对话推荐算法研究综述
作者:
作者简介:

赵梦媛(1997-),女,硕士,主要研究领域为数据挖掘,推荐系统,用户建模;黄晓雯(1993-),女,博士,讲师,CCF专业会员,主要研究领域为多媒体计算,数据挖掘,用户建模,推荐系统;桑基韬(1985-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为机器学习与认知计算,人工智能及应用;于剑(1969-),男,博士,教授,博士生导师,CCF会士,主要研究领域为机器学习,计算智能,图像分析,数据挖掘.

通讯作者:

黄晓雯,E-mail:xwhuang@bjtu.edu.cn

基金项目:

国家重点研发计划(2018AAA0100604);中央高校基本科研专项(2021RC217);北京市自然科学基金(JQ20023);国家自然科学基金(61632002,61832004,62036012,61720106006)


Survey on Conversational Recommendation Algorithms
Author:
  • ZHAO Meng-Yuan

    ZHAO Meng-Yuan

    School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;Institute of Artificial Intelligence, Beijing Jiaotong University, Beijing 100044, China;Beijing Key Laboratory of Traffic Data Analysis and Mining (Beijing Jiaotong University), Beijing 100044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Xiao-Wen

    HUANG Xiao-Wen

    School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;Institute of Artificial Intelligence, Beijing Jiaotong University, Beijing 100044, China;Beijing Key Laboratory of Traffic Data Analysis and Mining (Beijing Jiaotong University), Beijing 100044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SANG Ji-Tao

    SANG Ji-Tao

    School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;Institute of Artificial Intelligence, Beijing Jiaotong University, Beijing 100044, China;Beijing Key Laboratory of Traffic Data Analysis and Mining (Beijing Jiaotong University), Beijing 100044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YU Jian

    YU Jian

    School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;Institute of Artificial Intelligence, Beijing Jiaotong University, Beijing 100044, China;Beijing Key Laboratory of Traffic Data Analysis and Mining (Beijing Jiaotong University), Beijing 100044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

National Natural Science Foundation of China (K21RC00020)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [145]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    推荐系统是一种通过理解用户的兴趣和偏好帮助用户过滤大量无效信息并获取感兴趣的信息或者物品的信息过滤系统.目前主流的推荐系统主要基于离线的、历史的用户数据,不断训练和优化线下模型,继而为在线的用户推荐物品,这类训练方式主要存在3个问题:基于稀疏且具有噪声的历史数据估计用户偏好的不可靠估计、对影响用户行为的在线上下文环境因素的忽略和默认用户清楚自身偏好的不可靠假设.由于对话系统关注于用户的实时反馈数据,获取用户当前交互的意图,因此“对话推荐”通过结合对话形式与推荐任务成为解决传统推荐问题的有效手段.对话推荐将对话系统实时交互的数据获取方式应用到推荐系统中,采用了与传统推荐系统不同的推荐思路,通过利用在线交互信息,引导和捕捉用户当前的偏好兴趣,并及时进行反馈和更新.在过去的几年里,越来越多的研究者开始关注对话推荐系统,这一方面归功于自然语言处理领域中语音助手以及聊天机器人技术的广泛使用,另一方面受益于强化学习、知识图谱等技术在推荐策略中的成熟应用.将对话推荐系统的整体框架进行梳理,将对话推荐算法研究所使用的数据集进行分类,同时对评价对话推荐效果的相关指标进行讨论,重点关注于对话推荐系统中的后台对话策略与推荐逻辑,对近年来的对话推荐算法进行综述,最后对对话推荐领域的未来发展方向进行展望.

    Abstract:

    Recommender system is an information filtering system that helps users filter a large number of invalid information to obtain information or items by estimating their interests and preferences. The mainstream traditional recommendation system mainly uses offline and historical user data to continuously train and optimize offline models, and then recommend items for online users. There are three main problems:the unreliable estimation of user preferences based on sparse and noisy historical data, the ignorance of online contextual factors that affect user behavior, and the unreliable assumption that users are aware of their preferences by default. Since the dialogue system focuses on the user's real-time feedback data and obtains the user's current interaction intentions, "conversational recommendation" combines the interactive form of the dialogue system with the recommendation task, and becomes an effective means to solve the traditional recommendation problem. Through online interactive methods, conversational recommendation can guide and capture users' current preferences and interests, and provide timely feedback and updates. Thanks to the widespread use of voice assistants and chatbot technologies, as well as the mature application of technologies such as reinforcement learning and knowledge graphs in recommendation strategies, in the past few years, more and more researchers have paid attention to conversational recommendation systems. This survey combs the overall framework of the conversational recommendation system, classifies the datasets used in the conversational recommendation algorithm, and discusses the relevant metrics to evaluate the effect of the conversational recommendation. Focusing on the background interaction strategy and recommendation logic in conversational recommendation, this survey summarizes the existing research achievements of the domestic and foreign researchers in recent years. And finally, this survey also summarizes and prospects future works of conversational recommendation.

    参考文献
    [1] Wang WJ, Feng FL, He XN, Nie LQ, Chua TS.Denoising implicit feedback for recommendation.In:Proc.of the 14th ACM Int'l Conf.on Web Search and Data Mining.ACM, 2020.373-381.
    [2] Wang WJ, Feng FL, He XN, Zhang HW, Chua TS.Clicks can be Cheating:Counterfactual recommendation for mitigating clickbait issue.In:Proc.the 44th Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM, 2020.1288-1297.
    [3] Lee H, Im J, Jang S, Cho H, Chung S.MeLU:Meta-learned user preference estimator for cold-start recommendation.In:Proc.of the 25th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.Anchorage:ACM, 2019.1073-1082.
    [4] Cen YK, Zhang JW, Zou X, Zhou C, Yang HX, Tang J.Controllable multi-interest framework for recommendation.In:Proc.of the 26th ACM SIGKDD Conf.on Knowledge Discovery and Data Mining.ACM, 2020.2942-2951.
    [5] Gao CM, Yuan S, Zhang Z, Yin HZ, Shao JM.BLOMA:Explain collaborative filtering via boosted local rank-one matrix approximation.In:Proc.of the 2019 Int'l Workshops on Database Systems for Advanced Applications.Chiang Mai:Springer, 2019.487-490.
    [6] Jagerman R, Markov I, de Rijke M.When people change their mind:Off-policy evaluation in non-stationary recommendation environments.In:Proc.of the 12th ACM Int'l Conf.on Web Search and Data Mining.Melbourne:ACM, 2019.447-455.
    [7] Wang WQ, Benbasat I.Research Note-A contingency approach to investigating the effects of user-system interaction modes of online decision aids.Information Systems Research, 2013, 24(3):861-876.[doi:10.1287/isre.1120.0445]
    [8] Wärnestål P.User evaluation of a conversational recommender system.In:Proc.of the 4th Workshop on Knowledge and Reasoning in Practical Dialogue Systems.2005.
    [9] Rich E.Scene I Scene II User Modeling via Stereotypes, 2008.https://core.ac.uk/display/24754407
    [10] Tou FN, Williams MD, Fikes R, Henderson A, Malone T.RABBIT:An intelligent database assistant.In:Proc.of the 1982 National Conf.on Artificial Intelligence.Pittsburgh:AAAI, 1982.314-318.
    [11] Burke RD, Hammond KJ, Young BC.The FindMe approach to assisted browsing.IEEE Expert:Intelligent Systems and Their Applications, 1997, 12(4):32-40.[doi:10.1109/64.608186]
    [12] Hammond KJ, Burke R, Martin C, Lytinen SL.A case-based approach to knowledge navigation.In:Proc.of the 1995 Working Notes of the AAAI Spring Symp.:Information Gathering from Heterogeneous, Distributed Environments.Montreal:AAAI, 1995.2071-2072.
    [13] Christakopoulou K, Radlinski F, Hofmann K.Towards conversational recommender systems.In:Proc.of the 22nd ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.San Francisco:ACM, 2016.815-824.
    [14] 杨淑梅.推荐系统交互性研究综述.软件学报, 2013, 34(8):154-158.[doi:10.3969/j.issn.1003-6970.2013.08.059] Yang SM.Overview of the interaction design for recommender systems.Software, 2013, 34(8):154-158(in Chinese with English abstract).[doi:10.3969/j.issn.1003-6970.2013.08.059]
    [15] 杨智强, 殷钊, 王衡.结合用户交互行为和资源内容的资源推荐.计算机辅助设计与图形学学报, 2014, 26(5):747-754.Yang ZQ, Yin Z, Wang H.Providing resource recommendation based on interactive behavior and resource content.Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5):747-754(in Chinese with English abstract).
    [16] Zhang YF, Chen X, Ai QY, Yang L, Croft WB.Towards conversational search and recommendation:System ask, user respond.In:Proc.of the 27th ACM Int'l Conf.on Information and Knowledge Management.Torino:ACM, 2018.177-186.
    [17] Li R, Kahou SE, Schulz H, Michalski V, Charlin L, Pal C.Towards deep conversational recommendations.In:Proc.of the 32nd Conf.on Neural Information Processing Systems.Montreal, 2018.
    [18] Mahmood T, Ricci F.Improving recommender systems with adaptive conversational strategies.In:Proc.of the 20th ACM Conf.on Hypertext and Hypermedia.Torino:ACM, 2009.73-82.
    [19] Sun YM, Zhang Y.Conversational recommender system.In:Proc.of the 41st Int'l ACM SIGIR Conf.on Research & Development in Information Retrieval.Ann Arbor:ACM, 2018.235-244.
    [20] He C, Parra D, Verbert K.Interactive recommender systems:A survey of the state of the art and future research challenges and opportunities.Expert Systems with Applications, 2016, 56:9-27.[doi:10.1016/j.eswa.2016.02.013]
    [21] Wang HZ, Wu QY, Wang HN.Factorization bandits for interactive recommendation.In:Proc.of the 31st AAAI Conf.on Artificial Intelligence.San Francisco:AAAI, 2017.2695-2702.
    [22] Zhou SJ, Dai XY, Chen HK, Zhang WN, Ren K, Tang RM, He XQ, Yu Y.Interactive recommender system via knowledge graph-enhanced reinforcement learning.In:Proc.of the 43rd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM, 2020.179-188.
    [23] Chen HK, Dai XY, Cai H, Zhang WN, Wang XJ, Tang RM, Zhang YZ, Yu Y.Large-scale interactive recommendation with tree-structured policy gradient.In:Proc.of the 33rd AAAI Conf.on Artificial Intelligence.AAAI, 2019.3312-3320.
    [24] Zhao XY, Zhang L, Ding ZY, Xia L, Tang JL, Yin DW.Recommendations with negative feedback via pairwise deep reinforcement learning.In:Proc.of the 24th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.London:ACM, 2018.1040-1048.
    [25] Zhao XX, Zhang WN, Wang J.Interactive collaborative filtering.In:Proc.of the 22nd ACM Int'l Conf.on Information & Knowledge Management.San Francisco:ACM, 2013.1411-1420.
    [26] Gao CM, Lei WQ, He XN, de Rijke M, Chua TS.Advances and challenges in conversational recommender systems:A Survey.Al Open, 2021, 2:100-126.[doi:10.1016/j.aiopen.2021.06.002]
    [27] Chen L, Pu P.Critiquing-based recommenders:Survey and emerging trends.User Modeling and User-Adapted Interaction, 2012, 22(1-2):125-150.[doi:10.1007/s11257-011-9108-6]
    [28] Luo K, Sanner S, Wu G, Li HZ, Yang HJ.Latent linear critiquing for conversational recommender systems.In:Proc.of the Web Conf.2020.Taipei:ACM, 2020.2535-2541.
    [29] Luo K, Yang HJ, Wu G, Sanner S.Deep critiquing for VAE-based recommender systems.In:Proc.of the 43rd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM, 2020.1269-1278.
    [30] Pu P, Faltings B.Decision tradeoff using example-critiquing and constraint programming.Constraints, 2004, 9(4):289-310.[doi:10.1023/B:CONS.0000049205.05581.24]
    [31] Tversky A, Simonson I.Context-dependent preferences.Management science, 1993, 39(10):1179-1189.
    [32] Smyth B, McGinty L.An analysis of feedback strategies in conversational recommenders.In:Proc.of the 14th Irish Conf.on Artificial Intelligence and Cognitive Science.2003.
    [33] Ma H, Yang HX, King I, Lyu MR.Learning latent semantic relations from clickthrough data for query suggestion.In:Proc.of the 17th ACM Conf.on Information and Knowledge Management.Napa Valley:ACM, 2008.709-718.
    [34] Bar-Yossef Z, Kraus N.Context-sensitive query auto-completion.In:Proc.of the 20th Int'l Conf.on World Wide Web.Hyderabad:ACM, 2011.107-116.
    [35] Cai F, de Rijke M.A survey of query auto completion in information retrieval.Foundations and Trends® in Information Retrieval, 2016, 10(4):273-363.[doi:10.1561/1500000055]
    [36] Covington P, Adams J, Sargin E.Deep neural networks for Youtube recommendations.In:Proc.of the 2016 ACM Conf.on Recommender Systems.Boston:ACM, 2016.191-198.
    [37] Dodge J, Gane A, Zhang X, Bordes A, Chopra S, Miller AH, Szlam AD, Weston J.Evaluating prerequisite qualities for learning end-to-end dialog systems.arXiv:1511.06931, 2016.
    [38] Zhou KY, Prabhumoye S, Black AW.A dataset for document grounded conversations.In:Proc.of the 2018 Conf.on Empirical Methods in Natural Language Processing.Brussels:Association for Computational Linguistics, 2018.708-713.
    [39] Moghe N, Arora S, Banerjee S, Khapra MM.Towards exploiting background knowledge for building conversation systems.In:Proc.of the 2018 Conf.on Empirical Methods in Natural Language Processing.Brussels:Association for Computational Linguistics, 2018.2322-2332.
    [40] Dinan E, Roller S, Shuster K, Fan A, Auli M, Weston J.Wizard of Wikipedia:Knowledge-powered conversational agents.In:Proc.of the 2019 ICLR Conf.Blind Submission.2018.
    [41] Kang D, Balakrishnan A, Shah P, Crook P, Boureau YL, Weston J.Recommendation as a communication game:Self-supervised bot-play for goal-oriented dialogue.In:Proc.of the 2019 Conf.on Empirical Methods in Natural Language Processing and the 9th Int'l Joint Conf.on Natural Language Processing (EMNLP-IJCNLP).Hong Kong:Association for Computational Linguistics, 2019.1951-1961.
    [42] Moon S, Shah P, Kumar A, Subba R.OpenDialKG:Explainable conversational reasoning with attention-based walks over knowledge graphs.In:Proc.of the 57th Annual Meeting of the Association for Computational Linguistics.Florence:Association for Computational Linguistics, 2019.845-854.
    [43] Wu WQ, Guo Z, Zhou XY, Wu H, Zhang XY, Lian RZ, Wang HF.Proactive human-machine conversation with explicit conversation goal.In:Proc.of the 57th Annual Meeting of the Association for Computational Linguistics.Florence:Association for Computational Linguistics, 2019.3794-3804.
    [44] Zhou H, Zheng CJ, Huang KL, Huang ML, Zhu XY.KdConv:A Chinese multi-domain dialogue dataset towards multi-turn knowledge-driven conversation.In:Proc.of the 58th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics, 2020.7098-7108.
    [45] Liu ZM, Wang HF, Niu ZY, Wu H, Che WX, Liu T.Towards conversational recommendation over multi-type dialogs.In:Proc.of the 58th Annual Meeting of the Association for Computational Linguistics.ACL, 2020.1036-1049.
    [46] Zhou K, Zhou YH, Zhao WX, Wang XK, Wen JR.Towards topic-guided conversational recommender system.In:Proc.of the 28th Int'l Conf.on Computational Linguistics.Barcelona:Int'l Committee on Computational Linguistics, 2020.4128-4139.
    [47] Xu H, Moon S, Liu HL, Liu B, Shah P, Liu B, Yu P.User memory reasoning for conversational recommendation.In:Proc.of the 28th Int'l Conf.on Computational Linguistics.Barcelona:Int'l Committee on Computational Linguistics, 2020.5288-5308.
    [48] Hayati SA, Kang D, Zhu QXY, Shi WY, Yu Z.INSPIRED:Toward sociable recommendation dialog systems.In:Proc.of the 2020 Conf.on Empirical Methods in Natural Language Processing (EMNLP).Association for Computational Linguistics, 2020.8142-8152.
    [49] Chen QB, Lin JY, Zhang YC, Ding M, Cen YK, Yang HX, Tang J.Towards knowledge-based recommender dialog system.In:Proc.of the 2019 Conf.on Empirical Methods in Natural Language Processing and the 9th Int'l Joint Conf.on Natural Language Processing (EMNLP-IJCNLP).Hong Kong:Association for Computational Linguistics, 2019.1803-1813.
    [50] Zhou K, Zhao WX, Bian SQ, Zhou YH, Wen JR, Yu JS.Improving conversational recommender systems via knowledge graph based semantic fusion.In:Proc.of the 26th ACM SIGKDD Conf.on Knowledge Discovery and Data Mining.ACM, 2020.1006-1014.
    [51] Liao L, Ma YS, He XN, Hong RC, Chua TS.Knowledge-aware multimodal dialogue systems.In:Proc.of the 26th ACM Int'l Conf.on Multimedia.Seoul:Association for Computing Machinery, 2018.801-809.
    [52] Greco C, Suglia A, Basile P, Semeraro G.Converse-et-impera:Exploiting deep learning and hierarchical reinforcement learning for conversational recommender systems.In:Proc.of the 16th Int'l Conf.of the Italian Association for Artificial Intelligence on AI*IA 2017 Advances in Artificial Intelligence.Bari:Springer, 2017.372-386.
    [53] Lei WQ, He XN, Miao YS, Wu QY, Hong RC, Kan MY, Chua TS.Estimation-action-reflection:Towards deep interaction between conversational and recommender systems.In:Proc.of the 13th ACM Int'l Conf.on Web Search and Data Mining.Houston:ACM, 2020.304-312.
    [54] Papineni K, Roukos S, Ward T, Zhu WJ.BLEU:A method for automatic evaluation of machine translation.In:Proc.of the 40th Annual Meeting on Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics, 2002.311-318.
    [55] Szpakowicz S.Text Summarization Branches Out.Barcelona:Association for Computational Linguistics, 2004.
    [56] Jannach D, Manzoor A.End-to-end learning for conversational recommendation:A long way to go? In:Proc.of the IntRS Workshop at ACM RecSys2020.New York:ACM, 2020.72-76.
    [57] Chen MM, Beutel A, Covington P, Jain S, Chi EH.Top-K off-policy correction for a REINFORCE recommender system.In:Proc.of the 12th ACM Int'l Conf.on Web Search and Data Mining.Melbourne:Association for Computing Machinery, 2019.456-464.
    [58] 邓爱林, 朱扬勇, 施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报, 2003, 14(9):1621-1628.http://jos.org.cn/jos/article/abstract/20030917?st=article_issue Deng AL, Zhu YY, Shu BL.A collaborative filtering recommendation algorithm based on item rating prediction.Ruan Jian Xue Bao/Journal of Software, 2003, 14(9):1621-1628(in Chinese with English abstract).http://jos.org.cn/jos/article/abstract/20030917?st=article_issue
    [59] 黄震华, 张佳雯, 田春岐, 孙圣力, 向阳.基于排序学习的推荐算法研究综述.软件学报, 2016, 27(3):691-713.http://www.jos.org.cn/1000-9825/4948.htm Huang ZH, Zhang JW, Tian CQ, Sun SL, Xiang Y.Survey on learning-to-rank based recommendation Algorithms.Ruan Jian Xue Bao/Journal of Software, 2016, 27(3):691-713(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/4948.htm
    [60] Chen JW, Dong HD, Wang X, Feng FL, Wang M, He XN.Bias and debias in recommender system:A survey and future directions.arXiv:2010.03240v2, 2020.
    [61] Liu DG, Cheng PX, Dong ZH, He XQ, Pan WK, Ming Z.A general knowledge distillation framework for counterfactual recommendation via uniform data.In:Proc.of the 43rd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM, 2020.831-840.
    [62] Yang LQ, Yin C, Yuan X, Wang CY, Belongie S, Estrin D.Unbiased offline recommender evaluation for missing-not-at-random implicit feedback.Proc.of the 12th ACM Conf.on Recommender Systems.Vancouver:ACM, 2018.279-287.
    [63] Yu T, Shen YL, Jin HX.A visual dialog augmented interactive recommender system.In:Proc.of the 25th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.Anchorage:ACM, 2019.157-165.
    [64] Christakopoulou K, Beutel A, Li R, Jain S, Chi EH.Q&R:A two-stage approach toward interactive recommendation.In:Proc.of the 24th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.London:ACM, 2018.139-148.
    [65] Lei WQ, Zhang GY, He XN, Miao YS, Wang X, Chen L, Chua TS.Interactive path reasoning on graph for conversational recommendation.In:Proc.of the 26th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.ACM, 2020.2073-2083.
    [66] Zou J, Chen YF, Kanoulas E.Towards question-based recommender systems.In:Proc.of the 43rd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM, 2020.881-890.
    [67] Liao LZ, Takanobu R, Ma YS, Yang X, Huang ML, Chua TS.Deep conversational recommender in travel.arXiv:1907.00710v1, 2019.
    [68] Ren XH, Yin HZ, Chen T, Wang H, Hung NQV, Huang Z, Zhang XL.CRSAL:Conversational recommender systems with adversarial learning.ACM Transactions on Information Systems, 2020, 38(4):1-40.[doi:10.1145/3394592]
    [69] Gulcehre C, Ahn S, Nallapati R, Zhou BW, Bengio Y.Pointing the unknown words.In:Proc.of the 54th Annual Meeting of the Association for Computational Linguistics (Vol.1:Long Papers).Berlin:Association for Computational Linguistics, 2016.140-149.
    [70] Sedhain S, Menon AK, Sanner S, Xie LX.AutoRec:Autoencoders meet collaborative filtering.In:Proc.of the 2015 Int'l Conf.on World Wide Web.Florence:ACM, 2015.111-112.
    [71] Hamilton WL, Ying R, Leskovec J.Inductive representation learning on large graphs.In:Proc.of the 31st Int'l Conf.on Neural Information Processing Systems.Long Beach:ACM, 2017.1025-1035.
    [72] Ying R, He RN, Chen KF, Eksombatchai P, Hamilton WL, Leskovec J.Graph convolutional neural networks for web-scale recommender systems.In:Proc.of the 24th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.London:ACM, 2018.974-983.
    [73] Zou LX, Xia L, Gu YL, Zhao XY, Liu WD, Huang JX, Yin DW.Neural interactive collaborative filtering.In:Proc.of the 43rd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM, 2020.749-758.
    [74] Xu KR, Yang JX, Xu J, Gao S, Guo J, Wen JR.Adapting user preference to online feedback in multi-round conversational recommendation.In:Proc.of the 14th ACM Int'l Conf.on Web Search and Data Mining.ACM, 2021.364-372.
    [75] Wu G, Luo K, Sanner S, Soh H.Deep language-based critiquing for recommender systems.In:Proc.of the 13th ACM Conf.on Recommender Systems.Copenhagen:ACM, 2019.137-145.
    [76] McCarthy K, Reilly J, Mcginty L, Smyth B.Thinking positively-explanatory feedback for conversational recommender systems.In:Proc.of the ECCBR 2004 Workshops.2004.
    [77] Smyth B, McGinty L, Reilly J, McCarthy K.Compound critiques for conversational recommender systems.In:Proc.of the 2004 IEEE/WIC/ACM Int'l Conf.on Web Intelligence.Beijing:IEEE, 2004.145-151.
    [78] Viappiani P, Pu P, Faltings B.Conversational recommenders with adaptive suggestions.In:Proc.of the 2007 ACM Conf.on Recommender Systems.Minneapolis:ACM, 2007.89-96.
    [79] 陈碧毅, 黄玲, 王昌栋, 景丽萍.融合显式反馈与隐式反馈的协同过滤推荐算法.软件学报, 2020, 31(3):794-805.http://www.jos.org.cn/1000-9825/5897.htm Chen BY, Huang L, Wang CD, Jing LP.Explicit and implicit feedback based collaborative filtering algorithm.Ruan Jian Xue Bao/Journal of Software, 2020, 31(3):794-805(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5897.htm
    [80] 张青博, 王斌, 崔宁宁, 宋晓旭, 秦婧.基于注意力机制的规范化矩阵分解推荐算法.软件学报, 2020, 31(3):778-793.http://www.jos.org.cn/1000-9825/5913.htm Zhang QB, Wang B, Cui NN, Song XX, Qin Q.Attention-based regularized matrix factorization for recommendation.Ruan Jian Xue Bao/Journal of Software, 2020, 31(3):778-793(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5913.htm
    [81] 杜东舫, 徐童, 鲁亚男, 管楚, 刘淇, 陈恩红.基于信任机制下概率矩阵分解的用户评分预测.软件学报, 2018, 29(12):3747-3763.http://www.jos.org.cn/1000-9825/5322.htm Du DF, Xu T, Lu YN, Guan C, Liu Q, Chen EH.User rating prediction based on trust-driven probabilistic matrix factorization.Ruan Jian Xue Bao/Journal of Software, 2018, 29(12):3747-3763(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5322.htm
    [82] 刘华锋, 景丽萍, 于剑.融合社交信息的矩阵分解推荐方法研究综述.软件学报, 2018, 29(2):340-362.http://www.jos.org.cn/1000-9825/5391.htm Liu HF, Jing LP, Yu J.Survey of matrix factorization based recommendation methods by integrating social information.Ruan Jian Xue Bao/Journal of Software, 2018, 29(2):340-362(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5391.htm
    [83] Salakhutdinov R, Mnih A.Probabilistic matrix factorization.In:Proc.of the 20th Int'l Conf.on Neural Information Processing Systems.Vancouver:ACM, 2008.1257-1264.
    [84] He XN, Liao LZ, Zhang HW, Nie LQ, Chua TS.Neural collaborative filtering.In:Proc.of the 26th Int'l Conf.on World Wide Web.Perth:ACM, 2017.173-182.
    [85] Li LH, Chu W, Langford J, Schapire RE.A contextual-bandit approach to personalized news article recommendation.In:Proc.of the 19th Int'l Conf.on World Wide Web.Raleigh:ACM, 2010.661-670.
    [86] Zeng CQ, Wang Q, Mokhtari S, Tao L.Online context-aware recommendation with time varying multi-armed bandit.In:Proc.of the 22nd ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.San Francisco:ACM, 2016.2025-2034.
    [87] Chapelle O, Li LH.An empirical evaluation of thompson sampling.In:Proc.of the 24th Int'l Conf.on Neural Information Processing Systems.Granada:Curran Associates Inc., 2011.2249-2257.
    [88] Cheng HT, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong LC, Jain V, Liu XB, Shah H.Wide & deep learning for recommender systems.In:Proc.of the 1st Workshop on Deep Learning for Recommender Systems.Boston:ACM, 2016.7-10.
    [89] Hu YJ, Da Q, Zeng AX, Yu Y, Xu YH.Reinforcement learning to rank in E-commerce search engine:Formalization, analysis, and application.In:Proc.of the 24th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.London:ACM, 2018.368-377.
    [90] Zheng GJ, Zhang FZ, Zheng ZH, Yang X, Yuan NJ, Xie X, Li ZH.DRN:A deep reinforcement learning framework for news recommendation.In:Proc.of the 2018 World Wide Web Conf.Lyon:Republic and Canton of Geneva, 2018.167-176.
    [91] Zhao XY, Xia L, Zhang L, Ding ZY, Yin DW, Tang JL.Deep reinforcement learning for page-wise recommendations.In:Proc.of the 12th ACM Conf.on Recommender Systems.Vancouver:ACM, 2018.95-103.
    [92] Mahmood T, Ricci F.Learning and adaptivity in interactive recommender systems.In:Proc.of the 9th Int'l Conf.on Electronic Commerce:The Wireless World of Electronic Commerce.Minneapolis:ACM, 2007.75-84.
    [93] Yu X, Ren X, Sun YZ, Gu QQ, Sturt B, Khandelwal U, Norick B, Han JW.Personalized entity recommendation:A heterogeneous information network approach.In:Proc.of the 7th ACM Int'l Conf.on Web Search and Data Mining.New York:ACM, 2014.283-292.
    [94] Zhang FZ, Yuan NJ, Lian DF, Xie X, Ma WY.Collaborative knowledge base embedding for recommender systems.In:Proc.of the 22nd ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data.San Francisco:ACM, 2016.353-362.
    [95] Wang HW, Zhang FZ, Wang JL, Miao Z, Guo M.RippleNet:Propagating user preferences on the knowledge graph for recommender systems.In:Proc.of the 27th ACM Int'l Conf.on Information and Knowledge Management.Torino:ACM, 2018.417-426.
    [96] 葛尧, 陈松灿.面向推荐系统的图卷积网络.软件学报, 2020, 31(4):1101-1112.http://www.jos.org.cn/1000-9825/5928.htm Ge Y, Chen SC.Graph convolutional network for recommender systems.Ruan Jian Xue Bao/Journal of Software, 2020, 31(4):1101-1112(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/4923.htm
    [97] 艾磊, 赵辉.基于知识的推荐系统用户交互模型研究.软件导刊, 2015, 14(3):15-17.[doi:10.11907/rjdk.143999] Ai L, Zhao H.A user interaction model for knowledge-based recommender system.Software Guide, 2015, 14(3):15-17(in Chinese with English abstract).[doi:10.11907/rjdk.143999]
    [98] Kipf TN, Welling M.Semi-supervised classification with graph convolutional networks.arXiv:1609.02907, 2016.
    [99] Schlichtkrull M, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M.Modeling relational data with graph convolutional networks.arXiv:1703.06103, 2018.
    [100] Misu T, Sugiura K, Ohtake K, Hori C, Kashioka H, Kawai H, Nakamura S.Modeling spoken decision making dialogue and optimization of its dialogue strategy.In:Proc.of the 2010 SIGDIAL Conf.Tokyo:Association for Computational Linguistics, 2010.221-224.
    [101] Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever I, Abbeel P.RL2:Fast reinforcement learning via slow reinforcement learning.arXiv:1611.02779v2, 2016.
    [102] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M.Playing Atari with deep reinforcement learning.arXiv:1312.5602, 2013.
    [103] Finn C, Abbeel P, Levine S.Model-agnostic meta-learning for fast adaptation of deep networks.In:Proc.of the 34th Int'l Conf.on Machine Learning.Sydney:ACM, 2017.1126-1135.
    [104] Su SY, Li XJ, Gao JF, Liu JJ, Chen YN.Discriminative deep dyna-Q:Robust planning for dialogue policy learning.In:Proc.of the Conf.on Empirical Methods in Natural Language Processing.2018.
    [105] Abel D, Salvatier J, Stuhlmüller A, Evans O.Agent-agnostic human-in-the-loop reinforcement learning.arXiv:1701.04079, 2017.
    [106] 周芳芳, 高飞, 刘勇刚, 梁兴, 赵颖.基于密度-距离图的交互式体数据分类方法.软件学报, 2016, 27(5):1061-1073.http://www.jos.org.cn/1000-9825/4961.htm Zhou FF, Gao F, Liu YG, Liang X, Zhao Y.Interactive volume data classification based on density-distance graph.Ruan Jian Xue Bao/Journal of Software, 2016, 27(5):1061-1073(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/4961.htm
    [107] Ross S, Gordon GJ, Bagnell JA.A reduction of imitation learning and structured prediction to no-regret online learning.arXiv:1011.0686v3, 2011.
    [108] Wu YX, Li XJ, Liu JJ, Gao JF, Yang YM.Switch-based active deep dyna-Q:Efficient adaptive planning for task-completion dialogue policy learning.Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):7289-7296.[doi:10.1609/aaai.v33i01.33017289]
    [109] Zhang ZR, Li XJ, Gao JF, Chen EH.Budgeted policy learning for task-oriented dialogue systems.In:Proc.of the 57th Annual Meeting of the Association for Computational Linguistics.Florence:ACL, 2019.3742-3751.
    [110] Zhang S, Balog K.Evaluating conversational recommender systems via user simulation.In:Proc.of the 26th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.ACM, 2020.1512-1520.
    [111] Schatzmann J, Thomson B, Weilhammer K, Ye H, Young S.Agenda-based user simulation for bootstrapping a POMDP dialogue system.In:Proc.of the Human Language Technologies 2007:The Conf.of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers.Rochester:NAACL, 2007.149-152.
    [112] Zhou K, Wang XL, Zhou YH, Shang CZ, Cheng Y, Zhao WX, Li YL, Wen JR.CRSLab:An open-source toolkit for building conversational recommender system.In:Proc.of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Int'l Joint Conf.on Natural Language Processing:System Demonstrations.Association for Computational Linguistics, 2021.185-193.
    [113] Su PH, Budzianowski P, Ultes S, Gašić M, Young S.Sample-efficient actor-critic reinforcement learning with supervised data for dialogue management.In:Proc.of the 18th Annual SIGdial Meeting on Discourse and Dialogue.Saarbrücken:Association for Computational Linguistics, 2017.147-157.
    [114] Ma WC, Takanobu R, Tu MH, Huang ML.Bridging the gap between conversational reasoning and interactive recommendation.arXiv:2010.10333v1, 2020.
    [115] Cui C, Wang WJ, Song XM, Huang ML, Xu XS, Nie LQ.User attention-guided multimodal dialog systems.In:Proc.of the 42nd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.Paris:ACM, 2019.445-454.
    [116] Zhang Z, Liao LZ, Huang ML, Zhu XY, Chua TS.Neural multimodal belief tracker with adaptive attention for dialogue systems.In:Proc.of the World Wide Web Conf.San Francisco:ACM, 2019.2401-2412.
    [117] Pittermann J, Pittermann A, Minker W.Emotion recognition and adaptation in spoken dialogue systems.International Journal of Speech Technology, 2010, 13(1):49-60.[doi:10.1007/s10772-010-9068-y]
    [118] Steck H.Item popularity and recommendation accuracy.In:Proc.of the 5th ACM Conf.on Recommender Systems.Chicago:ACM, 2011.125-132.
    [119] Abdollahpouri H, Mansoury M.Multi-sided exposure bias in recommendation.In:Proc.of the 2020 ACM KDD Int'l Workshop on Industrial Recommendation Systems.Chicago:ACM, 2020.
    [120] Zhang YF, Zhang HC, Zhang M, Liu YQ, Ma SP.Do users rate or review?:Boost phrase-level sentiment labeling with review-level sentiment classification.In:Proc.of the 37th Int'l ACM SIGIR Conf.on Research & Development in Information Retrieval.Gold Coast:ACM, 2014.1027-1030.
    [121] Liu YM, Cao XZ, Yong Y.Are you influenced by others when rating?:Improve rating prediction by conformity modeling.In:Proc.of the 10th ACM Conf.on Recommender Systems.Boston:ACM, 2016.269-272.
    [122] Huang J, Oosterhuis H, de Rijke M, van Hoof H.Keeping dataset biases out of the simulation:A debiased simulator for reinforcement learning based recommender systems.In:Proc.of the 14th ACM Conf.on Recommender Systems.ACM, 2020.190-199.
    [123] Pradel B, Usunier N, Gallinari P.Ranking with non-random missing ratings:Influence of popularity and positivity on evaluation metrics.In:Proc.of the 6th ACM Conf.on Recommender Systems.Dublin:ACM, 2012.147-154.
    [124] Steck H.Evaluation of recommendations:Rating-prediction and ranking.In:Proc.of the 7th ACM Conf.on Recommender Systems.Hong Kong:ACM, 2013.213-220.
    [125] Hernández-Lobato JM, Houlsby N, Ghahramani Z.Probabilistic matrix factorization with non-random missing data.In:Proc.of the 31st Int'l Conf.on Machine Learning.Beijing:PMLR, 2014.1512-1520.
    [126] Marlin BM, Zemel RS, Roweis S, Slaney M.Collaborative filtering and the missing at random assumption.In:Proc.of the 23rd Conf.on Uncertainty in Artificial Intelligence.Vancouver:AUAI, 2007.267-275.
    [127] Aman A, Kenta T, Ivan Z, Thorsten J.A general framework for counterfactual learning-to-rank.In:Proc.of the 42nd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.2019.5-14.
    [128] Sun WL, Khenissi S, Nasraoui O, Shafto P.Debiasing the human-recommender system feedback loop in collaborative filtering.In:Proc.of the 2019 World Wide Web Conf.San Francisco:ACM, 2019.645-651.
    [129] Sinha A, Gleich DF, Ramani K.Deconvolving feedback loops in recommender systems.In:Proc.of the 30th Conf.on Neural Information Processing Systems 29(NIPS 2016).Barcelona:NIPS, 2016.
    [130] Cai WL, Chen L.Predicting user intents and satisfaction with dialogue-based conversational recommendations.In:Proc.of the 28th ACM Conf.on User Modeling, Adaptation and Personalization.Genoa:ACM, 2020.33-42.
    [131] Ma C, Kang P, Liu X.Hierarchical gating networks for sequential recommendation.In:Proc.of the 25th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.Anchorage:Association for Computing Machinery, 2019.825-833.
    [132] Wang W, Zhang W, Liu SK, Liu Q, Zhang B, Lin LY, Zha HY.Beyond clicks:Modeling multi-relational item graph for session-based target behavior prediction.In:Proc.of the 2020 Web Conf.Taipei:ACM, 2020.3056-3062.
    [133] Wang X, Xu YK, He XN, Cao YX, Wang M, Chua TS.Reinforced negative sampling over knowledge graph for recommendation.In:Proc.of the 2020 Web Conf.Taipei:ACM, 2020.99-109.
    [134] Chen JW, Wang C, Zhou S, Shi QH, Feng Y, Chen C.Samwalker:Social recommendation with informative sampling strategy.In:Proc.of the 2019 World Wide Web Conf.San Francisco:ACM, 2019.228-239.
    [135] Wang X, Jin HY, Zhang A, He XN, Xu T, Chua TS.Disentangled graph collaborative filtering.In:Proc.of the 43rd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.ACM, 2020.1001-1010.
    [136] Ma JX, Zhou C, Cui P, Yang HX, Zhu WW.Learning disentangled representations for recommendation.arXiv:1910.14238v1, 2019.
    [137] Zhang XY, Xie H, Li H, Lui JCS.Conversational contextual bandit:Algorithm and application.In:Proc.of the Web Conf.2020.Taipei:ACM, 2020.662-672.
    [138] 邵英玮, 张敏, 马为之, 王晨阳, 刘奕群, 马少平.融合商品潜在互补性发现的个性化推荐方法.软件学报, 2020, 31(4):1090-1100.http://www.jos.org.cn/1000-9825/5925.htm Shao YW, Zhang M, Ma WZ, Wang CY, Liu YQ, Ma SP.Integrating latent item-item complementarity with personalized recommendation systems.Ruan Jian Xue Bao/Journal of Software, 2020, 31(4):1090-1100(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5925.htm
    [139] Liu WW, Liu Q, Tang RM, Chen JY, He XQ, Heng PA.Personalized Re-ranking with Item Relationships for E-commerce.In:Proc.of the 29th ACM Int'l Conf.on Information & Knowledge Management.ACM, 2020.925-934.
    [140] McAuley J, Pandey R, Leskovec J.Inferring networks of substitutable and complementary products.In:Proc.of the 21st ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Sydney:ACM, 2015.785-794.
    [141] Wan MT, Wang D, Liu J, Bennett P, McAuley J.Representing and recommending shopping baskets with complementarity, compatibility and loyalty.In:Proc.of the 27th ACM Int'l Conf.on Information and Knowledge Management.Torino:ACM, 2018.1133-1142.
    [142] Wu W, Yan R.Deep chit-chat:Deep learning for chatbots.In:Proc.of the 42nd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.Melbourne:Association for Computational Linguistics, 2019.1413-1414.
    [143] Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA.Deep reinforcement learning:A brief survey.IEEE Signal Processing Magazine, 2017, 34(6):26-38.
    [144] Ng AY, Russell SJ. Algorithms for inverse reinforcement learning. In:Proc. of the 17th Int'l Conf. on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc., 2000. 663-670.[doi:10.5555/645529.657801]
    [145] Wang JX, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo JZ, Munos R, Blundell C, Kumaran D, Botvinick M. Learning to reinforcement learn. arXiv:1611.05763, 2016.
    相似文献
    引证文献
引用本文

赵梦媛,黄晓雯,桑基韬,于剑.对话推荐算法研究综述.软件学报,2022,33(12):4616-4643

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-22
  • 最后修改日期:2021-06-28
  • 在线发布日期: 2021-11-24
  • 出版日期: 2022-12-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号