Wi-Fi CSI 定位系统的性能预测方法
DOI:
作者:
作者单位:

1.天津大学;2.上海交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目), 国家重点研发计划


Performance Prediction for Wi-Fi CSI Localization System
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan), National Key R&D Program of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Wi-Fi作为当前最重要的通信方式之一,基于Wi-Fi信号的室内定位系统最有望在日常生活中得到广泛地部署应用。最新研究表明,当采用Wi-Fi通信过程中获取的信道状态信息(CSI)对目标进行定位时,系统可实现亚米级的定位精度。然而,实验场景下的定位精度受到测试样点位置、Wi-Fi设备布局、天线布局等诸多因素的影响。因为目前仍缺少Wi-Fi CSI定位性能预测方法,Wi-Fi定位系统部署后往往难以获得预期的精度。为此,本文面向多样化场景提出Wi-Fi CSI定位性能的预测模型。首先,本文从CSI定位的基本物理模型出发,定义天线对的误差微元函数,并通过对定位空间的分析生成误差微元矩阵以及定位性能热度图;其次,本文对天线对进行拓展,通过引入多天线融合方法、多设备融合方法构建通用的CSI定位性能预测模型;最后,为了将真实场景地图考虑在内,本文提出了将上述热度图与场景地图相融合的方法,从而实现了场景定制化的性能预测。在理论分析的基础上,本文结合2个不同场景下的实验数据验证了定位性能预测模型有效性。实验结果表明,实际定位精度的变化趋势与理论模型相吻合,通过理论模型分析可将定位精度优化32% - 37%。

    Abstract:

    Wireless indoor localization technology can utilize Wi-Fi, RFID, Bluetooth and other signals to localize the target, and thus enables many intelligent location-based applications. In the existing wireless localization systems, Wi-Fi localization system is promising due to the ubiquitous deployment of Wi-Fi devices. Especially, some existing works show that we can realize admired submeter-level localization accuracy with channel state information derived from the physical layer. However, since the performance of CSI localization system depends on many factors such as the location of the test point, the layout of the Wi-Fi devices, it is not easy to find such a suitable layout to provide satisfying localization accuracy. Moreover, as some other works show that the deployment cost of CSI localization system cannot be ignored, it is necessary to predict the performance for the upcoming Wi-Fi localization system. To this end, this paper develops a prediction model to evaluate the performance of CSI localization systems under diverse scenarios. In the model, we take the spatial attributes of the antenna and the device, and the floor plan as the main considerations. First, we define the error differential function between a pair of antennas based on the propagation model of Wi-Fi signals. Considering the overall localization area, we can generate the error differential matrix and the corresponding heat map that can be utilized to predict localization performance of one pair of antennas. Second, we design multi-antenna fusion and multi-device fusion methods to extend the error differential function, thereby constructing a general prediction model for CSI localization systems. Third, we propose to integrate the heat map and the floor plan to provide a customized prediction solution for the given scenario. In addition to the theoretical model, we conduct extensive real experiments to verify the proposed prediction model under two different scenarios. The experimental results show that the localization performance is consistent with our theoretical model, and we can utilize the model to optimize the localization accuracy by 32%-37%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-12
  • 最后修改日期:2022-02-27
  • 录用日期:2022-04-20
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号