there is no case for which F(z,%&es. .- s@m) —0, then
Slaiaass, o vz =11(04.2));
{ed if buth cases gccur, we know that
Vol ISV, (. DY),
where (4.1) i¢ the input value corresponding to a choice from among the (4. 1)s.
Therefore, we have
Vu(f)cz() Vi (3 (4. 1)),
Later, we simplify this intersection as Vi (f).
From the above containment, we have
Lo floprgesze) =10 (4. 2)=1;
e i f{x 12500 2202 =0 then (4, 2)=0.
In other words, (4. 2) probably has more Os as its output values than necessary. So, these 0s are

dropped off as follows

© hEERE
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W23V fo(dd. 43D, (4.5)
From this, we have
Floiaare. o v 3 =(4.5). ]

This theorem asserts that any monatonic combinational finction (or device) ean be buil from { =, ALV ).

From the proof, we can obtain the canonical forms of Kleene 3-vatued logic.
% Canonical (Normal) Forms

From the proof of Theorem 4. 1, we observe a possible way of obtaining the cancnical norma! forms of the

Kleene systermn. From Section 4, let #== (x| .xp. .. 220} we have the following

5.1

[(.2)=1 it f(Z=1

Uif f€3)=0 ~then (4. 2Y=0"
and
5.2

(. 4)=1 iff fiZdr=¢
lif /Z)=1 then (4. 4)=0
S0, we can have
FF =020V (00,
Chnosing a different notation. we writs
53 FE=1C DV ol 2) ),
where (€0 1) and (C.2) are (4.2) and (4. 4) respectively. Using a similar renaming, we can have
5.4
(7 3=0 il f(B=0
<if Fl)=1 then (C.34=1"
and
55
W.oy=0 iff f(z)—=1
{if F(#y=0 then (C.H={

Then, we have the following

5.6 FGH=C. VUG T,
5.7 Flay=(C. DY LUC 30,
5.8 FIDy=(C. DV FLUC.40,

That 1s, (532, (5.8}, (5.7} and (5. 8) can be our candidates for the canonical form{s). However, if we
choose them as the canonical forms, there is a disadvantage, i.e. all of them require the function f to have hoth
0 and 1 as its output values (each value at least appears once). This disadvantage forces us o cxclude certzin
funcrions fram rhe abave choices of the canonical forms. This is not acceptzble and so we seek an alternative.

Similar 1o the procedure used 1o ebtain (5.1), (5.2), (5.4 and {5.5), we can obtain the following .

L. (C.51=1 iff f{£)=either 1 or 0
2, (Co6)=01ff F(&)=ecither 1 or 9.
Then. we have the following;
5.9 FFY=(C. 1V fo(C. 800,
5. 10 FE = N ALUC EN.
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51 FLE1=(C. 13V £, 80,
5. 12 ' SR = (C. B A S, (L. 830,

Now, it appears that we can choose (5. 9). (5. 13), €5.11) and {5.12) as the candidates far the canonieal
forms. Howcver, although they have improved the situation, these choices require the function f to have a defi-
nite output vaiue (at least nnce). So. hy choosing them . we have to exclude certain functions €say f| ) from the
canonical forms. There is no reason for us to do so. Therefore, we need 10 improve the situation furcther as fal-
laws .

C.7y=(f, AC. 8NV (C. 1),
and . 8)=(f VW 5NAWL. 2.
where f_ is treated as a constant. Whatever the arguments of f. are, they wanld not make a difference. For
example. we can let it be either /_ o, VoV ... Vo) or £ Cos Avp Ao Arnd. Now. we have arrived al the
ideal canonical forms; viz. (C.7) and (C. 8). Before we accept them, we must make sure that they are unique
according to certain criteria. We proceerd as follows.

This uniqueness is assured by choosing the minimals in VIO, Vol Vo(F) Vi () and Ve (/D i e, we
can obtain e corresponding (C.6), (CL5). (C. 1) and <C. 3} from the minimals by monc:onicity of f, where
a minimal element in V' is the element in V'’ sach that rhere is no other distinctive element & the minimal ele.
men.

We refer to (C. 7) and (C. 8) as disjunciive and comjunctive canonical (normal) forms of Kleene 3-valued
login. respectively.

In summary. we have Theorem 5.1,

Theorem 5.1 (normal forms), Any combinational {one-cutput} device (function) has unique conjunctive

and disjunctive canonical normal forms.

6 Conclusion

In this paper, we have applied the CPO domain theary” " from denotational semantics of programming
languages (o the logical design of VIL8T circuits. Our approach is model-oriented. Tt will alsa be useful if we can
develop a syntax-oriented version, 1. e. going from the formula of Kleene 3-valued logic 1o VLS circuits at gate-
level (via EDIFUS or VHDL ™ or Verilog HDLM.

There 2re some issues which we would like ta touch npon briefly, There are a number of ways to introduce
environments into the semantic medel. In the denatational approach , we can introduce Env to represent environ-
ments . say Env: Line-=Voltage. Thus, & hardware device A can be a funetion from Taput X Env 1o Quiput X
Env. But by doing so., we would lose the vigorousness of the digital logic. An alternative is to seek a way to
represent environments in the eqoztional style of this paper so that we can preserve the vigorousness of the digi-
tal logic in logical design of VST circuits.

Sinee the work presenced here is based on CP(O} domain theory? %1, there may be o perspective in our pre-
sent approach to use formal methods in cross-fertilization hetween sofiware design and hardware design Cor co-

design . hyhrid system design) such as various research lines presented in Refs, [21~24].
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