面向大数据处理框架的JVM优化技术综述
作者:
作者简介:

汪钇丞(1998-), 男, 博士生, 主要研究领域为大数据系统, 内存管理.;曾鸿斌(1998-), 男, 硕士生, 主要研究领域为大数据系统, 内存管理.;许利杰(1987-), 男, 博士, 副研究员, CCF专业会员, 主要研究领域为大数据系统, 分布式系统, 软件工程.;王伟(1982-), 男, 研究员, 博士生导师, CCF高级会员, 主要研究领域为分布式系统软件.;魏峻(1970-), 男, 研究员, 博士生导师, CCF高级会员, 主要研究领域为软件工程, 分布式计算.;黄涛(1965-), 男, 博士, 研究员, 博士生导师, CCF高级会员, 主要研究领域为网络分布式计算, 软件工程.

通讯作者:

许利杰,E-mail:xulijie@otcaix.iscas.ac.cn;王伟,E-mail:wangwei@otcaix.iscas.ac.cn

基金项目:

国家重点研发计划(2017YFB1001804); 国家自然科学基金(61802377); 中国科学院青年创新促进会


Survey on JVM Optimization for Big Data Processing Frameworks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    当前, 以Hadoop、Spark为代表的大数据处理框架, 已经在学术界和工业界被广泛应用于大规模数据的处理和分析. 这些大数据处理框架采用分布式架构, 使用Java、Scala等面向对象语言编写, 在集群节点上以Java虚拟机(JVM)为运行时环境执行计算任务, 因此依赖JVM的自动内存管理机制来分配和回收数据对象. 然而, 当前的JVM并不是针对大数据处理框架的计算特征设计的, 在实际运行大数据应用时经常出现垃圾回收(GC)时间长、数据对象序列化和反序列化开销大等问题. 在一些大数据场景下, JVM的垃圾回收耗时甚至超过应用整体运行时间的50%, 已经成为大数据处理框架的性能瓶颈和优化热点. 对近年来相关领域的研究成果进行了系统性综述: (1)总结了大数据应用在JVM中运行时性能下降的原因; (2)总结了现有面向大数据处理框架的JVM优化技术, 对相关优化技术进行了层次划分, 并分析比较了各种方法的优化效果、适用范围、使用负担等优缺点; (3)探讨了JVM未来的优化方向, 有助于进一步提升大数据处理框架的性能.

    Abstract:

    Nowadays, the big data processing frameworks such as Hadoop and Spark have been widely used for data processing and analysis in industry and academia. These big data processing frameworks adopt the distributed architecture, generally developed in object-oriented languages like Java and Scala. These frameworks take Java virtual machine (JVM) as the runtime environment on cluster nodes to execute computing tasks, i.e., relying on JVM’s automatic memory management mechanism to allocate and reclaim data objects. However, current JVMs are not designed for the big data processing frameworks, leading to many problems such as long garbage collection (GC) time and high cost of data serialization and deserialization. As reported by users and researchers, GC time can take even more than 50% of the overall application execution time in some cases. Therefore, JVM memory management problem has become the performance bottleneck of the big data processing frameworks. This study systematically reviews the recent JVM optimization research work for big data processing frameworks. The contributions include the following three outcomes. First, the root causes of the performance degradation of big data applications when executed in JVM are summarized. Second, the existing JVM optimization techniques are summarized for big data processing frameworks. These methods are also classified into categories, the advantages and disadvantages of each are compared and analyzed, including the method’s optimization effects, application scopes, and burdens on users. Finally, some future JVM optimization directions are proposed, which will help the performance improvement of big data processing frameworks.

    参考文献
    [1] Dean J, Ghemawat S. MapReduce:Simplified data processing on large clusters. Communications of the ACM, 2008, 51(1):107-113.[doi:10.1145/1327452.1327492]
    [2] Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad:Distributed data-parallel programs from sequential building blocks. In:Proc. of the 2nd ACM SIGOPS/EuroSys European Conf. on Computer Systems. Lisbon:ACM, 2007. 59-72.
    [3] Apache hadoop. 2021. http://hadoop.apache.org/
    [4] Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark:Cluster computing with working sets. In:Proc. of the 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10). USENIX Association, 2010. 1-7.
    [5] Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K. Apache flinkTM:Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 36(4):28-38.
    [6] Bu YY, Borkar V, Xu GQ, Carey MJ. A bloat-aware design for big data applications. ACM SIGPLAN Notices, 2013, 48(11):119-130.[doi:10.1145/2555670.2466485]
    [7] Nguyen K, Fang L, Navasca C, Xu GQ, Demsky B, Lu S. Skyway:Connecting managed heaps in distributed big data systems. ACM SIGPLAN Notices, 2018, 53(2):56-69.[doi:10.1145/3296957.3173200]
    [8] Lion D, Chiu A, Sun HL, Zhuang X, Grcevski N, Yuan D. Don't get caught in the cold, warm-up your JVM:Understand and eliminate JVM warm-up overhead in data-parallel systems. In:Proc. of the 12th USENIX Symp. on Operating Systems Design and Implementation. Savannah:USENIX Association, 2016. 383-400.
    [9] Xu LJ, Guo T, Dou WS, Wang W, Wei J. An experimental evaluation of garbage collectors on big data applications. Proceedings of the VLDB Endowment, 2019, 12(5):570-583.[doi:10.14778/3303753.3303762]
    [10] 罗乐, 刘轶, 钱德沛. 内存计算技术研究综述. 软件学报, 2016, 27(8):2147-2167. http://www.jos.org.cn/1000-9825/5103.htm
    Luo L, Liu Y, Qian DP. Survey on in-memory computing technology. Ruan Jian Xue Bao/Journal of Software, 2016, 27(8):2147-2167 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5103.htm
    [11] 嵇智源, 潘巍. 面向大数据的内存数据管理研究现状与展望. 计算机工程与设计, 2014, 35(10):3499-3506.[doi:10.16208/j.issn1000-7024.2014.10.015]
    Ji ZY, Pan W. Present research status and prospects of in-memory data management in big data era. Computer Engineering and Design, 2014, 35(10):3499-3506 (in Chinese with English abstract).[doi:10.16208/j.issn1000-7024.2014.10.015]
    [12] Bruno R, Ferreira P. A study on garbage collection algorithms for big data environments. ACM Computing Surveys, 2019, 51(1):1-35.[doi:10.1145/3156818]
    [13] 张雄, 陆路, 石宣化. 分布式数据处理系统内存对象管理问题分析. 中兴通讯技术, 2016, 22(2):19-22.[doi:10.3969/j.issn.1009-6868.2016.02.005]
    Zhang X, Lu L, Shi XH. In-memory data-object management in distributed data processing system. Zte Technology Journal, 2016, 22(2):19-22 (in Chinese with English abstract).[doi:10.3969/j.issn.1009-6868.2016.02.005]
    [14] 程学旗, 靳小龙, 王元卓, 郭嘉丰, 张铁赢, 李国杰. 大数据系统和分析技术综述. 软件学报, 2014, 25(9):1889-1908. http://www.jos.org.cn/1000-9825/4674.htm
    Cheng XQ, Jin XL, Wang YZ, Guo JF, Zhang TY, Li GJ. Survey on big data system and analytic technology. Ruan Jian Xue Bao/Journal of Software, 2014, 25(9):1889-1908 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4674.htm
    [15] Jones R, Hosking A, Moss E. The Garbage Collection Handbook:The Art of Automatic Memory Management. Boca Raton:CRC Press, 2016.
    [16] Java platform, standard edition hotspot virtual machine garbage collection tuning guide 3 generations. 2022. https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/generations.html
    [17] Detlefs D, Flood C, Heller S, Printezis T. Garbage-first garbage collection. In:Proc. of the 4th Int'l Symp. on Memory Management. Vancouver:ACM, 2004. 37-48.
    [18] Spark executor GC taking long. 2018. http://stackoverflow.com/questions/38965787/sparkexecutor-gc-taking-long
    [19] Maas M, Asanović K, Harris T, Kubiatowicz J. Taurus:A holistic language runtime system for coordinating distributed managed-language applications. ACM SIGPLAN Notices, 2016, 51(4):457-471.[doi:10.1145/2954679.2872386]
    [20] Wu MY, Zhao ZL, Yang YF, Li HY, Chen HB, Zang BY, Guan HB, Li SH, Lu CS, Zhang TB. Platinum:A CPU-efficient concurrent garbage collector for tail-reduction of interactive services. In:Proc. of the 2020 USENIX Annual Technical Conf. USENIX Association, 2020. 159-172.
    [21] Maas M, Harris T, Asanović K, Kubiatowicz J. Trash day:Coordinating garbage collection in distributed systems. In:Proc. of the 15th Workshop on Hot Topics in Operating Systems. Kartause Ittingen:HotOS, 2015.
    [22] Navasca C, Cai C, Nguyen K, Demsky B, Lu S, Kim M, Xu GH. Gerenuk:Thin computation over big native data using speculative program transformation. In:Proc. of the 27th ACM Symp. on Operating Systems Principles. Huntsville:ACM, 2019. 538-553.
    [23] Xu LJ. OOM error caused by large array allocation in G1. 2017. http://mail.openjdk.java.net/pipermail/hotspot-gc-use/2017-November/002725.html
    [24] Nguyen K, Wang K, Bu YY, Fang L, Hu JF, Xu GQ. Facade:A compiler and runtime for (almost) object-bounded big data applications. ACM SIGARCH Computer Architecture News, 2015, 43(1):675-690.[doi:10.1145/2786763.2694345]
    [25] Suo K, Rao J, Jiang H, Srisa-An W. Characterizing and optimizing hotspot parallel garbage collection on multicore systems. In:Proc. of the 13th EuroSys Conf. Porto:ACM, 2018. 1-15.
    [26] Yu Y, Lei TY, Zhang WH, Chen HB, Zang BY. Performance analysis and optimization of full garbage collection in memory-hungry environments. ACM SIGPLAN Notices, 2016, 51(7):123-130.[doi:10.1145/3007611.2892251]
    [27] Maas M, Asanović K, Kubiatowicz J. Return of the runtimes:Rethinking the language runtime system for the cloud 3.0 era. In:Proc. of the 16th Workshop on Hot Topics in Operating Systems. Whistler:ACM, 2017. 138-143.
    [28] 丁梦苏, 陈世敏. 轻量级大数据运算系统Helius. 计算机应用, 2017, 37(2):305-310.[doi:10.11772/j.issn.1001-9081.2017.02.0305]
    Ding MS, Chen SM. Helius:A lightweight big data processing system. Journal of Computer Application, 2017, 37(2):305-310 (in Chinese with English abstract).[doi:10.11772/j.issn.1001-9081.2017.02.0305]
    [29] Kedia P, Costa M, Parkinson M, Vaswani K, Vytiniotis D, Blankstein A. Simple, fast, and safe manual memory management. In:Proc. of the 38th ACM SIGPLAN Conf. on Programming Language Design and Implementation. Barcelona:ACM, 2017. 233-247.
    [30] Herodotou H, Chen YX, Lu JH. A survey on automatic parameter tuning for big data processing systems. ACM Computing Surveys, 2021, 53(2):1-37.[doi:10.1145/3381027]
    [31] Xu LN, Li M, Zhang L, Butt AR, Wang YD, Hu ZZ. MEMTUNE:Dynamic memory management for in-memory data analytic platforms. In:Proc. of the 2016 IEEE Int'l Parallel and Distributed Processing Symp. (IPDPS). Chicago:IEEE, 2016. 383-392.
    [32] Wang GL, Xu JG, He B. A novel method for tuning configuration parameters of spark based on machine learning. In:Proc. of the 18th IEEE Int'l Conf. on High Performance Computing and Communications; the 14th IEEE Int'l Conf. on Smart City; the 2nd IEEE Int'l Conf. on Data Science and Systems (HPCC/SmartCity/DSS). Sydney:IEEE, 2016. 586-593.
    [33] Li MY, Liu ZQ, Shi XH, Jin H. ATCS:Auto-tuning configurations of big data frameworks based on generative adversarial nets. IEEE Access, 2020, 8:50485-50496.[doi:10.1109/ACCESS.2020.2979812]
    [34] Zhang X, Zeng LX, Shi XH, Wu S, Xie X, Jin H. HCOpt:An automatic optimizer for configuration parameters of Hadoop. In:Proc. of the 2nd Int'l Conf. on Human Centered Computing. Colombo:Springer, 2016. 599-610.
    [35] Yu ZB, Bei ZD, Qian XH. Datasize-aware high dimensional configurations auto-tuning of in-memory cluster computing. In:Proc. of the 23rd Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. Williamsburg:ACM, 2018. 564-577.
    [36] Zhu YQ, Liu JX, Guo MY, Ma WL, Bao YG. Acts in need:Automatic configuration tuning with scalability guarantees. In:Proc. of the 8th Asia-Pacific Workshop on Systems. Mumbai:ACM, 2017. 1-8.
    [37] Jayasena S, Fernando M, Rusira T, Perera C, Philips C. Auto-tuning the java virtual machine. In:Proc. of the 2015 IEEE Int'l Parallel and Distributed Processing Symp. Workshop. Hyderabad:IEEE, 2015. 1261-1270.
    [38] Singer J, Kovoor G, Brown G, Luján M. Garbage collection auto-tuning for Java mapreduce on multi-cores. ACM SIGPLAN Notices, 2011, 46(11):109-118.[doi:10.1145/2076022.1993495]
    [39] Herodotou H, Dong F, Babu S. No one (cluster) size fits all:Automatic cluster sizing for data-intensive analytics. In:Proc. of the 2nd ACM Symp. on Cloud Computing. Cascais:ACM, 2011. 1-14.
    [40] Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin FB, Babu S. Starfish:A self-tuning system for big data analytics. In:Proc. of the 5th Biennial Conf. on Innovative Data Systems Research. Asilomar:CIDR, 2011. 261-272.
    [41] Tan ZL, Babu S. Tempo:Robust and self-tuning resource management in multi-tenant parallel databases. Proceedings of the VLDB Endowment, 2016, 9(10):720-731.[doi:10.14778/2977797.2977799]
    [42] Bao L, Liu X, Chen WZ. Learning-based automatic parameter tuning for big data analytics frameworks. In:Proc. of the 2018 IEEE Int'l Conf. on Big Data. Seattle:IEEE, 2018. 181-190.
    [43] Zhu YQ, Liu JX, Guo MY, Bao YG, Ma WL, Liu ZY, Song KP, Yang YC. Bestconfig:Tapping the performance potential of systems via automatic configuration tuning. In:Proc. of the 2017 Symp. on Cloud Computing. Santa Clara:ACM, 2017. 338-350.
    [44] Li M, Zeng LZ, Meng SC, Tan J, Zhang L, Butt AR, Fuller N. MRONLINE:Mapreduce online performance tuning. In:Proc. of the 23rd Int'l Symp. on High-performance Parallel and Distributed Computing. Vancouver:ACM, 2014. 165-176.
    [45] Kunjir M, Babu S. Black or white? How to develop an autotuner for memory-based analytics. In:Proc. of the 2020 ACM SIGMOD Int'l Conf. on Management of Data. Portland:ACM, 2020. 1667-1683.
    [46] Lu L, Shi XH, Zhou YL, Zhang X, Jin H, Pei C, He LG, Geng YZ. Lifetime-based memory management for distributed data processing systems. Proceedings of the VLDB En卤礀洀瀀??漀渀??攀洀漀爀礀??愀渀愀最攀洀攀渀琀??倀栀漀攀渀椀砀??????? ???????????戀爀?嬀??崀?圀甀??夀???栀攀渀?????娀栀甀????娀愀渀最??夀???甀愀渀???????倀攀爀猀椀猀琀??渀?攀昀昀椀挀椀攀渀琀????愀猀猀椀猀琀攀搀?氀愀稀礀?瀀攀爀猀椀猀琀攀渀挀礀?昀爀愀洀攀眀漀爀欀?昀漀爀?爀攀猀椀氀椀攀渀琀??愀瘀愀?愀瀀瀀氀椀挀愀琀椀漀渀猀?漀渀?一嘀????渀?倀爀漀挀??漀昀?琀栀攀???琀栀?????匀??倀??一?匀??伀倀匀??渀琀?氀??漀渀昀??漀渀?嘀椀爀琀甀愀氀??砀攀挀甀琀椀漀渀??渀瘀椀爀漀渀洀攀渀琀猀???愀甀猀愀渀渀攀??????? ? ????????戀爀?嬀??崀?嘀漀氀漀猀?????愀最愀氀栀愀攀猀?????栀攀爀欀愀猀漀瘀愀?????椀????儀甀愀爀琀稀???氀椀最栀琀眀攀椀最栀琀?瀀攀爀昀漀爀洀愀渀挀攀?攀洀甀氀愀琀漀爀?昀漀爀?瀀攀爀猀椀猀琀攀渀琀?洀攀洀漀爀礀?猀漀昀琀眀愀爀攀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀??渀渀甀愀氀??椀搀搀氀攀眀愀爀攀??漀渀昀??嘀愀渀挀漀甀瘀攀爀??????? ???????????戀爀?嬀??崀??欀爀愀洀?匀??匀愀爀琀漀爀??????挀?椀渀氀攀礀??匀???攀挀欀栀漀甀琀????圀爀椀琀攀?爀愀琀椀漀渀椀渀最?最愀爀戀愀最攀?挀漀氀氀攀挀琀椀漀渀?昀漀爀?栀礀戀爀椀搀?洀攀洀漀爀椀攀猀??????匀??倀??一?一漀琀椀挀攀猀??? ????????????????嬀搀漀椀?? ?????????????????????崀?戀爀?嬀??崀?圀甀??夀??娀栀愀漀?娀????椀??夀???椀??吀???栀攀渀?????娀愀渀最??夀???甀愀満??????獓瀀爀敧獟獹漀??牭攀眀楳湥最??慎発慞?晧潶牙?浣潞牵救?溘潏湥?瘀漀汎慖瑹楛氀楏瑠祹?眀椀琀栀?渀漀渀?瘀漀氀愀琀椀氀攀?洀攀洀漀爀礀???渀?倀爀漀挀??漀昀?琀栀攀???爀搀??渀琀?氀??漀渀昀??漀渀??爀挀栀椀琀攀挀琀甀爀愀氀?匀甀瀀瀀漀爀琀?昀漀爀?倀爀漀最爀愀洀洀椀渀最??愀渀最甀愀最攀猀?愀渀搀?伀瀀攀爀愀琀椀渀最?匀礀猀琀攀洀猀??圀椀氀氀椀愀洀猀戀甀爀最??????? ????? ?????戀爀?嬀??崀??爀甀渀漀?刀???攀爀爀攀椀爀愀?倀??匀礀渀礀琀猀欀礀?刀???礀搀漀爀攀渀挀栀礀欀?吀??刀愀漀?????甀愀渀最????圀甀?匀???礀渀愀洀椀挀?瘀攀爀琀椀挀愀氀?洀攀洀漀爀礀?猀挀愀氀愀戀椀氀椀琀礀?昀漀爀?伀瀀攀渀????挀氀漀甀搀?愀瀀瀀氀椀挀愀琀椀漀渀猀???渀?倀爀漀挀??漀昀?琀栀攀?? ???????匀??倀??一??渀琀?氀?匀礀洀瀀??漀渀??攀洀漀爀礀??愀渀愀最攀洀攀渀琀??倀栀椀氀愀搀攀氀瀀栀椀愀??????? ???????? ??戀爀?嬀??崀??漀甀洀愀猀????一椀欀愀猀?????愀欀攀眀??????漀琀猀攀氀椀搀椀猀?????琀琀眀漀漀搀?????氀洀爀漀琀栀?????氀漀甀爀椀猀?????漀甀琀爀椀猀?一???漀漀搀愀挀爀攀?????爀漀栀洀愀渀渀?????愀爀愀欀漀猀琀愀猀?嘀???漀甀琀猀漀甀爀愀欀椀猀?倀???攀爀猀琀攀渀?????甀樀??????渀????刀甀猀琀愀搀????吀栀漀洀猀漀渀????吀漀洀??????猀????嘀攀猀琀攀爀欀樀愀攀爀????圀攀戀戀攀爀????娀栀愀渀最?夀???漀稀椀爀椀猀?一????吀椀??伀唀???渀愀戀氀椀渀最?琀栀攀?渀攀砀琀?最攀渀攀爀愀琀椀漀渀?漀昀?挀氀漀甀搀?愀瀀瀀氀椀挀愀琀椀漀渀猀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀???????渀琀?氀??漀渀昀??漀渀??椀猀琀爀椀戀甀琀攀搀??漀洀瀀甀琀椀渀最?匀礀猀琀攀洀猀??????匀????琀氀愀渀琀愀???????? ???????????????戀爀?嬀??崀??漀猀琀愀???????椀猀愀氀攀?????椀甀????匀椀氀瘀愀?????爀愀渀欀攀?????爀甀洀氀攀礀?倀???洀漀爀愀?????伀瀀琀椀洀椀稀愀琀椀漀渀?漀昀?最攀渀漀洀椀挀猀?愀渀愀氀礀猀椀猀?瀀椀瀀攀氀椀渀攀?昀漀爀?猀挀愀氀愀戀氀攀?瀀攀爀昀漀爀洀愀渀挀攀?椀渀?愀?挀氀漀甀搀?攀渀瘀椀爀漀渀洀攀渀琀???渀?倀爀漀挀??漀昀?琀栀攀?? ?????????渀琀?氀??漀渀昀??漀渀??椀漀椀渀昀漀爀洀愀琀椀挀猀?愀渀搀??椀漀洀攀搀椀挀椀渀攀??????????愀搀爀椀搀???????? ???????????????戀爀?嬀? 崀??渀搀攀爀猀漀渀????匀洀椀琀栀?匀??匀甀渀搀愀爀愀洀?一???愀瀀漀琀??????????娀栀愀漀?娀????甀氀氀漀漀爀?匀??匀愀琀椀猀栀?一??圀椀氀氀欀攀?吀????爀椀搀最椀渀最?琀栀攀?最愀瀀?戀攀琀眀攀攀渀??倀??愀渀搀?戀椀最?搀愀琀愀?昀爀愀洀攀眀漀爀欀猀??倀爀漀挀攀攀搀椀渀最猀?漀昀?琀栀攀?嘀?????渀搀漀眀洀攀渀琀??? ????? ????? ??????嬀搀漀椀?? ???????? ? ????? ? ???崀?戀爀?嬀??崀?匀琀攀瀀栀愀渀????伀昀昀?栀攀愀瀀?洀攀洀漀爀礀?椀渀??瀀愀挀栀攀??氀椀渀欀?愀渀搀?琀栀攀?挀甀爀椀漀甀猀???吀?挀漀洀瀀椀氀攀爀??? ????栀琀琀瀀猀???昀氀椀渀欀?愀瀀愀挀栀攀?漀爀最?渀攀眀猀?? ??? ?????漀昀昀?栀攀愀瀀?洀攀洀漀爀礀?戀爀?嬀??崀??漀琀猀攀氀椀搀椀猀?????椀愀洀愀渀琀漀瀀漀甀氀漀猀?匀???欀爀椀瘀漀瀀漀甀氀漀猀?伀??刀漀猀攀渀昀攀氀搀?嘀???漀欀愀?????漀栀愀洀洀攀搀?????礀氀漀渀愀猀????匀瀀椀琀愀搀愀欀椀猀?嘀???漀爀最愀渀?圀???昀昀椀挀椀攀渀琀?挀漀洀瀀椀氀愀琀椀漀渀?愀渀搀?攀砀攀挀甀琀椀漀渀?漀昀??嘀??戀愀猀攀搀?搀愀琀愀?瀀爀漀挀攀猀猀椀渀最?昀爀愀洀攀眀漀爀欀猀?漀渀?栀攀琀攀爀漀最攀渀攀漀甀猀?挀漀?瀀爀漀挀攀猀猀漀爀猀???渀?倀爀漀挀??漀昀?琀栀攀?? ? ??攀猀椀最渀???甀琀漀洀愀琀椀漀渀???吀攀猀琀?椀渀??甀爀漀瀀攀??漀渀昀?????砀栀椀戀椀琀椀漀渀????吀?????爀攀渀漀戀氀攀???????? ? ???????????戀爀?嬀??崀??愀渀最?????攀漀?????攀攀?夀???圀漀渀?????椀洀?匀???甀渀最?匀????愀渀最?????愀洀?吀????攀攀??圀???栀愀爀漀渀?匀瀀攀挀椀愀氀椀稀攀搀?渀攀愀爀?洀攀洀漀爀礀?瀀爀漀挀攀猀猀椀渀最?愀爀挀栀椀琀攀挀琀甀爀攀?昀漀爀?挀氀攀愀爀椀渀最?搀攀愀搀?漀戀樀攀挀琀猀?椀渀?洀攀洀漀爀礀???渀?倀爀漀挀??漀昀?琀栀攀???渀搀??渀渀甀愀氀???????????渀琀?氀?匀礀洀瀀??漀渀??椀挀爀漀愀爀挀栀椀琀攀挀琀甀爀攀???漀氀甀洀戀甀猀??????? ?????????????戀爀?嬀??崀??愀愀猀?????猀愀渀漀瘀椀???????????甀戀椀愀琀漀眀椀挀稀??????栀愀爀搀眀愀爀攀?愀挀挀攀氀攀爀愀琀漀爀?昀漀爀?琀爀愀挀椀渀最?最愀爀戀愀最攀?挀漀氀氀攀挀琀椀漀渀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀???????????渀渀甀愀氀??渀琀?氀?匀礀洀瀀??漀渀??漀洀瀀甀琀攀爀??爀挀栀椀琀攀挀琀甀爀攀???匀??????漀猀??渀最攀氀攀猀???????? ?????????????戀爀?嬀??崀??攀氀氀????倀椀渀愀?????爀漀挀栀攀琀??栀攀挀欀瀀漀椀渀琀?愀渀搀?爀漀氀氀戀愀挀欀?瘀椀愀?氀椀最栀琀眀攀椀最栀琀?栀攀愀瀀?琀爀愀瘀攀爀猀愀氀?漀渀?猀琀漀挀欀??嘀?猀???渀?倀爀漀挀??漀昀?琀栀攀???渀搀??甀爀漀瀀攀愀渀??漀渀昀??漀渀?伀戀樀攀挀琀?漀爀椀攀渀琀攀搀?倀爀漀最爀愀洀洀椀渀最????伀伀倀?? ??????洀猀琀攀爀搀愀洀???伀伀倀??? ????戀爀?嬀??崀??甀?夀???匀栀椀?堀????椀渀????圀甀?匀????吀?伀???愀猀琀?瘀椀爀琀甀愀氀?洀愀挀栀椀渀攀猀?挀栀攀挀欀瀀漀椀渀琀椀渀最?眀椀琀栀?搀攀氀琀愀?洀攀洀漀爀礀?挀漀洀瀀爀攀猀猀椀漀渀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀???????渀琀?氀??漀渀昀??漀渀??漀洀瀀甀琀愀琀椀漀渀愀氀?匀挀椀攀渀挀攀?愀渀搀??渀最椀渀攀攀爀椀渀最???栀攀渀最搀甀???????? ?????????????戀爀?嬀??崀?圀椀洀洀攀爀????匀琀愀渀挀甀?????漀昀攀爀?倀???漀瘀愀渀漀瘀椀挀?嘀??圀??????最攀爀攀爀?倀???攀猀猀氀攀爀?倀???倀氀椀猀猀?伀??圀??????爀琀栀椀渀最攀爀?吀???渀椀琀椀愀氀椀稀攀?漀渀挀攀??猀琀愀爀琀?昀愀猀琀??瀀瀀氀椀挀愀琀椀漀渀?椀渀椀琀椀愀氀椀稀愀琀椀漀渀?愀琀?戀甀椀氀搀?琀椀洀攀??倀爀漀挀攀攀搀椀渀最猀?漀昀?琀栀攀?????漀渀?倀爀漀最爀愀洀洀椀渀最??愀渀最甀愀最攀猀??? ??????伀伀倀匀????????嬀搀漀椀?? ????????? ?? 崀?戀爀??琀栀攀?猀挀愀氀愀戀椀氀椀琀礀?漀昀?猀琀漀瀀?琀栀攀?眀漀爀氀搀?最愀爀戀愀最攀?挀漀氀氀攀挀琀漀爀猀?漀渀?洀甀氀琀椀挀漀爀攀猀??????匀??倀??一?一漀琀椀挀攀猀??? ???????????????? ?嬀搀漀椀?? ?????????????????????崀?戀爀?嬀??崀??栀愀渀??????氀愀洀???唀??一愀琀栀?????夀甀?圀????砀瀀氀漀爀愀琀椀漀渀?漀昀?洀攀洀漀爀礀?栀礀戀爀椀搀椀稀愀琀椀漀渀?昀漀爀?刀???挀愀挀栀椀渀最?椀渀?猀瀀愀爀欀???渀?倀爀漀挀??漀昀?琀栀攀?? ???????匀??倀??一??渀琀?氀????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪钇丞,曾鸿斌,许利杰,王伟,魏峻,黄涛.面向大数据处理框架的JVM优化技术综述.软件学报,2023,34(1):463-488

复制
分享
文章指标
  • 点击次数:2400
  • 下载次数: 6691
  • HTML阅读次数: 5000
  • 引用次数: 0
历史
  • 收稿日期:2021-01-18
  • 最后修改日期:2021-04-29
  • 在线发布日期: 2021-11-24
  • 出版日期: 2023-01-06
文章二维码
您是第19758672位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号