客户端独立的IP地理定位研究综述
作者:
基金项目:

国家重点研发计划(2022YFB3105001); 国家自然科学基金(62172251)


Survey on Client-independent IP Geolocation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [113]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    准确、快速地获取IP地理定位信息对于各种网络应用而言至关重要. IP地理定位指将互联网实体的IP地址转换为其地理位置的技术. 然而, 互联网规模的迅速扩大和互联网应用的快速发展, 给IP地理定位研究带来了巨大的挑战. 首先, 复杂的网络结构和网络环境导致IP定位技术的精确度远远无法满足实际的应用需求. 其次, IP地理定位在各个领域的作用日益凸显, 如何精准、高效、可靠地计算互联网主机的地理位置正在成为各行关注的焦点. 因此, 通过设备的IP地址对其进行地理定位以支撑复杂的上层应用尤为重要. 自2001年以来, 学术界和工业界围绕上述问题开展了大量的研究. 系统地梳理客户端独立的IP地理定位方面的相关工作, 系统地整理基于网络测量的IP地理定位研究分类方法. 根据定位数据是否由主动测量产生, 将相关研究分为主动的IP定位技术、被动的IP定位技术和主被动结合的IP定位技术. 进一步, 对每一类方法进行更细粒度的分类并分析其主要的优缺点. 在此基础上, 总结IP地理定位领域的最新进展和研究挑战, 并展望其未来发展方向.

    Abstract:

    Capturing an accurate view of IP geolocation is of great interest to the networking research community as it has many uses ranging from network measuring and mapping to analyzing the network’s infrastructure. However, the scale of today’s Internet, coupled with the rapid development of Internet applications, makes it very challenging to acquire a complete and accurate snapshot of the IP geolocation technology. To the best of our knowledge, there is no systematic survey of the relevant research in this field. To fill this gap, this study systematically summarizes the research of client-independent IP geolocation, in which the clients do not participate in the geolocation process. This study aims to examine the major research studies that have been conducted on topics related to IP geolocation in the last 22 years since the first IP-based geolocation technology was proposed. To this end, these prior studies are classified according to the measurement method, that is, active, passive, and hybrid. The main techniques for each category are described, identifying their significant advantages and limitations. Also, the primary experience and lessons learned from these past efforts are presented. After the process, the latest progress in IP geolocation both in academia and industry is shown. Finally, the survey and present promising directions in the future are concluded, hoping to promote the development of IP geolocation.

    参考文献
    [1] Padmanabhan VN, Subramanian L. An investigation of geographic mapping techniques for Internet hosts. In: Proc. of the 2001 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication. San Diego: ACM, 2001. 173–185.
    [2] GPS: The global positioning system. https://www.gps.gov/
    [3] BeiDou navigation satellite system. http://www.beidou.gov.cn/
    [4] Padmanabhan R, Dhamdhere A, Aben E, Claffy K, Spring N. Reasons dynamic addresses change. In: Proc. of the 2016 Internet Measurement Conf. Santa Monica: ACM, 2016. 183–198. [doi: 10.1145/2987443.2987461]
    [5] Luckie M, Huffaker B, Marder A, Bischof Z, Fletcher M, Claffy K. Learning to extract geographic information from Internet router hostnames. In: Proc. of the 17th Int’l Conf. on Emerging Networking Experiments and Technologies. Virtual Event: ACM, 2021. 440–453. [doi: 10.1145/3485983.3494869]
    [6] Wi-Fi alliance. 2023. https://www.wi-fi.org/
    [7] World Wide Web Consortium (W3C). 2023. https://www.w3.org/
    [8] Ciavarrini G, Luconi V, Vecchio A. Smartphone-based geolocation of Internet hosts. Computer Networks, 2017, 116: 22–32.
    [9] The best IP geolocation database | IPIP.NET. 2023. https://en.ipip.net/
    [10] Industry leading IP location technology | Digital element. 2023. http://info.digitalelement.com/
    [11] Industry leading IP geolocation and online fraud prevention | MaxMind. 2023. https://www.maxmind.com/en/home
    [12] Livadariu I, Dreibholz T, Al-Selwi AS, Bryhni H, Lysne O, Bjørnstad S, Elmokashfi A. On the accuracy of country-level IP geolocation. In: Proc. of the 2020 Applied Networking Research Workshop. ACM, 2020. 67–73. [doi: 10.1145/3404868.3406664]
    [13] Gueye B, Uhlig S, Fdida S. Investigating the imprecision of IP block-based geolocation. In: Proc. of the 8th Int’l Conf. on Passive and Active Network Measurement. Louvain-la-Neuve, Belgium: Springer, 2007. 237–240. [doi: 10.1007/978-3-540-71617-4_26]
    [14] Poese I, Uhlig S, Ali Kâafar M, Donnet B, Gueye B. IP geolocation databases: Unreliable? ACM SIGCOMM Computer Communication Review, 2011, 41(2): 53–56.
    [15] Callejo P, Gramaglia M, Cuevas R, Cuevas Á. A deep dive into the accuracy of IP geolocation databases and its impact on online advertising. arXiv:2109.13665, 2022.
    [16] 王志豪, 张卫东, 文辉, 朱红松, 尹丽波, 孙利民. IP定位技术研究. 信息安全学报, 2019, 4(3): 34–47.
    Wang ZH, Zhang WD, Wen H, Zhu HS, Yin LB, Sun LM. A comprehensive survey of IP geolocation and evasion. Journal of Cyber Security, 2019, 4(3): 34–47 (in Chinese with English abstract).
    [17] 王占丰, 冯径, 邢长友, 张国敏, 许博. IP定位技术的研究. 软件学报, 2014, 25(7): 1527–1540. http://www.jos.org.cn/1000-9825/4621.htm
    Wang ZF, Feng J, Xing CY, Zhang GM, Xu B. Research on the IP geolocation technology. Ruan Jian Xue Bao/Journal of Software, 2014, 25(7): 1527–1540 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4621.htm
    [18] Li Q, Wang ZH, Tan DW, Song JK, Wang HN, Sun LM, Liu JQ. GeoCAM: An IP-based geolocation service through fine-grained and stable webcam landmarks. IEEE/ACM Trans. on Networking, 2021, 29(4): 1798–1812.
    [19] Wang ZH, Li Q, Song JK, Wang HN, Sun LM. Towards IP-based geolocation via fine-grained and stable webcam landmarks. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 1422–1432. [doi: 10.1145/3366423.3380216]
    [20] Wang YC, Zhu HS, Wang JF, Liu J, Wang Y, Sun LM. XLBoost-Geo: An IP geolocation system based on extreme landmark boosting. arXiv:2010.13396, 2020.
    [21] Wang ZY, Zhou F, Zeng WX, Trajcevski G, Xiao CJ, Wang Y, Chen K. Connecting the hosts: Street-level IP geolocation with graph neural networks. In: Proc. of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 4121–4131. [doi: 10.1145/3534678.3539049]
    [22] 张鹤林, 甘勇, 刘渊博. 基于特征选择改进的随机森林IP定位方法. 现代计算机, 2022, 28(5): 71–75, 81.
    Zhang HL, Gan Y, Liu YB. An improved random forest city-level IP geolocation method based on feature selection. Modern Computer, 2022, 28(5): 71–75, 81 (in Chinese with English abstract).
    [23] Rye EC, Beverly R. IPvSeeYou: Exploiting leaked identifiers in IPv6 for street-level geolocation. arXiv:2208.06767, 2022.
    [24] Kline E, Duleba K, Szamonek Z, Moser S, Kumari W. A format for self-published IP geolocation feeds. RFC 8805. 2020.
    [25] Zu SD, Luo XY, Zhang F. IP-geolocater: A more reliable IP geolocation algorithm based on router error training. Frontiers of Computer Science, 2022, 16(1): 161504.
    [26] Dan O, Parikh V, Davison BD. IP geolocation through geographic clicks. ACM Trans. on Spatial Algorithms and Systems, 2022, 8(1): 2.
    [27] Saxon J, Feamster N. GPS-based geolocation of consumer IP addresses. arXiv:2105.13389, 2021.
    [28] Marder A, Claffy KC, Snoeren AC. Inferring cloud interconnections: Validation, geolocation, and routing behavior. In: Proc. of the 22nd Int’l Conf. on Passive and Active Measurement. Virtual Event: Springer, 2021. 230–246. [doi: 10.1007/978-3-030-72582-2_14]
    [29] Roxin A, Gaber J, Wack M, Nait-Sidi-Moh A. Survey of wireless geolocation techniques. In: Proc. of the 2007 IEEE Globecom Workshops. Washington: IEEE, 2007. 1–9. [doi: 10.1109/GLOCOMW.2007.4437809]
    [30] Xu GX, Gao SY, Daneshmand M, Wang CG, Liu YB. A survey for mobility big data analytics for geolocation prediction. IEEE Wireless Communications, 2017, 24(1): 111–119.
    [31] Elgamoudi A, Benzerrouk H, Elango GA, Landry R Jr. A survey for recent techniques and algorithms of geolocation and target tracking in wireless and satellite systems. Applied Sciences, 2021, 11(13): 6079.
    [32] IPv6. Wikipedia. 2023. https://en.wikipedia.org/w/index.php?title=IPv6&oldid=1151311659
    [33] Koch R, Golling M, Rodosek GD. Geolocation and verification of IP-addresses with specific focus on IPv6. In: Proc. of the 5th Int’l Symp. on Cyberspace Safety and Security. Zhangjiajie: Springer, 2013. 151–170. [doi: 10.1007/978-3-319-03584-0_12]
    [34] Kitchenham B. Procedures for performing systematic reviews. Eversleigh: Empirical Software Engineering National ICT Australia Ltd., 2004.
    [35] Watson RT, Webster J. Analysing the past to prepare for the future: Writing a literature review a roadmap for release 2.0. Journal of Decision Systems, 2020, 29(3): 129–147.
    [36] Wenxin T, Bin C, Fan Z, Ting Z, Goce T, Yong W, Kai C. TrustGeo: Uncertainty-aware dynamic graph learning for trustworthy IP geolocation. In: Proc. of the 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. 2023.
    [37] Jia DZ, Liu LM, Jia SJ, Lin JQ. VoteGeo: An IoT-based voting approach to verify the geographic location of cloud hosts. In: Proc. of the 38th IEEE Int’l Performance Computing and Communications Conf. London: IEEE, 2019. 1–9.
    [38] Ma T, Liu LF, Zhang F, Luo XY. An landmark evaluation algorithm based on router identification and delay measurement. In: Proc. of the 5th Int’l Conf. on Artificial Intelligence and Security. New York: Springer, 2019. 163–177. [doi: 10.1007/978-3-030-24271-8_15]
    [39] Li MY, Luo XY, Shi WQ, Chai LX. City-level IP geolocation based on network topology community detection. In: Proc. of the 2017 Int’l Conf. on Information Networking. Da Nang: IEEE, 2017. 578–583. [doi: 10.1109/ICOIN.2017.7899562]
    [40] Ding SC, Luo XY, Ye DP, Liu FL. Delay-distance correlation study for IP geolocation. Wuhan University Journal of Natural Sciences, 2017, 22(2): 157–164.
    [41] Yuan FX, Liu FL, Huang DH, Liu Y, Luo XY. A high completeness PoP partition algorithm for IP geolocation. IEEE Access, 2019, 7: 28340–28355.
    [42] Li RX, Xu R, Ma YY, Luo XY. LandmarkMiner: Street-level network landmarks mining method for IP geolocation. ACM Trans. on Internet of Things, 2021, 2(3): 21
    [43] Zhu G, Luo XY, Liu FL, Chen JN. An algorithm of city-level landmark mining based on Internet forum. In: Proc. of the 18th Int’l Conf. on Network-based Information Systems. Taipei: IEEE, 2015. 294–301. [doi: 10.1109/NBiS.2015.46]
    [44] Guo C, Liu Y, Shen W, Wang HJ, Yu Q, Zhang Y. Mining the Web and the Internet for accurate IP address geolocations. In: Proc. of the 2009 IEEE INFOCOM. Rio de Janeiro: IEEE, 2009. 2841–2845. [doi: 10.1109/INFCOM.2009.5062243]
    [45] Wang YC, Wang X, Zhu HS, Zhao H, Li H, Sun LM. ONE-Geo: Client-independent IP geolocation based on owner name extraction. In: Proc. of the 14th Int’l Conf. on Wireless Algorithms, Systems, and Applications. Honolulu: Springer, 2019. 346–357. [doi: 10.1007/978-3-030-23597-0_28]
    [46] Maziku H, Shetty S, Han K, Rogers T. Enhancing the classification accuracy of IP geolocation. In: Proc. of the 2012 IEEE Military Communications Conf. Orlando: IEEE, 2012. 1–6. [doi: 10.1109/MILCOM.2012.6415842]
    [47] Dan O, Parikh V, Davison BD. IP geolocation using traceroute location propagation and IP range location interpolation. In: Proc. of the 2021 Web Conf. Ljubljana: ACM, 2021. 332–338. [doi: 10.1145/3442442.3451888]
    [48] CAIDA Resource Catalog. 2023. https://catalog.caida.org/search?query=types=%20dataset%20tag:caida%20
    [49] Censys Search—Censys. 2023. https://censys.io/data-%20and-%20search/
    [50] PlanetLab | An open platform for developing, deploying, and accessing planetary-scale services. 2023. https://planetlab.cs.princeton.edu/
    [51] Feng X, Li Q, Wang HN, Sun LM. Acquisitional rule-based engine for discovering Internet-of-Things devices. In: Proc. of the 27th USENIX Security Symp. Baltimore: USENIX Association, 2018. 327–341.
    [52] Sommers J. A web client perspective on IP geolocation accuracy. In: Proc. of the 2020 Int’l Symp. on Networks, Computers and Communications. Montreal: IEEE, 2020. 1–8. [doi: 10.1109/ISNCC49221.2020.9297175]
    [53] Barth A. HTTP state management mechanism: RFC 6265. Internet Engineering Task Force, 2011.
    [54] Song JK, Li Q, Wang HN, Sun HN. Under the concealing surface: Detecting and understanding live webcams in the wild. In: Proc. of the ACM on Measurement and Analysis of Computing Systems. Boston: ACM, 2020. 77–78. [doi: 10.1145/3393691.3394220]
    [55] Gueye B, Ziviani A, Crovella M, Fdida S. Constraint-based geolocation of internet hosts. IEEE/ACM Trans. on Networking, 2006, 14(6): 1219–1232.
    [56] Katz-Bassett E, John JP, Krishnamurthy A, Wetherall D, Anderson T, Chawathe Y. Towards IP geolocation using delay and topology measurements. In: Proc. of the 6th ACM SIGCOMM Conf. on Internet Measurement. Rio de Janeriro: ACM, 2006. 71–84.
    [57] Wang Y, Burgener D, Flores M, Kuzmanovic A, Huang C. Towards street-level client-independent IP geolocation. In: Proc. of the 8th USENIX Symp. on Networked Systems Design and Implementation. Boston: USENIX Association, 2011. 365–379.
    [58] Ding SC, Zhao F, Luo XY. A street-level IP geolocation method based on delay-distance correlation and multilayered common routers. Security and Communication Networks, 2021, 2021: 6658642.
    [59] Wikipedia. Ping. 2023. https://en.wikipedia.org/w/index.php?title=Ping&oldid=1129811227
    [60] Wikipedia. traceroute. 2023. https://en.wikipedia.org/w/index.php?title=Traceroute&oldid=1140129266
    [61] Laki S, Mátray P, Hága P, Sebők T, Csabai I, Vattay G. Spotter: A model based active geolocation service. In: Proc. of the 2011 IEEE INFOCOM. Shanghai: IEEE, 2011. 3173–3181. [doi: 10.1109/INFCOM.2011.5935165]
    [62] Eriksson B, Barford P, Maggs B, Nowak R. Posit: A lightweight approach for IP geolocation. ACM SIGMETRICS Performance Evaluation Review, 2012, 40(2): 2–11.
    [63] Du F, Bao XG, Zhang YZ, Yang HH. GeoCET: Accurate IP geolocation via constraint-based elliptical trajectories. In: Proc. of the 15th EAI Int’l Conf. on Collaborative Computing: Networking, Applications and Worksharing. London: Springer, 2019. 603–622.
    [64] Wong B, Stoyanov I, Sirer EG. Octant: A comprehensive framework for the geolocalization of Internet hosts. In: Proc. of the 4th Symp. on Networked Systems Design and Implementation. Cambridge: USENIX Association, 2007. 313–326.
    [65] Zu SD, Luo XY, Liu SQ, Liu Y, Liu FL. City-level IP geolocation algorithm based on PoP network topology. IEEE Access, 2018, 6: 64867–64875.
    [66] Liu C, Luo XY, Yuan FX, Liu FL. RNBG: A ranking nodes based IP geolocation method. In: Proc. of the 2020 IEEE Conf. on Computer Communications Workshops. Toronto: IEEE, 2020. 80–84. [doi: 10.1109/INFOCOMWKSHPS50562.2020.9162976]
    [67] Chen JN, Liu FL, Luo XY, Zhao F, Zhu G. A landmark calibration based IP geolocation approach. In: Proc. of the 10th Int’l Conf. on Availability, Reliability and Security. Toulouse: IEEE, 2015. 411–416. [doi: 10.1109/ARES.2015.52]
    [68] Singh SP, Baden R, Lee C, Bhattacharjee B, La R, Shayman M. IP geolocation in metropolitan areas. In: Proc. of the 2011 ACM SIGMETRICS Int’l Conf. on Measurement and Modeling of Computer Systems. San Jose: ACM, 2011. 155–156.
    [69] Dong ZQ, Perera RDW, Chandramouli R, Subbalakshmi KP. Network measurement based modeling and optimization for IP geolocation. Computer Networks, 2012, 56(1): 85–98.
    [70] Hillmann P, Stiemert L, Rodosek GD, Rose O. Dragoon: Advanced modelling of IP geolocation by use of latency measurements. In: Proc. of the 10th Int’l Conf. for Internet Technology and Secured Transactions. London: IEEE, 2015. 438–445.
    [71] Li D, Chen J, Guo CX, Liu YX, Zhang JY, Zhang ZL, Zhang YG. IP-geolocation mapping for moderately connected Internet regions. IEEE Trans. on Parallel and Distributed Systems, 2013, 24(2): 381–391.
    [72] Zhao F, Luo XY, Gan Y, Zu SD, Liu FL. IP geolocation base on local delay distribution similarity. In: Proc. of the 9th Int’l Symp. on Cyberspace Safety and Security. Xi’an: Springer, 2017. 383–395. [doi: 10.1007/978-3-319-69471-9_28]
    [73] Feldman D, Shavitt Y, Zilberman N. A structural approach for PoP geo-location. Computer Networks, 2012, 56(3): 1029–1040.
    [74] Shavitt Y, Zilberman N. Improving IP geolocation by crawling the Internet PoP level graph. In: Proc. of the 2013 IFIP Networking Conf. Brooklyn: IEEE, 2013. 1–9.
    [75] Wang ZH, Chen YL, Wen H, Zhao L, Sun LM. Discovering routers as secondary landmarks for accurate IP geolocation. In: Proc. of the 86th IEEE Vehicular Technology Conf. Toronto: IEEE, 2017. 1–5. [doi: 10.1109/VTCFall.2017.8288146]
    [76] Zhao F, Xu R, Li RX, Zhu M, Luo XY. Street-level geolocation based on router multilevel partitioning. IEEE Access, 2019, 7: 59237–59248.
    [77] Hillmann P, Stiemert L, Rodosek GD, Rose O. Modelling of IP geolocation by use of latency measurements. In: Proc. of the 11th Int’l Conf. on Network and Service Management. Barcelona: IEEE, 2015. 173–177. [doi: 10.1109/CNSM.2015.7367355]
    [78] Patel KB, Moukdad N, Anand S. Geolocation of IP hosts in large computer networks with congestion. In: Proc. of the 2020 IEEE Int’l Conf. on Communications. Dublin: IEEE, 2020. 1–6. [doi: 10.1109/ICC40277.2020.9149334]
    [79] Wang ZH, Li H, Li Q, Li W, Zhu HS, Sun LM. Towards IP geolocation with intermediate routers based on topology discovery. Cybersecurity, 2019, 2(1): 13.
    [80] Yuan FX, Liu FL, Xu R, Liu Y, Luo XY. Network topology boundary routing IP identification for IP geolocation. In: Proc. of the 6th Int’l Conf. on Artificial Intelligence and Security. Hohhot: Springer, 2020. 534–544. [doi: 10.1007/978-3-030-57881-7_47]
    [81] Beverly R, Durairajan R, Plonka D, Rohrer JP. In the IP of the beholder: Strategies for active IPv6 topology discovery. In: Proc. of the 2018 Internet Measurement Conf. Boston: ACM, 2018. 308–321. [doi: 10.1145/3278532.3278559]
    [82] Rye EC, Beverly R. Discovering the IPv6 network periphery. In: Proc. of the 21st Int’l Conf. on Passive and Active Measurement. Eugene: Springer, 2020. 3–18. [doi: 10.1007/978-3-030-44081-7_1]
    [83] Eriksson B, Barford P, Sommers J, Nowak R. A learning-based approach for IP geolocation. In: Proc. of the 11th Int’l Conf. on Passive and Active Measurement. Zurich: Springer, 2010. 171–180. [doi: 10.1007/978-3-642-12334-4_18]
    [84] 李明月, 罗向阳, 柴理想, 袁福祥, 甘勇. 基于网络节点聚类的目标IP城市级定位方法. 计算机研究与发展, 2019, 56(3): 467–479.
    Li MY, Luo XY, Chai LX, Yuan FX, Gan Y. City-level IP geolocation method based on network node clustering. Journal of Computer Research and Development, 2019, 56(3): 467–479 (in Chinese with English abstract).
    [85] 赵茜, 陈曙晖. 基于LRBG方法的IP定位研究. 计算机科学, 2020, 47(S2): 291–295, 326.
    Zhao Q, Chen SH. LRBG-based approach for IP geolocation. Computer Science, 2020, 47(S2): 291–295, 326 (in Chinese with English abstract).
    [86] Endo PT, Sadok DFH. Whois based geolocation: A strategy to geolocate Internet hosts. In: Proc. of the 24th IEEE Int’l Conf. on Advanced Information Networking and Applications. Perth: IEEE, 2010. 408–413. [doi: 10.1109/AINA.2010.39]
    [87] Liu H, Zhang YX, Zhou YZ, Zhang D, Fu XM, Ramakrishnan KK. Mining checkins from location-sharing services for client-independent IP geolocation. In: Proc. of the 2014 IEEE Conf. on Computer Communications. Toronto: IEEE, 2014. 619–627.
    [88] Dan O, Parikh V, Davison BD. Improving IP geolocation using query logs. In: Proc. of the 9th ACM Int’l Conf. on Web Search and Data Mining. San Francisco: ACM, 2016. 347–356. [doi: 10.1145/2835776.2835820]
    [89] Li H, Zhang P, Wang ZF, Du F, Kuang Y, An Y. Changing IP geolocation from arbitrary database query towards multi-databases fusion. In: Proc. of the 2017 IEEE Symp. on Computers and Communications. Heraklion: IEEE, 2017. 1150–1157.
    [90] Du F, Bao XG, Zhang YZ, Wang Y. GeoBLR: Dynamic IP geolocation method based on Bayesian linear regression. In: Proc. of the 14th EAI Int’l Conf. on Collaborative Computing: Networking, Applications and Worksharing. Shanghai: Springer, 2018. 310–328.
    [91] Dan O, Parikh V, Davison BD. IP geolocation through reverse DNS. ACM Trans. on Internet Technology, 2022, 22(1): 17.
    [92] WHOIS-Web.com. 2023. https://www.web.com/whois/index.jsp
    [93] IP address to IP location and proxy information. IP2Location. 2023. https://www.ip2location.com/
    [94] 谢波. 多源IP定位库数据融合算法设计与实现 [硕士学位论文]. 北京: 北京邮电大学, 2019.
    Xie B. Design and implementation of data fusion algorithm for multi-source IP geolocation databases [MS. Thesis]. Beijing: Beijing University of Posts and Telecommunications, 2019 (in Chinese with English abstract).
    [95] 郭立轩, 卓子寒, 何跃鹰, 李强, 李舟军. 基于邻近序列的IP地址地理定位方法. 计算机科学, 2018, 45(1): 200–204.
    Guo LX, Zhuo ZH, He YY, Li Q, Li ZJ. IP geolocation method based on neighbor sequence. Computer Science, 2018, 45(1): 200–204 (in Chinese with English abstract).
    [96] Gouel M, Vermeulen K, Fourmaux O, Friedman T, Beverly R. Longitudinal study of an IP geolocation database. arXiv:2107.03988, 2021.
    [97] Komosny D, Voznak M, Bezzateev S, Ganeshan K. The use of European Internet communication properties for IP geolocation. Information Technology & Control, 2016, 45(1): 77–85.
    [98] Mun H, Lee Y. Building IP geolocation database from online used market articles. In: Proc. of the 19th Asia-Pacific Network Operations and Management Symp. Seoul: IEEE, 2017. 37–41. [doi: 10.1109/APNOMS.2017.8094175]
    [99] RULIWEB. https://m.ruliweb.com/
    [100] Wei L, Ren GM, Shi L, Tao YC, Cao YJ. How does the recursive undns algorithm affect the accuracy of an IP geolocation system? In: Proc. of the 10th Int’l Conf. on Fuzzy Systems and Knowledge Discovery. Shenyang: IEEE, 2013. 1060–1064.
    [101] Dan O. IP Geolocation [Ph.D. Thesis]. Lehigh University, 2019.
    [102] Berger A, Weaver N, Beverly R, Campbell L. Internet nameserver IPv4 and IPv6 address relationships. In: Proc. of the 2013 Conf. on Internet Measurement Conf. Barcelona: ACM, 2013. 91–104. [doi: 10.1145/2504730.2504745]
    [103] Chandekar S, Paris BP. Large-scale, discrete IP geolocation via multi-factor evidence fusion using factor graphs. In: Proc. of the 18th Int’l Conf. on Information Fusion. Washington: IEEE, 2015. 1497–1504.
    [104] Scheitle Q, Gasser O, Sattler P, Carle G. HLOC: Hints-based geolocation leveraging multiple measurement frameworks. In: Proc. of the 2017 Network Traffic Measurement and Analysis Conf. Dublin: IEEE, 2017. 1–9. [doi: 10.23919/TMA.2017.8002903]
    [105] Zhao F, Luo XY, Gan Y, Zu SD, Cheng QF, Liu FL. IP Geolocation based on identification routers and local delay distribution similarity. Concurrency and Computation Practice and Experience, 2019, 31(22): e4722
    [106] Du B, Candela M, Huffaker B, Snoeren AC, Claffy K. RIPE IPmap active geolocation: Mechanism and performance evaluation. ACM SIGCOMM Computer Communication Review, 2020, 50(2): 3–10.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林金磊,李城龙,宋光磊,樊琳娜,王之梁,杨家海.客户端独立的IP地理定位研究综述.软件学报,2025,36(1):321-340

复制
分享
文章指标
  • 点击次数:432
  • 下载次数: 1720
  • HTML阅读次数: 586
  • 引用次数: 0
历史
  • 收稿日期:2023-05-29
  • 最后修改日期:2024-02-21
  • 在线发布日期: 2024-06-14
  • 出版日期: 2025-01-06
文章二维码
您是第20262623位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号