面向图像分类的深度模型可解释性研究综述
作者:
作者简介:

杨朋波(1993-), 男, 博士生, 主要研究领域为计算机视觉, 对抗鲁棒性研究, 可解释性研究;桑基韬(1985-), 男, 博士, 教授, CCF高级会员, 主要研究领域为多媒体计算, 网络数据挖掘, 可信赖机器学习;张彪(1995-), 男, 硕士, 主要研究领域为计算机视觉, 模型压缩;冯耀功(1992-), 男, 硕士, 主要研究领域为计算机视觉, 零样本学习;于剑(1969-), 男, 博士, 教授, CCF会士, 主要研究领域为人工智能, 机器学习

通讯作者:

于剑,E-mail:jianyu@bjtu.edu.cn

基金项目:

国家重点研发计划(2017YFC1703506); 国家自然科学基金(61632004); 中央高校基本科研业务费专项资金(2020YJS027)


Survey on Interpretability of Deep Models for Image Classification
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    深度学习目前在计算机视觉、自然语言处理、语音识别等领域得到了深入发展, 与传统的机器学习算法相比, 深度模型在许多任务上具有较高的准确率. 然而, 作为端到端的具有高度非线性的复杂模型, 深度模型的可解释性没有传统机器学习算法好, 这为深度学习在现实生活中的应用带来了一定的阻碍. 深度模型的可解释性研究具有重大意义而且是非常必要的, 近年来许多学者围绕这一问题提出了不同的算法. 针对图像分类任务, 将可解释性算法分为全局可解释性和局部可解释性算法. 在解释的粒度上, 进一步将全局解释性算法分为模型级和神经元级的可解释性算法, 将局部可解释性算法划分为像素级特征、概念级特征以及图像级特征可解释性算法. 基于上述分类框架, 总结了常见的深度模型可解释性算法以及相关的评价指标, 同时讨论了可解释性研究面临的挑战和未来的研究方向. 认为深度模型的可解释性研究和理论基础研究是打开深度模型黑箱的必要途径, 同时可解释性算法存在巨大潜力可以为解决深度模型的公平性、泛化性等其他问题提供帮助.

    Abstract:

    Deep learning has made great achievements in various fields such as computer vision, natural language processing, speech recognition, and other fields. Compared with traditional machine learning algorithms, deep models have higher accuracy on many tasks. Because deep learning is an end-to-end, highly non-linear, and complex model, the interpretability of deep models is not as good as traditional machine learning algorithms, which brings certain obstacles to the application of deep learning in real life. It is of great significance and necessary to study the interpretability of depth model, and in recent years many scholars have proposed different algorithms on this issue. For image classification tasks, this study divides the interpretability algorithms into global interpretability and local interpretability algorithms. From the perspective of interpretation granularity, global interpretability algorithms are further divided into model-level and neuron-level interpretability algorithms, and local interpretability algorithms are divided into pixel-level features, concept-level features, and image-level feature interpretability algorithms. Based on the above framework, this study mainly summarizes the common deep model interpretability research algorithms and related evaluation indicators, and discusses the current challenges and future research directions for deep model interpretability research. It is believed that conducting research on the interpretability and theoretical foundation of deep model is a necessary way to open the black box of the deep model, and interpretability algorithms have huge potential to provide help for solving other problems of deep models, such as fairness and generalization.

    参考文献
    [1] Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge:The MIT Press, 2016.
    [2] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444.[doi:10.1038/nature14539]
    [3] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. 770-778.
    [4] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6):84-90.[doi:10.1145/3065386]
    [5] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In:Proc. of the 27th Int'l Conf. on Neural Information Processing Systems. Montreal:MIT Press, 2014. 2672-2680.
    [6] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In:Proc. of the 3rd Int'l Conf. on Learning Representations. San Diego, 2015.
    [7] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In:Proc. of the 27th Int'l Conf. on Neural Information Processing Systems. Montreal:MIT Press, 2014. 3104-3112.
    [8] Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. In:Proc. of the 2013 IEEE Int'l Conf. on Acoustics, Speech and Signal Processing. Vancouver:IEEE, 2013. 6645-6649.
    [9] Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015, 33(8):831-838.[doi:10.1038/nbt.3300]
    [10] Sturm I, Lapuschkin S, Samek W, Müller KR. Interpretable deep neural networks for single-trial EEG classification. Journal of Neuroscience Methods, 2016, 274:141-145.[doi:10.1016/j.jneumeth.2016.10.008]
    [11] Tjoa E, Guan CT. A survey on explainable artificial intelligence (XAI):Toward medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11):4793-4813.[doi:10.1109/TNNLS.2020.3027314]
    [12] Li L, Qin LX, Xu ZG, Yin YB, Wang X, Kong B, Bai JJ, Lu Y, Fang ZH, Song Q, Cao KL, Liu DL, Wang GS, Xu QZ, Fang XS, Zhang SQ, Xia J, Xia J. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology, 2020:200905.
    [13] 吴飞, 廖彬兵, 韩亚洪. 深度学习的可解释性. 航空兵器, 2019, 26(1):39-46.[doi:10.12132/ISSN.1673-5048.2018.0065]
    Wu F, Liao BB, Han YH. Interpretability for deep learning. 2019, 26(1):39-46 (in Chinese with English abstract).
    [14] 成科扬, 王宁, 师文喜, 詹永照. 深度学习可解释性研究进展. 计算机研究与发展, 2020, 57(6):1208-1217.[doi:10.7544/issn1000-1239.2020.20190485]
    Cheng KY, Wang N, Shi WX, Zhan YZ. Research advances in the interpretability of deep learning. Journal of Computer Research and Development, 2020, 57(6):1208-1217 (in Chinese with English abstract).[doi:10.7544/issn1000-1239.2020.20190485]
    [15] Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled:High confidence predictions for unrecognizable images. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Boston:IEEE, 2015. 427-436.
    [16] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow IJ, Fergus R. Intriguing properties of neural networks. In:Proc. of the 2nd Int'l Conf. on Learning Representations. Banff, 2014.
    [17] Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, García S, Gil-López S, Molina D, Benjamins R, Chatila R, Herrera F. Explainable Artificial Intelligence (XAI):Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 2020, 58:82-115.[doi:10.1016/j.inffus.2019.12.012]
    [18] Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608, 2017.
    [19] Molnar C. Interpretable Machine Learning. Lulu.com, 2020.
    [20] Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Interpretable machine learning:Definitions, methods, and applications. arXiv:1901.04592, 2019.
    [21] Montavon G, Samek W, Müller KR. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 2018, 73:1-15.[doi:10.1016/j.dsp.2017.10.011]
    [22] Fan FL, Xiong JJ, Li MZ, Wang G. On interpretability of artificial neural networks:A survey. arXiv:2001.02522, 2020.
    [23] Tsipras D, Santurkar S, Engstrom L, Turner A, Madry A. Robustness may be at odds with accuracy. In:Proc. of the 7th Int'l Conf. on Learning Representations. New Orleans:OpenReview.net, 2019.
    [24] Li KP, Wu ZY, Peng KC, Ernst J, Fu Y. Tell me where to look:Guided attention inference network. In:Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 9215-9223.
    [25] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM:Visual explanations from deep networks via gradient-based localization. In:Proc. of the IEEE Int'l Conf. on Computer Vision. Venice:IEEE, 2017. 618-626.
    [26] Rakhlin A, Caponnetto A. Stability of k-means clustering. In:Proc. of the 19th Int'l Conf. on Neural Information Processing Systems. Vancouver:MIT Press, 2006. 1121-1128.
    [27] Jain AK. Data clustering:50 years beyond K-means. Pattern Recognition Letters, 2010, 31(8):651-666.[doi:10.1016/j.patrec.2009.09.011]
    [28] Wang T, Rudin C, Doshi-Velez F, Liu YM, Klampfl E, Macneille P. A Bayesian framework for learning rule sets for interpretable classification. The Journal of Machine Learning Research, 2017, 18(1):2357-2393.
    [29] Letham B, Rudin C, Mccormick TH, Madigan D. Interpretable classifiers using rules and bayesian analysis:Building a better stroke prediction model. Annals of Applied Statistics, 2015, 9(3):1350-1371.[doi:10.1214/15-AOAS848]
    [30] Loh WY. Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 2011, 1(1):14-23.[doi:10.1002/widm.8]
    [31] Hastie T, Tibshirani R. Generalized additive models:Some applications. Journal of the American Statistical Association, 1987, 82(398):371-386.[doi:10.2307/2289439]
    [32] Nelder JA, Wedderburn RWM. Generalized linear models. Journal of the Royal Statistical Society:Series A, 1972, 135(3):370-384.[doi:10.2307/2344614]
    [33] 纪守领, 李进锋, 杜天宇, 李博. 机器学习模型可解释性方法、应用与安全研究综述. 计算机研究与发展, 2019, 56(10):2071-2096.[doi:10.7544/issn1000-1239.2019.20190540]
    Ji SL, Li JF, Du TY, Li B. Survey on techniques, applications and security of machine learning interpretability. Journal of Computer Research and Development, 2019, 56(10):2071-2096 (in Chinese with English abstract).[doi:10.7544/issn1000-1239.2019.20190540]
    [34] 陈珂锐, 孟小峰. 机器学习的可解释性. 计算机研究与发展, 2020, 57(9):1971-1986.[doi:10.7544/issn1000-1239.2020.20190456]
    Chen KR, Meng XF. Interpretation and understanding in machine learning. Journal of Computer Research and Development, 2020, 57(9):1971-1986 (in Chinese with English abstract).[doi:10.7544/issn1000-1239.2020.20190456]
    [35] Miller T. Explanation in artificial intelligence:Insights from the social sciences. Artificial Intelligence, 2019, 267:1-38.[doi:10.1016/j.artint.2018.07.007]
    [36] Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Mądry A. Adversarial examples are not bugs, they are features. In:Proc. of the 33rd Int'l Conf. on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019. 12.
    [37] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:Visualising image classification models and saliency maps. In:2nd Int'l Conf. on Learning Representations. Banff, 2014.
    [38] Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In:Proc. of the 13th European Conf. on Computer Vision. Zurich:Springer, 2014. 818-833.
    [39] Srinivas S, Fleuret F. Full-gradient representation for neural network visualization. In:Proc. of the 32nd Int'l Conf. on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019. 4126-4135.
    [40] Ancona M, Ceolini E, Öztireli C, Gross M. Gradient-based attribution methods. In:Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019. 169-191.
    [41] Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One, 2015, 10(7):e0130140.[doi:10.1371/journal.pone.0130140]
    [42] Ribeiro MT, Singh S, Guestrin C. "Why should I trust you?":Explaining the predictions of any classifier. In:Proc. of the 22nd ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Francisco:Association for Computing Machinery, 2016. 1135-1144.
    [43] Kim B, Wattenberg M, Gilmer J, Cai C, Wexler J, Viegas F, Sayres R. Interpretability beyond feature attribution:Quantitative testing with concept activation vectors (TCAV). In:Proc. of the 35th Int'l Conf. on Machine Learning. Stockholmsmassan:PMLR, 2018. 2668-2677.
    [44] Ghorbani A, Wexler J, Kim B. Automating interpretability:Discovering and testing visual concepts learned by neural networks. arXiv:1902.03129, 2019.
    [45] Ghorbani A, Wexler J, Zou JY, Kim B. Towards automatic concept-based explanations. In:Proc. of the 32nd Int'l Conf. on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019. 9273-9282.
    [46] Mahendran A, Vedaldi A. Understanding deep image representations by inverting them. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Boston:IEEE, 2015. 5188-5196.
    [47] Dosovitskiy A, Brox T. Inverting visual representations with convolutional networks. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. 4829-4837.
    [48] Kim B, Khanna R, Koyejo O. Examples are not enough, learn to criticize! Criticism for interpretability. In:Proc. of the 30th Int'l Conf. on Neural Information Processing Systems. Barcelona:Curran Associates Inc., 2016. 2288-2296.
    [49] Koh PW, Liang P. Understanding black-box predictions via influence functions. In:Proc. of the 34th Int'l Conf. on Machine Learning. Sydney:PMLR, 2017. 1885-1894.
    [50] Erhan D, Bengio Y, Courville A, Vincent P. Visualizing higher-layer features of a deep network. Technical Report 1341, Montreal:University of Montreal, 2009.
    [51] Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding neural networks through deep visualization. arXiv:1506.06579, 2015.
    [52] Nguyen A, Yosinski J, Clune J. Multifaceted feature visualization:Uncovering the different types of features learned by each neuron in deep neural networks. arXiv:1602.03616, 2016.
    [53] Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In:Proc. of the 30th Int'l Conf. on Neural Information Processing Systems. Barcelona:Curran Associates Inc., 2016. 3395-3403.
    [54] Abbasi-Asl R, Yu B. Interpreting convolutional neural networks through compression. arXiv:1711.02329, 2017.
    [55] Li YC, Lin SH, Zhang BC, Liu JZ, Doermann D, Wu YJ, Huang FY, Ji RR. Exploiting kernel sparsity and entropy for interpretable CNN compression. In:Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019. 2795-2804.
    [56] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv:1503.02531, 2015.
    [57] Frosst N, Hinton GE. Distilling a neural network into a soft decision tree. In:Proc. of the 1st Int'l Workshop on Comprehensibility and Explanation in AI and ML. Bari:CEUR-WS.org, 2017.
    [58] Bau D, Zhou BL, Khosla A, Oliva A, Torralba A. Network dissection:Quantifying interpretability of deep visual representations. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. 3319-3327.
    [59] Zhou BL, Bau D, Oliva A, Torralba A. Interpreting deep visual representations via network dissection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9):2131-2145.[doi:10.1109/TPAMI.2018.2858759]
    [60] Zhou BL, Bau D, Oliva A, Torralba A. Comparing the interpretability of deep networks via network dissection. In:Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR, eds. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019. 243-252.
    [61] Bau D, Zhu JY, Strobelt H, Zhou BL, Tenenbaum JB, Freeman WT, Torralba A. Gan dissection:Visualizing and understanding generative adversarial networks. In:Proc. of the 7th Int'l Conf. on Learning Representations. New Orleans:OpenReview.net, 2019.
    [62] Chatonsky G. Deep dream (the network's dream). SubStance, 2016, 45(2):61-77.[doi:10.3368/ss.45.2.61]
    [63] Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad:Removing noise by adding noise. arXiv:1706.03825, 2017.
    [64] Springenberg JT, Dosovitskiy A, Brox T, Riedmiller MA. Striving for simplicity:The all convolutional net. In:Proc. of the 3rd Int'l Conf. on Learning Representations. San Diego, 2015.
    [65] Tomsett R, Harborne D, Chakraborty S, Gurram P, Preece A. Sanity checks for saliency metrics. In:Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York:AAAI Press, 2020. 6021-6029.
    [66] Kim B, Seo J, Jeon S, Koo J, Choe J, Jeon T. Why are saliency maps noisy? Cause of and solution to noisy saliency maps. In:Proc. of the 2019 IEEE/CVF Int'l Conf. on Computer Vision Workshop (ICCVW). Seoul:IEEE, 2019. 4149-4157.
    [67] Sundararajan M, Taly A, Yan QQ. Axiomatic attribution for deep networks. In:Proc. of the 34th Int'l Conf. on Machine Learning. Sydney:PMLR, 2017. 3319-3328.
    [68] Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In:Proc. of the 34th Int'l Conf. on Machine Learning. Sydney:PMLR, 2017. 3145-3153.
    [69] Montavon G, Lapuschkin S, Binder A, Samek W, Müller KR. Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognition, 2017, 65:211-222.[doi:10.1016/j.patcog.2016.11.008]
    [70] Omeiza D, Speakman S, Cintas C, Weldermariam K. Smooth grad-CAM++:An enhanced inference level visualization technique for deep convolutional neural network models. arXiv:1908.01224, 2019.
    [71] Nie WL, Zhang Y, Patel A. A theoretical explanation for perplexing behaviors of backpropagation-based visualizations. In:Proc. of the 35th Int'l Conf. on Machine Learning. Stockholmsmassan:PMLR, 2018. 3809-3818.
    [72] Ghorbani A, Abid A, Zou J渮晩??漮湮??愬挠栲椰渲攰??敢慲爾湛椱渳朲???瑮氠慄湓琬愠?偵??剙???と??????ㄠ??ㄠ?水???扩爠?嬬??嵵??汆漮爠潁瑅?塏???潁牎携敔獲?????敧渠杇楁潎?夠???敭攠灤?獴灡愠牳獰敥?物敦捩瑣椠晬楡整牥?湴攠畤物慳汴?湩敢瑵睴潩牯歮献???渺?偲牯潣挮??潦映?瑨桥攠???瑨栠??湲瑯?汥??漠湃景??漮渠??爠瑃楯晭楰捵楴慥汲??湩瑳敩汯汮椮朠敇湬捡敳?慯湷携?印瑲慩瑮楧獥瑲椬挠猲?′?漮爠琵??愭电搶攴爮搼慢汲放????剅???ち?????????????扥爠?孡??嵰??敡?????婮桤愠湧来?塭奥??剹攠湩?匠兴??卢畬湡?????敮氺癐楲湯杣?搠敯敦瀠?楨湥琠漳′牮敤挠瑉楮晴椧敬爠獃?卮畦爮瀠慯獮猠楎湥杵?桡畬洠慉湮?汯敲癭敡汴?灯敮爠晐潲牯浣慥湳捳敩?潧渠?楹浳慴来敭乳攮琠?捡汮慣獯獵楶晥楲挺慃瑵楲潲湡???湳?偯牣潩捡??潳映?瑮档攮???????渠琱?氵??漭渱昳??漸渮??潲派灛男琴敝爠?噮楣獯楮潡渠??匠慃湥瑯楬慩杮潩??????′㈱??????づ?????????扳牳?孍??嵔?乷慡楲牤?嘠???楴湥瑲漠湵?????剴敡据瑤楩普楧攠摯?氠楧湲敡慤物?畮湴椭瑢獡?楥浤瀠牡潴癴敲?牢敵獴瑩牯楮挠瑭敥摴?扯潤汳琠穦浯慲渠湤?浥慰挠桮楥湵敲獡???湥?偷牯潲捫??漠晉?琺桐敲???琠桯??湴瑨?氠??潨渠晉??漧湬??慯据桦椮渠敯??敌慥牡湲楮湩杮???慥楰晲慥?佥浮湴楡?偩牯敮獳献???の?は??扥牲?孏??嵮??慶物癥敷礮?乥???椲愰眱?????放桛爷愵扝椠慚湨????乙敊愬爠汓祯?瑧椠杋桙琬?噓??搠楙浍攬渠獔楡潮渠?戬漠畕湤摥獬?映潍爮?瀢楗敨捹攠睳楨獯敵?汤椠湹敯慵爠?湲敵畳牴愠汭?渠敥瑸睰潬牡歮獡???湮?倢爠潕据??潲晳?瑡桮敤??でㄠ???潥湲晴??潮湴??敩慮爠湌楉湍杅?呥桸数潬牡祮???浯獮瑳攮爠摉慮洺?偲??刮?????????の???ㄠぃ????戠牯?嬠??嵣??潮湥琠????の?普慧爠?????偲愠獓捯慣湩畡?删???桤漠?????敨湯杰椮漠?奯??传湂?瑡档敨?渠甲洰戱改爮?潢晲 ̄汛椷渶敝愠牒?牢敥杩楲潯渠獍?漬映?摩敮敧灨?湓攬甠片慵汥?湴敲瑩睮漠牃欮猠???湨?偲牳漺捈??潨昭?瑲桥散???瑯桮??湯瑤?汬??潧湮景??潩湣?乥數異牬慡汮??湩景潮牳洮愠瑉楮漺湐?偯牣漮挠敯獦猠楴湨来?匳礲獮瑤攠流獁???潃湯瑮牦攮愠汯???呲?偩牦敩獣獩??㈠ぉ????????????㈠??扷爠?孲??嵡??氺癁慁牁敉稠??敥汳楳猬?????愮愠欱欵漲氷愭?吵匳??吼潢睲愾牛搷猷?爠潑扩畮猠瑚?椬渠瑙敵爠灆牘攬琠慌扩極氠楃瑃礬?睃楨瑥桮?獘攮氠晈?敷砠灣汯慮楶湯楬湵杴?湯敮畡牬愠汮?湵敲瑡睬漠牮步獴???湫?倠牳潥捥??潨晥?瑷桯敲??木湁搠??湲瑶?汹??潦渠晣??潶湯?乵整畩牯慮污??湮晥潵牲浡慬琠楮潥湴?偯牲潫挠敶獩獳極湡杬?卺祡獴瑩敯浮猠???潨湯瑤牳攮愠汁??畲物牣慡湮??獮獳潴捩楴慵瑴敥猠??渠捍????ね???????????????戬爠?嬰??崬??氨瘲愩爺攱稴??攱永椰献?????愱愰欮欳漹氳愴?呭卦??伲渰?琸栰攰?牝漼扢畲猾瑛渷攸獝猠?潥晨?楃湋琬攠牋灩牭攠瑊慓戬椠汙楥瑮礠?浅效琬栠潒摡獶??慵牭塡楲瘠???げ??ひ?び??????????扴爠?孥?づっ嵴?卯畮渠??????慰灬畡獩据桩歮楧渠?卥??匠慮浥敵歲?坬??婥桴慷潯?奫关???桮攺畐湲杯?丮????楴湨摥攠爳′????确灴氧慬渠慃瑯楮潦渮?杯畮椠摎敥摵?瑡牬愠楉湮楦湯杲?晡潴物?据爠潐獲獯?摥潳浳慩楮湧?晓敹睳?獥桭潳琮?捍汯慮獴獲楥晡楬挺慃瑵楲潲湡???湳?偯牣潩捡??潳映?瑮档攮?㈠?琰栱??渠琹?氱??漹渳昲??漼湢?倾慛琷琹敝爠湚?副敵挠潂杌測椠瑋楨潯湳????倬删????楤汲慩湺????????ぶ?ㄠ????は????????戮爠?孥?ひ?嵩??椠湤来?印夠??塡畴??乥???潯敲栠湤?偳??卩慭汩楮敡湴捩祶?搠牬楯癣敡湬?睺潡牴摩?慮氮椠杉湮洺敐湲瑯?椮渠瑯敦爠灴牨敥琠慉瑅楅潅渠?景潮牦?渠敯畮爠慃汯?浰慵捴桥楲渠敖?瑳物慯湮猠污慮瑤椠潐湡???湲?倠牒潥捣??潮晩?瑩桯敮??瑌桡??潖湥晧??漺湉??慅挬栠椲渰攱?吮爠愲渹猲氱愭琲椹漲渹???汲漾牛攸渰捝攠??獯獵漠捂椬愠瑋楨潯湳?晡漠牁??潌浡灰略瑤慲瑩楺潡渠慁氬??楬湩杶畡椠獁琬椠捔獯???ぬ??????????扣牴?孤?ぴ?嵣??慲楳渠?卭??坧慥氠汩慮挠敤??????瑥瑮敥渠瑃楎潎湳?椠獉?渺潐瑲?散砮瀠汯慦渠慴瑨楥漠渳???湉?側爧潬挠??潮晦?琠桯敮??づ????潮湧映??潰晲?瑳桥敮?乡潴物瑯桮??洠敓牡楮挠慄湩??桯愬瀠琲攰爱‵漮昼?瑲栾敛??獝猠潚捩楮慴瑧楲潡湦?晌潍爬??潯浨灥畮琠慔瑓椬漠湁慤汥??楔測朠畗楥獬瑬楩据獧??甮洠慖湩??慡湬杩畺慩杮敧?呤敥捥桰渠潮汥潵杲楡敬猠???楷湯湲敫愠灤潥汣楩獳??獮獳漺捐楲慥瑤楩潣湴?景潮爠??潦浦灥畲瑥慮瑣楥漠湡慮污??楳湩杳甮椠獉瑮椺捐獲??金????????????????扬爠?孯?て?崠?坮椠敌来牡敲普晩敮?匠??偰楲湥瑳敥牮?奡???瑮瑳攮渠瑔楯潵湬?楮猺?湰潥瑮?湥潶瑩?敷砮灮汥慴測愠琲椰漱渷???湲?偛爸漲捝??潩普?瑧桲敡?㈠が????潯湨晥??潔湓??浗灥楬牬楩据慧氠??攠瑁栠潮摥獷?業湥?乨慯瑤甠牴慯氠??慳湵条畬慩杺敥?偤牥潥捰攠獮獥極湲条?愠湮摥?瑷桯敲??琮栠??湘瑩?氺??漰椳渮琰′?漱游昬?′漰渱?丮愼瑢畲爾慛永″?愠湆杯畮慧朠敒?倬爠潖捥敤獡獬楤湩朠???潉湮杴??潰湲来??獢獬潥挠楥慸瑰楬潡湮?晴潩牯??漠浯灦甠瑢慬瑡楣潫渠慢汯??楳渠杢畹椠獭瑥楡据獩???ふ????????ぢ??扩牯?嬮ㄠぉ?崺??楯??圠???桴敨湥?塉????潉癮祴?????畮牦愮映獯歮礠????噵楴獥畲愠汖楩穳楩湯杮?愠湖摥?畩湣摥攺牉獅瑅慅測搠椲渰朱?渮攠申爴愴氹?洳漴搵攷氮猼?楲渾?丸?偝???湵?偌牙漬挠??漠晘?琠案敵??え????潮湧映??漬映?瑥桩攠?丮漠牅瑸桡??洠敡牮楤挠慣湯??桩慳灴瑥敮牴?潩普?瑥桲数??獴獡潴捩楯慮琠楦潯湲?晰潩牥??潷浩灳略琠慬瑩楮潥湡慲氠??極湲条畬椠獮瑥楴捷獯??畳洺慁渠??慯湳来畤愠杦敯?呭攠捳桯湬潵汴潩杯楮攮猠??区慐湲??椮攠杯潦??獨獥漠挲椴慴瑨椠潁湃?映潓牉??潄浄瀠畉瑮慴琧楬漠湃慯汮??椠湯杮甠楋獮瑯楷捬獥??????????????ㄦ??戸爻?孄?ぴ?崠??楮??坧???潯湮牤潯敮?坁???畣物慡晴獩歯祮????唠湃摯敭牰獵瑴慩湮摧椠湍条?湨敩畮牥慲汹?渠攲琰眱漸爮欠猱′琴栴爭漱甲朵栳?爼敢灲爾敛猸攵湝琠慌瑩楮漠湍?攠牃慨獥畮爠救??慙牡塮椠癓??????ぷ??????㈠の????扲牫?嬠?ひ?嵩??稱申氱愲礮???‰圬攠椲猰猱″央??坲栾祛?搶潝?摓敵敢灲?捭潡湮癹潡氠畁琬椠潐湩慬汬?湩攠瑖眬漠牐歩獲?杩敡湶敡牳慨氠楈種攠?獯潯?灩潮潧爠汮祥?瑷潯?獫洠慩汮汴?楲浰慲来整?瑴物慯湮猠晩潮爠浩慭瑡楧潥渠獣????潩畦物湣慡汴?潯普??慉据栺楐湲敯??攠慯牦渠楴湨来?剉故獅故愯牃捖框???ぴㄧ????の???????扯牭?孵?づ?崠??桳敩湯??????極?伺??呅慅漬??????愠爲渰攲琰琭′????匼畢????刷畝搠楃湨????呰桡楤獨?汹漠潁欬猠?污楲歫敡?琠桁愬琠??敷敬灡?汥敲愠牐測椠湂条?晡潳牵?楲湡瑭敡牮灩牡敮琠慖扎氮攠?楲浡慤札敃?牍攫挫漺杇湥楮瑥楲潡湬???湤?偧牲潡捤??潮晴?瑢桡敳???牶摩??湡瑬?汥??潬湡普??潩湯?乳攠畦牯慲氠??湥晰漠牣浯慮瑶楯潬湵?偩牯潮捡敬猠獮楥湴杷?卲祫獳琮攠浉獮??噲慯湣挮漠畯癦攠牴??甠爲爰愱游??獅獅潅挠楗慩瑮整獥??湃捯???㈠は?????ぬ?偣慡杴敩獯??戠牯?嬠?は?嵰??祥扲攠湖歩潳?????灗灁牃潖砩椮洠慌瑡楫潥渠?扡票?獥町灉故牅灅漬猠椲琰椱漸渮猠?漳昹?愸?猷椮朼浢潲椾摛愸永?映畐湥捴瑳楩潵湫???愠瑄桡敳洠慁琬椠捓獡?潮晫??潋渮琠牒潩汳??卒楡杮湤慯汭獩?慥湤搠?卮祰獵瑴攠浳獡??????????????ぬ??????孮搠潯楦??ぬ??に?????ね???????嵉?戺牂?孩?ど?嵨??潡牣湨楩歮????即瑩楯湮挠桃捯潮浦戮攠′???圮栠楎瑥敷?????略氺瑂楍汖慁礠敐牲?晳敳攬搠昲漰爱眸愮爼摢?渾敛琸眹潝爠歗獡?慧爠效?甬渠楎癡敩牤獵愠汒?愠灍灩牣潨硡楥浬愠瑊漬爠獋??乤敵甠牓慓氮?乓敓琭睃潁牍欺獓?????????????????????嬠摳潨楡??づ?ㄠぶ???ち?????ぴ?ひ?????ちぬ?ぺ??嵩?扮爮?孡??ど嵶??田‰娶??倴甲‵???′地愲渰朮??????田?娠兗??坧愠湈杆??块??呧栠敚?攬砠灄牵攠獍獎椬瘠教?灮潧眠敆爬?潚晨?湮敧甠牚慊氬?湄敩瑮睧漠牓歒猬???癲楤敺睩?晬爠潐洬?瑈桵攠?眮椠摓瑣桯???湃?偍爺潓捣??潥昭?瑥桩敧???獤琠??湳瑵?汬??潸湰晬??潡湴?乯敮畳爠慦汯??湣景潮牶浯慬瑵楴潩湯?偡牬漠据敥獵獲楡湬朠?卥祴獷瑯敲浫獳???潮渺材??散愮挠桯??畴牨牥愠湉??獅猯潃捖楆愠瑃敯獮??渠捯????ね?????㈠?????????扤爠?孡???嵲??桒潥牣潯浧慮湩獴歩慯?????敫湳慨景晰?????慡瑴桴楬敥町?????爠漲田猲‰?????攭?由渹?夼??吾桛改?汝漠獗獡?獧甠牙昬愠捈敵猠?漬映?浵甠汈琮椠汌慥祡敲牮?湮敧琠睡潴牴歲獩???湩?偮牳漠捧??潵普?瑥桤攠??琠桥??湳瑴?汮??潦湡晣??漠湦??爠瑲楯晢極捳楴愠汶??湵瑡敬氠汥楸杰敬湡据敡?慩湯摮?匠瑘慁瑉椬猠琲椰挱猸??匷愸渮??楲放杛漹?偝??副???づ????ㄠ?水??ち???戭牆?孲???崠?圬甠????婡栠畍?娠塃????坩乬??吠潁眬愠牂摥獮?畩湯搠教爮猠瑍慡湸摯極湴朠?来整湷敯牲慫汳椮稠慉瑮椺潐湲?潣昮?摯敦攠灴?汥攠愳爰湴楨渠杉?側攧牬猠灃敯挀琀椀瘀攀?漀昀?氀漀猀猀?氀愀渀搀猀挀愀瀀攀猀??愀爀堀椀瘀??? ??? ?????? ????戀爀?嬀???崀??愀甀爀攀渀琀?吀???爀攀挀栀琀?????攀攀瀀?氀椀渀攀愀爀?渀攀琀眀漀爀欀猀?眀椀琀栀?愀爀戀椀琀爀愀爀礀?氀漀猀猀??氀氀?氀漀挀愀氀?洀椀渀椀洀愀?愀爀攀?最氀漀戀愀氀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀??渀琀?氀??漀渀昀??漀渀??愀挀栀椀渀攀??攀愀爀渀椀渀最??匀琀漀挀欀栀漀氀洀?倀??刀??? ?????? ???? ???戀爀?嬀???崀??愀眀愀最甀挀栀椀?????甀愀渀最??夀???愀攀氀戀氀椀渀最??倀???瘀攀爀礀?氀漀挀愀氀?洀椀渀椀洀甀洀?瘀愀氀甀攀?椀猀?琀栀攀?最氀漀戀愀氀?洀椀渀椀洀甀洀?瘀愀氀甀攀?漀昀?椀渀搀甀挀攀搀?洀漀搀攀氀?椀渀?渀漀渀挀漀渀瘀攀砀?洀愀挀栀椀渀攀?氀攀愀爀渀椀渀最??一攀甀爀愀氀??漀洀瀀甀琀愀琀椀漀渀??? ?????????????????????嬀搀漀椀?? ??????渀攀挀漀开愀开 ????崀?戀爀?嬀???崀??愀甀瀀栀椀渀?夀一??倀愀猀挀愀渀甀?刀???甀氀挀攀栀爀攀?????栀漀?????愀渀最甀氀椀?匀???攀渀最椀漀?夀???搀攀渀琀椀昀礀椀渀最?愀渀搀?愀琀琀愀挀欀椀渀最?琀栀攀?猀愀搀搀氀攀?瀀漀椀渀琀?瀀爀漀戀氀攀洀?椀渀?栀椀最栀?搀椀洀攀渀猀椀漀渀愀氀?渀漀渀?挀漀渀瘀攀砀?漀瀀琀椀洀椀稀愀琀椀漀渀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀??渀琀?氀??漀渀昀??漀渀?一攀甀爀愀氀??渀昀漀爀洀愀琀椀漀渀?倀爀漀挀攀猀猀椀渀最?匀礀猀琀攀洀猀???漀渀琀爀攀愀氀???吀?倀爀攀猀猀??? ???????????????戀爀?嬀???崀??愀攀昀昀攀氀攀?????嘀椀搀愀氀?刀???氀漀戀愀氀?漀瀀琀椀洀愀氀椀琀礀?椀渀?渀攀甀爀愀氀?渀攀琀眀漀爀欀?琀爀愀椀渀椀渀最???渀?倀爀漀挀??漀昀?琀栀攀???????漀渀昀??漀渀??漀洀瀀甀琀攀爀?嘀椀猀椀漀渀?愀渀搀?倀愀琀琀攀爀渀?刀攀挀漀最渀椀琀椀漀渀???漀渀漀氀甀氀甀???????? ??????? ???????戀爀?嬀???崀?匀漀甀搀爀礀?????愀爀洀漀渀?夀??一漀?戀愀搀?氀漀挀愀氀?洀椀渀椀洀愀??愀琀愀?椀渀搀攀瀀攀渀搀攀渀琀?琀爀愀椀渀椀渀最?攀爀爀漀爀?最甀愀爀愀渀琀攀攀猀?昀漀爀?洀甀氀琀椀氀愀礀攀爀?渀攀甀爀愀氀?渀攀琀眀漀爀欀猀??愀爀堀椀瘀??? ?? ??????? ????戀爀?嬀???崀?夀愀漀?娀圀???栀漀氀愀洀椀?????攀甀琀稀攀爀?????愀栀漀渀攀礀??圀???攀猀猀椀愀渀?戀愀猀攀搀?愀渀愀氀礀猀椀猀?漀昀?氀愀爀最攀?戀愀琀挀栀?琀爀愀椀渀椀渀最?愀渀搀?爀漀戀甀猀琀渀攀猀猀?琀漀?愀搀瘀攀爀猀愀爀椀攀猀???渀?倀爀漀挀??漀昀?琀栀攀???渀搀??渀琀?氀??漀渀昀??漀渀?一攀甀爀愀氀??渀昀漀爀洀愀琀椀漀渀?倀爀漀挀攀猀猀椀渀最?匀礀猀琀攀洀猀???漀渀琀爀攀愀氀??甀爀爀愀渀??猀猀漀挀椀愀琀攀猀??渀挀???? ???????????????戀爀?嬀???崀??攀猀欀愀爀?一匀???甀搀椀最攀爀攀????一漀挀攀搀愀氀????匀洀攀氀礀愀渀猀欀椀礀????吀愀渀最?倀吀倀??伀渀?氀愀爀最攀?戀愀琀挀栀?琀爀愀椀渀椀渀最?昀漀爀?搀攀攀瀀?氀攀愀爀渀椀渀最??攀渀攀爀愀氀椀稀愀琀椀漀渀?最愀瀀?愀渀搀?猀栀愀爀瀀?洀椀渀椀洀愀???渀?倀爀漀挀??漀昀?琀栀攀??琀栀??渀琀?氀??漀渀昀??漀渀??攀愀爀渀椀渀最?刀攀瀀爀攀猀攀渀琀愀琀椀漀渀猀??吀漀甀氀漀渀?伀瀀攀渀刀攀瘀椀攀眀?渀攀琀??? ????戀爀?嬀?? 崀?匀愀渀琀甀爀欀愀爀?匀??吀猀椀瀀爀愀猀?????氀礀愀猀?????愀搀爀礀?????漀眀?搀漀攀猀?戀愀琀挀栀?渀漀爀洀愀氀椀稀愀琀椀漀渀?栀攀氀瀀?漀瀀琀椀洀椀稀愀琀椀漀渀???渀?倀爀漀挀??漀昀?琀栀攀???渀搀??渀琀?氀??漀渀昀??漀渀?一攀甀爀愀氀??渀昀漀爀洀愀琀椀漀渀?倀爀漀挀攀猀猀椀渀最?匀礀猀琀攀洀猀???漀渀琀爀攀愀氀??甀爀爀愀渀??猀猀漀挀椀愀琀攀猀??渀挀???? ???????????????戀爀?嬀???崀???圀一??夀甀????吀栀攀?搀攀攀瀀?刀椀琀稀?洀攀琀栀漀搀???搀攀攀瀀?氀攀愀爀渀椀渀最?戀愀猀攀搀?渀甀洀攀爀椀挀愀氀?愀氀最漀爀椀琀栀洀?昀漀爀?猀漀氀瘀椀渀最?瘀愀爀椀愀琀椀漀渀愀氀?瀀爀漀戀氀攀洀猀???漀洀洀甀渀椀挀愀琀椀漀渀猀?椀渀??愀琀栀攀洀愀琀椀挀猀?愀渀搀?匀琀愀琀椀猀琀椀挀猀??? ??????????????嬀搀漀椀?? ??  ??猀? ? ?? ??? ????稀崀?戀爀?嬀???崀?圀愀渀最?????椀?娀??匀栀椀?娀儀???甀漀?堀夀??娀栀甀?圀??伀猀栀攀爀?匀????攀攀瀀?渀攀甀爀愀氀?渀攀琀猀?眀椀琀栀?椀渀琀攀爀瀀漀氀愀琀椀渀最?昀甀渀挀琀椀漀渀?愀猀?漀甀琀瀀甀琀?愀挀琀椀瘀愀琀椀漀渀???渀?倀爀漀挀??漀昀?琀栀攀???渀搀??渀琀?氀??漀渀昀??漀渀?一攀甀爀愀氀??渀昀漀爀洀愀琀椀漀渀?倀爀漀挀攀猀猀椀渀最?匀礀猀琀攀洀猀???漀渀琀爀攀愀氀??甀爀爀愀渀??猀猀漀挀椀愀琀攀猀??渀挀???? ?????????????戀爀?嬀???崀??栀攀渀?刀吀伀??刀甀戀愀渀漀瘀愀?夀???攀琀琀攀渀挀漀甀爀琀?????甀瘀攀渀愀甀搀?????一攀甀爀愀氀?漀爀搀椀渀愀爀礀?搀椀昀昀攀爀攀渀琀椀愀氀?攀焀甀愀琀椀漀渀猀???渀?倀爀漀挀??漀昀?琀栀攀???渀搀??渀琀?氀??漀渀昀??漀渀?一攀甀爀愀氀??渀昀漀爀洀愀琀椀漀渀?倀爀漀挀攀猀猀椀渀最?匀礀猀琀攀洀猀???漀渀琀爀攀愀氀??甀爀爀愀渀??猀猀漀挀椀愀琀攀猀??渀挀???? ???????????????戀爀?嬀???崀?堀甀?娀儀???娀栀愀渀最?夀夀???甀漀?吀??堀椀愀漀?夀夀???愀?娀???爀攀焀甀攀渀挀礀?瀀爀椀渀挀椀瀀氀攀??漀甀爀椀攀爀?愀渀愀氀礀猀椀猀?猀栀攀搀猀?氀椀最栀琀?漀渀?搀攀攀瀀?渀攀甀爀愀氀?渀攀琀眀漀爀欀猀??愀爀堀椀瘀??? ?? ??????? ????戀爀?嬀???崀?堀甀?娀儀???娀栀愀渀最?夀夀??堀椀愀漀?夀夀??吀爀愀椀渀椀渀最?戀攀栀愀瘀椀漀爀?漀昀?搀攀攀瀀?渀攀甀爀愀氀?渀攀琀眀漀爀欀?椀渀?昀爀攀焀甀攀渀挀礀?搀漀洀愀椀渀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀??渀琀?氀??漀渀昀??漀渀?一攀甀爀愀氀??渀昀漀爀洀愀琀椀漀渀?倀爀漀挀攀猀猀椀渀最??匀礀搀渀攀礀?匀瀀爀椀渀最攀爀??? ?????????????戀爀?嬀???崀??愀琀琀栀攀眀猀????????爀漀渀????刀漀眀氀愀渀搀????吀甀爀渀攀爀?刀????栀愀栀爀愀洀愀渀椀?娀???愀甀猀猀椀愀渀?瀀爀漀挀攀猀猀?戀攀栀愀瘀椀漀甀爀?椀渀?眀椀搀攀?搀攀攀瀀?渀攀甀爀愀氀?渀攀琀眀漀爀欀猀???渀?倀爀漀挀??漀昀?琀栀攀??琀栀??渀琀?氀??漀渀昀??漀渀??攀愀爀渀椀渀最?刀攀瀀爀攀猀攀渀琀愀琀椀漀渀猀??嘀愀渀挀漀甀瘀攀爀?伀瀀攀渀刀攀瘀椀攀眀?渀攀琀??? ????戀爀?嬀???崀??攀攀?????愀栀爀椀?夀??一漀瘀愀欀?刀??匀挀栀漀攀渀栀漀氀稀?匀匀??倀攀渀渀椀渀最琀漀渀????匀漀栀氀??椀挀欀猀琀攀椀渀?????攀攀瀀?渀攀甀爀愀氀?渀攀琀眀漀爀欀猀?愀猀?最愀甀猀猀椀愀渀?瀀爀漀挀攀猀猀攀猀???渀?倀爀漀挀??漀昀?琀栀攀??琀栀??渀琀?氀??漀渀昀??漀渀??攀愀爀渀椀渀最?刀攀瀀爀攀猀攀渀琀愀琀椀漀渀猀??嘀愀渀挀漀甀瘀攀爀?伀瀀攀渀刀攀瘀椀攀眀?渀攀琀??? ????戀爀?嬀???崀??攀攀????堀椀愀漀?????匀挀栀漀攀渀栀漀氀稀?匀匀???愀栀爀椀?夀??一漀瘀愀欀?刀??匀漀栀氀??椀挀欀猀琀攀椀渀????倀攀渀渀椀渀最琀漀渀????圀椀搀攀?渀攀甀爀愀氀?渀攀琀眀漀爀欀猀?漀昀?愀渀礀?搀攀瀀琀栀?攀瘀漀氀瘀攀?愀猀?氀椀渀攀愀爀?洀漀搀攀氀猀?甀渀搀攀爀?最爀愀搀椀攀渀琀?搀攀猀挀攀渀琀???渀?倀爀漀挀??漀昀?琀栀攀???爀搀??渀琀?氀??漀渀昀??漀渀?一攀甀爀愀氀??渀昀漀爀洀愀琀椀漀渀?倀爀漀挀攀猀猀椀渀最?匀礀猀琀攀洀猀??嘀愀渀挀漀甀瘀攀爀??甀爀爀愀渀??猀猀漀挀椀愀琀攀猀??渀挀???? ?????????戀爀?嬀???崀??攀椀?一???渀??匀???甀漀?夀??匀甀??????椀甀?匀堀???甀漀?娀堀??夀愀甀?匀吀???甀?堀?????最攀漀洀攀琀爀椀挀?甀渀搀攀爀猀琀愀渀搀椀渀最?漀昀?搀攀攀瀀?氀攀愀爀渀椀渀最???渀最椀渀攀攀爀椀渀最??? ? ???????????????嬀搀漀椀?? ?? ???樀?攀渀最?? ??? ?? ? 崀?戀爀?嬀?? 崀??攀椀?一??匀甀??????甀椀????夀愀甀?匀吀???甀?堀?????最攀漀洀攀琀爀椀挀?瘀椀攀眀?漀昀?漀瀀琀椀洀愀氀?琀爀愀渀猀瀀漀爀琀愀琀椀漀渀?愀渀搀?最攀渀攀爀愀琀椀瘀攀?洀漀搀攀氀???漀洀瀀甀琀攀爀??椀搀攀搀??攀漀洀攀琀爀椀挀??攀猀椀最渀??? ????????????嬀搀漀椀?? ?? ???樀?挀愀最搀?? ???? ?  ?崀?戀爀?嬀???崀??渀??匀???甀漀?夀???攀椀?一???甀漀?娀堀??夀愀甀?匀吀???甀?堀??????伀吀???渀攀眀?最攀渀攀爀愀琀椀瘀攀?洀漀搀攀氀?戀愀猀攀搀?漀渀?攀砀琀攀渀搀攀搀?猀攀洀椀?搀椀猀挀爀攀琀攀?漀瀀琀椀洀愀氀?琀爀愀渀猀瀀漀爀琀???渀?倀爀漀挀??漀昀?琀栀攀??琀栀??渀琀?氀??漀渀昀??漀渀??攀愀爀渀椀渀最?刀攀瀀爀攀猀攀渀琀愀琀椀漀渀猀???搀搀椀猀??戀愀戀愀?伀瀀攀渀刀攀瘀???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨朋波,桑基韬,张彪,冯耀功,于剑.面向图像分类的深度模型可解释性研究综述.软件学报,2023,34(1):230-254

复制
分享
文章指标
  • 点击次数:3548
  • 下载次数: 7991
  • HTML阅读次数: 5947
  • 引用次数: 0
历史
  • 收稿日期:2020-12-14
  • 最后修改日期:2021-03-21
  • 在线发布日期: 2021-08-02
  • 出版日期: 2023-01-06
文章二维码
您是第19780313位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号