标签推荐方法研究综述
作者:
作者简介:

徐鹏宇(1997-),男,博士生,CCF学生会员,主要研究领域为多标签学习,标签推荐;
景丽萍(1978-),女,博士,教授,博士生导师,CCF高级会员,主要研究领域为机器学习,高维数据表示及其在人工智能领域中的应用;
刘华锋(1994-),男,博士,CCF学生会员,主要研究领域为信息检索,深度生成模型;
于剑(1969-),男,博士,教授,博士生导师,CCF会士,主要研究领域为人工智能,机器学习;
刘冰(2000-),女,学士,主要研究领域为信息检索,多标签分类.

通讯作者:

景丽萍,E-mail:lpjing@bjtu.edu.cn

基金项目:

国家自然科学基金(61773050)


Survey of Tag Recommendation Methods
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [106]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着互联网信息的爆炸式增长,标签(由用户指定用来描述项目的关键词)在互联网信息检索领域中变得越来越重要.为在线内容赋予合适的标签,有利于更高效的内容组织和内容消费.而标签推荐通过辅助用户进行打标签的操作,极大地提升了标签的质量,标签推荐也因此受到了研究者们的广泛关注.总结出标签推荐任务的三大特性,即项目内容的多样性、标签之间的相关性以及用户偏好的差异性.根据这些特性,将标签推荐方法划分为3个类别,分别是基于内容的方法、基于标签相关性的方法以及基于用户偏好的方法.之后,针对这3个类别下的对应方法进行了梳理和剖析.最后,提出了当前标签推荐领域面临的主要挑战,例如标签的长尾问题、用户偏好的动态性以及多模态信息的融合问题等,并对未来研究方向进行了展望.

    Abstract:

    With the explosive growth of Internet information, tags (keywords specified by users to describe the item) become more and more important in the field of Internet information retrieval. Giving appropriate tags to online content is conducive to more efficient content organization and content consumption. Tag recommendation greatly improves the quality of tags by assisting users to tag. Therefore, tag recommendation has been widely concerned by researchers. This study summarizes the three characteristics of tag recommendation task, that is, the diversity of item content, the correlation between tags, and the difference of user preferences. According to these three characteristics, tag recommendation methods are divided into three categories: content-based method, tag relevance based method, and user preference based method. After that, the corresponding methods are sorted out and analyzed under these three categories. Finally, the main challenges are presented in the field of tag recommendation, such as the long tail problem of tags, the dynamics of user preferences, and the fusion of multimodal information, and the future research is prospected as well.

    参考文献
    [1] Smith G. Tagging: People-powered Metadata for the Social Web. Berkeley: Peachpit New Riders, 2007.
    [2] Song Y, Zhuang Z, Li H, et al. Real-time automatic tag recommendation. In: Proc. of the Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. 2008. 515-522.
    [3] Berendt B, Christoph H. Tags are not metadata, but “just more content”—To some people. In: Proc. of the Int’l Conf. on Weblogs and Social Media. 2007.
    [4] Lei K, Fu Q, Yang M, et al. Tag recommendation by text classification with attention-based capsule network. Neurocomputing, 2020, 391: 65-73.
    [5] Krestel R, Fankhauser P, Nejdl W. Latent dirichlet allocation for tag recommendation. In: Proc. of the ACM Conf. on Recommender Systems. 2009. 61-68.
    [6] Wang X, Zhang Y, Yamasaki T. Earn more social attention: user popularity based tag recommendation system. In: Companion Proc. of the Web Conf. 2020. 212-216.
    [7] Tang S, Yao Y, Zhang S, et al. An integral tag recommendation model for textual content. In: Proc. of the AAAI Conf. on Artificial Intelligence, Vol.33. 2019. 5109-5116.
    [8] Xia X, Lo D, Wang X, et al. Tag recommendation in software information sites. In: Proc. of the Working Conf. on Mining Software Repositories. 2013. 287-296.
    [9] Sigurbjörnsson B, Zwol R. Flickr tag recommendation based on collective knowledge. In: Proc. of the Int’l Conf. on World Wide Web. 2008. 327-336.
    [10] Belém FM, Almeida JM, Gonçalves MA. A survey on tag recommendation methods. Journal of the Association for Information Science and Technology, 2017, 68(4): 830-844.
    [11] Gong Y, Zhang Q. Hashtag recommendation using attention-based convolutional neural network. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2016. 2782-2788.
    [12] Li Y, Liu T, Jiang J, et al. Hashtag recommendation with topical attention-based LSTM. In: Proc. of the Int’l Conf. on Computational Linguistics. 2016. 3019-3029.
    [13] Sun B, Zhu Y, Xiao Y, et al. Automatic question tagging with deep neural networks. IEEE Trans. on Learning Technologies, 2018, 12(1): 29-43.
    [14] Hassan HAM, Sansonetti G, Gasparetti F, et al. Semantic-based tag recommendation in scientific bookmarking systems. In: Proc. of the ACM Conf. on Recommender Systems. 2018. 465-469.
    [15] Shi X, Huang H, Zhao S, et al. Tag recommendation by word-level tag sequence modeling. In: Proc. of the Int’l Conf. on Database Systems for Advanced Applications. 2019. 420-424.
    [16] Zhang S, Yao Y, Xu F, et al. Hashtag recommendation for photo sharing services. In: Proc. of the AAAI Conf. on Artificial Intelligence. 2019. 5805-5812.
    [17] Wei Y, Cheng Z, Yu X, et al. Personalized hashtag recommendation for micro-videos. In: Proc. of the ACM Int’l Conf. on Multimedia. 2019. 1446-1454.
    [18] Quintanilla E, Rawat Y, Sakryukin A, et al. Adversarial learning for personalized tag recommendation. IEEE Trans. on Multimedia, 2020, 23: 1083-1094.
    [19] Wu Y, Yao Y, Xu F, et al. Tag2Word: Using tags to generate words for content based tag recommendation. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. 2016. 2287-2292.
    [20] Wu Y, Xi S, Yao Y, et al. Guiding supervised topic modeling for content based tag recommendation. Neurocomputing, 2018, 314: 479-489.
    [21] Zhang Q, Wang J, Huang H, et al. Hashtag recommendation for multimodal microblog using co-attention network. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2017. 3420-3426.
    [22] Li J, Xu H, He X, et al. Tweet modeling with LSTM recurrent neural networks for hashtag recommendation. In: Proc. of the Int’l Joint Conf. on Neural Networks. 2016. 1570-1577.
    [23] Li M, Gan T, Liu M, et al. Long-tail hashtag recommendation for micro-videos with graph convolutional network. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. 2019. 509-518.
    [24] Gong Y, Zhang Q, Huang X. Hashtag recommendation for multimodal microblog posts. Neurocomputing, 2018, 272: 170-177.
    [25] Zuin G, Veloso A, Portinari JC, et al. Automatic tag recommendation for painting artworks using diachronic descriptions. In: Proc. of the Int’l Joint Conf. on Neural Networks. 2020. 1-8.
    [26] Wang Y, Wang S, Tang J, et al. CLARE: A joint approach to label classification and tag recommendation. In: Proc. of the AAAI Conf. on Artificial Intelligence. 2017. 210-216.
    [27] Rawat YS, Kankanhalli MS. ConTagNet: Exploiting user context for image tag recommendation. In: Proc. of the ACM Int’l Conf. on Multimedia. 2016. 1102-1106.
    [28] Huang H, Zhang Q, Gong Y, et al. Hashtag recommendation using end-to-end memory networks with hierarchical attention. In: Proc. of the Int’l Conf. on Computational Linguistics: Technical Papers. 2016. 943-952.
    [29] Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation. In: Proc. of the ACM Int’l Conf. on Web Search and Data Mining. 2010. 81-90.
    [30] Rendle S, Marinho LB, Nanopoulos A, et al. Learning optimal ranking with tensor factorization for tag recommendation. In: Proc. of the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2009. 727-736.
    [31] Wang X, He X, Wang M, et al. Neural graph collaborative filtering. In: Proc. of the Int’l ACM SIGIR Conference on Research and Development in Information Retrieval. 2019. 165-174.
    [32] Berg R, Kipf TN, Welling M. Graph convolutional matrix completion. arXiv: 1706.02263, 2017.
    [33] Wang S, Lo D, Vasilescu B, et al. EnTagRec++: An enhanced tag recommendation system for software information sites. Empirical Software Engineering, 2018, 23(2): 800-832.
    [34] Wang S, Lo D, Vasilescu B, et al. EnTagRec: An enhanced tag recommendation system for software information sites. In: Proc. of the IEEE Int’l Conf. on Software Maintenance and Evolution. 2014. 291-300.
    [35] Zhou P, Liu J, Yang Z, et al. Scalable tag recommendation for software information sites. In: Proc. of the IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering. 2017. 272-282.
    [36] Maity SK, Panigrahi A, Ghosh S, et al. DeepTagRec: A content-cum-user based tag recommendation framework for stack overflow. In: Proc. of the European Conf. on Information Retrieval. 2019. 125-131.
    [37] Zhou PY. Research on label recommendation method in software information station [Ph.D. Thesis]. Wuhan: Wuhan University, 2019 (in Chinese with English abstract).
    [38] Gao J, He Y, Wang Y, et al. STAR: Spatio-temporal taxonomy-aware tag recommendation for citizen complaints. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. 2019. 1903-1912.
    [39] Ness S, Theocharis A, Tzanetakis G, et al. Improving automatic music tag annotation using stacked generalization of probabilistic SVM outputs. In: Proc. of the ACM Int’l Conf. on Multimedia. 2009. 705-708.
    [40] Zhao Z, Wang X, Xiang Q, et al. Large-scale music tag recommendation with explicit multiple attributes. In: Proc. of the ACM Int’l Conf. on Multimedia. 2010. 401-410.
    [41] Wang H, Chen B, Li W. Collaborative topic regression with social regularization for tag recommendation. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2013. 2719-2725.
    [42] Guan Z, Bu J, Mei Q, et al. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In: Proc. of the Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. 2009. 540-547.
    [43] Feng W, Wang J. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems. In: Proc. of the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2012. 1276-1284.
    [44] Geng LL, Cui CR, Shi C, et al. Social image tagging and group joint recommendation based on deep multi-tasking learning. Computer Science, 2020, 47(12): 177-182 (in Chinese with English abstract).
    [45] Wang J, Hong L, Davison BD. Tag recommendation using keywords and association rules. In: Proc. of the ECML/PKDD Discovery Challenge Workshop. 2009.
    [46] Toderici G, Aradhye H, Pasca M, et al. Finding meaning on YouTube: Tag recommendation and category discovery. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2010. 3447-3454.
    [47] Wang H, Shi X, Yeung DY. Relational stacked denoising autoencoder for tag recommendation. In: Proc. of the AAAI Conf. on Artificial Intelligence. 2015.
    [48] Yamasaki T, Hu J, Sano S, et al. FolkPopularityRank: Tag recommendation for enhancing social popularity using text tags in content sharing services. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2017. 3231-3237.
    [49] Nguyen H, Wistuba M, Grabocka J, et al. Personalized deep learning for tag recommendation. In: Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining. 2017. 186-197.
    [50] Wang X, Zhang Y, Yamasaki T. User-aware folk popularity rank: User-popularity-based tag recommendation that can enhance social popularity. In: Proc. of the ACM Int’l Conf. on Multimedia. 2019. 1970-1978.
    [51] Lima E, Shi W, Liu X, et al. Integrating multi-level tag recommendation with external knowledge bases for automatic question answering. ACM Trans. on Internet Technology, 2019, 19(3): 1-22.
    [52] Tonge A, Caragea C. Privacy-aware tag recommendation for accurate image privacy prediction. ACM Trans. on Intelligent Systems and Technology, 2019, 10(4): 1-28.
    [53] Chen X, Yu Y, Jiang F, et al. Graph neural networks boosted personalized tag recommendation algorithm. In: Proc. of the Int’l Joint Conf. on Neural Networks. 2020. 1-8.
    [54] Khezrian N, Habibi J, Annamoradnejad I. Tag recommendation for online Q&A communities based on BERT pre-training technique. arXiv: 2010.04971, 2020.
    [55] Ramage D, Hall D, Nallapati R, et al. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In: Proc. of the Conf. on Empirical Methods in Natural Language Processing. 2009. 248-256.
    [56] Zha H, He X, Ding C, et al. Bipartite graph partitioning and data clustering. In: Proc. of the Int’l Conf. on Information and Knowledge Management. 2001. 25-32.
    [57] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. arXiv: 1310. 4546. 2013.
    [58] Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proc. of the Conf. on Empirical Methods in Natural Language Processing. 2014. 1532-1543.
    [59] Sabour S, Frosst N, Hinton G. Dynamic routing between capsules. arXiv: 1710.09829, 2017.
    [60] Yang M, Zhao W, Ye J, et al. Investigating capsule networks with dynamic routing for text classification. In: Proc. of the Conf. on Empirical Methods in Natural Language Processing. 2018. 3110-3119.
    [61] Shi L, Wang Y, Cheng Y, et al. Review of attention mechanism in natural language processing. Data Analysis and Knowledge Discovery, 2020, 4(5): 1-14 (in Chinese with English abstract).
    [62] Blei D, Ng A, Jordan M. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022.
    [63] Lai S, Xu L, Liu K, et al. Recurrent convolutional neural networks for text classification. In: Proc. of the AAAI Conf. on Artificial Intelligence. 2015. 2267-2273.
    [64] Zhou C, Sun C, Liu Z, et al. A C-LSTM neural network for text classification. arXiv: 1511.08630, 2015.
    [65] Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for document classification. In: Proc. of the Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016. 1480-1489.
    [66] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 770-778.
    [67] Che BQ, Zhou D. A tag recommendation method for fusing network structure information and text content. Computer Application, 2021, 41(4): 976-983 (in Chinese with English abstract).
    [68] Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, Vol.25. 2012. 1097-1105.
    [69] Bao HZ, Zhou D, Wu T. Tag recommendation method fusing multi-source heterogeneous network information. Journal of Shandong University (Natural Science Edition), 2019, 54(3): 56-66 (in Chinese with English abstract).
    [70] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
    [71] Lu J, Yang J, Batra D, et al. Hierarchical question-image co-attention for visual question answering. In: Advances in Neural Information Processing Systems, Vol.29. 2016. 289-297.
    [72] Kowald D, Pujari SC, Lex E. Temporal effects on hashtag reuse in Twitter: A cognitive-inspired hashtag recommendation approach. In: Proc. of the Int’l Conf. on World Wide Web. 2017. 1401-1410.
    [73] Zhang SW. Research on multi-modal content tag recommendation technology in social networks [MS. Thesis]. Nanjing: Nanjing University, 2020 (in Chinese with English abstract).
    [74] Hershey S, Chaudhuri S, Ellis DPW, et al. CNN architectures for large-scale audio classification. In: Proc. of the IEEE Int’l Conf. on Acoustics, Speech and Signal Processing. 2017. 131-135.
    [75] Arora S, Liang Y, Ma T. A simple but tough-to-beat baseline for sentence embeddings. In: Proc. of the Int’l Conf. on Learning Representations. 2017.
    [76] Hu D. An introductory survey on attention mechanisms in NLP problems. In: Proc. of the SAI Intelligent Systems Conf. 2019. 432-448.
    [77] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems. 2014. 3104-3112.
    [78] Wehrmann J, Barros RC, Dôres SN, et al. Hierarchical multi-label classification with chained neural networks. In: Proc. of the Symp. on Applied Computing. 2017. 790-795.
    [79] Miller GA. WordNet: An Electronic Lexical Database. Cambridge: MIT, 1998.
    [80] Wu Z, Palmer M. Verb semantics and lexical selection. In: Proc. of the Annual Meeting of the Association for Computational Linguistics. 1994. 133-138.
    [81] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv: 1609.02907, 2016.
    [82] Xiao L, Huang X, Chen B, et al. Label-specific document representation for multi-label text classification. In: Proc. of the Conf. on Empirical Methods in Natural Language Processing and the Int’l Joint Conf. on Natural Language Processing. 2019. 466-475.
    [83] Chen B, Huang X, Xiao L, et al. Hyperbolic capsule networks for multi-label classification. In: Proc. of the Annual Meeting of the Association for Computational Linguistics. 2020. 3115-3124.
    [84] Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proc. of the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2016. 855-864.
    [85] Yang Y, Di YD, Liu JH, et al. Research on sort learning based on tensor decomposition in personalized tag recommendation. Computer Science, 2020, 47(S2): 515-519 (in Chinese with English abstract).
    [86] Lu YN, Du DF. Tag recommendation based on pair interaction tensor decomposition. Journal of University of Science and Technology of China, 2019, 49(1): 31-39 (in Chinese with English abstract).
    [87] Cui Y, Jia M, Lin T, et al. Class-balanced loss based on effective number of samples. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2019. 9268-9277.
    [88] Zhang D, Li T, Zhang H, et al. On data augmentation for extreme multi-label classification. arXiv: 2009.10778, 2020.
    [89] Lin T, Goyal P, Girshick R, et al. Focal loss for dense object detection. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 2980-2988.
    [90] Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 8697-8710.
    [91] Zhou B, Cui Q, Wei XS, et al. BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2020. 9719-9728.
    [92] Liu HF, Jing LP, Yu J. Survey of matrix factorization based recommendation methods by integrating social information. Ruan Jian Xue Bao/Journal of Software, 2018, 29(2): 340-362 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5391.htm[doi: 10.13328/j.cnki.jos.005391]
    [93] Devlin J, Chang MW, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv: 1810.04805, 2018.
    [94] Lan Z, Chen M, Goodman S, et al. Albert: A lite BERT for self-supervised learning of language representations. arXiv: 1909.11942, 2019.
    [95] Peng Y, Yan S, Lu Z. Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten benchmarking datasets. arXiv: 1906.05474, 2019.
    [96] Tuarob S, Pouchard LC, Giles CL. Automatic tag recommendation for metadata annotation using probabilistic topic modeling. In: Proc. of the ACM/IEEE-CS Joint Conf. on Digital Libraries. 2013. 239-248.
    附中文参考文献:
    [37] 周平义. 软件信息站中标签推荐方法研究[博士学位论文].武汉: 武汉大学, 2019.
    [44] 耿蕾蕾, 崔超然, 石成, 等. 基于深度多任务学习的社交图像标签和分组联合推荐. 计算机科学, 2020, 47(12): 177-182.
    [61] 石磊, 王毅, 成颖, 等. 自然语言处理中的注意力机制研究综述. 数据分析与知识发现, 2020, 4(5): 1-14.
    [67] 车冰倩, 周栋. 融合网络结构信息及文本内容的标签推荐方法. 计算机应用, 2021, 41(4): 976-983.
    [69] 包恒泽, 周栋, 吴谈. 融合多源异构网络信息的标签推荐方法. 山东大学学报(理学版), 2019, 54(3): 56-66.
    [73] 张素威. 社交网络多模态内容标签推荐技术研究[硕士学位论文].南京: 南京大学, 2020.
    [85] 杨洋, 邸一得, 刘俊晖, 等. 基于张量分解的排序学习在个性化标签推荐中的研究. 计算机科学, 2020, 47(S2): 515-519.
    [86] 鲁亚男, 杜东舫. 基于成对交互张量分解的标签推荐. 中国科学技术大学学报, 2019, 49(1): 31-39.
    [92] 刘华锋, 景丽萍, 于剑. 融合社交信息的矩阵分解推荐方法研究综述. 软件学报, 2018, 29(2): 340-362. http://www.jos.org.cn/1000-9825/5391.htm [doi: 10.13328/j.cnki.jos.005391]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐鹏宇,刘华锋,刘冰,景丽萍,于剑.标签推荐方法研究综述.软件学报,2022,33(4):1244-1266

复制
分享
文章指标
  • 点击次数:2834
  • 下载次数: 7692
  • HTML阅读次数: 3774
  • 引用次数: 0
历史
  • 收稿日期:2021-05-31
  • 最后修改日期:2021-07-16
  • 在线发布日期: 2021-10-26
  • 出版日期: 2022-04-06
文章二维码
您是第19758716位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号