面向视频冷启动问题的点击率预估
作者:
作者简介:

章磊敏(1994-),男,硕士,主要研究领域为人工智能,推荐系统;纪守领(1986-),男,博士,研究员,博士生导师,CCF高级会员,主要研究领域为人工智能与安全;董建锋(1991-),男,博士,研究员,CCF专业会员,主要研究领域为多媒体理解,计算机视觉;王勋(1967-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为可视媒体计算,模式识别;包翠竹(1990-),女,博士,讲师,CCF专业会员,主要研究领域为图像处理.

通讯作者:

董建锋,E-mail:dongjf24@gmail.com

中图分类号:

TP391

基金项目:

国家自然科学基金(61902347);浙江省自然科学基金(LQ19F020002,LGF21F020010)


Click-through Rate Prediction for Video Cold-start Problem
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    视频的点击率预估是视频推荐系统中的重要任务之一,推荐系统可以根据点击率的预估调整视频推荐顺序以提升视频推荐的效果.近年来,随着视频数量的爆炸式增长,视频推荐的冷启动问题也变得愈发严重.针对这个问题,提出了一个新的视频点击率预估模型,通过使用视频的内容特征以及上下文特征来加强视频点击率预估的效果;同时,通过对冷启动场景的模拟训练和基于近邻的替代方法提升模型应对新视频点击率预估的能力.提出的模型可以同时对旧视频和新视频进行点击率预估.在两个真实的电视剧(Track_1_series)和电影(Track_2_movies)点击率预估数据集上的实验表明:提出的模型可以显著改善对旧视频的点击率预估性能,并在两个数据集上均超过了现有的模型;对于新视频,相比于不考虑冷启动问题的模型只能获得0.57左右的AUC性能,该模型在两个数据集上分别获得0.645和0.615的性能,表现出针对冷启动问题更好的鲁棒性.

    Abstract:

    Video click-through rate (CTR) prediction is one of the important tasks in the context of video recommendation. According to click-through prediction, recommendation systems can adjust the order of the recommended video sequence to improve the performance of video recommendation. In recent years, with the explosive growth of videos, the problem of video cold start has become more and more serious. Aim for this problem, a novel video click-through prediction model is proposed which utilizes both the video content features and context features to improve CTR prediction; a simulation training of the cold start scenario and neighbor-based new video replacement method are also proposed to enhance the model's CTR prediction ability for new videos. The proposed model is able to predict CTR for both old and new videos. The experiments on two real-world video CTR datasets (Track_1_series and Track_2_movies) demonstrate the effectiveness of the proposed method. Specifically, the proposed model using both video content and contextual information improves the performance of CTR prediction for old videos, which also outperforms the existing models on both datasets. Additionally, for new videos, a baseline model without considering the cold start problem achieves an AUC score of about 0.57. By contrast, the proposed model gives much better AUC scores of 0.645 and 0.615 on Track_1_series and Track_2_movies, respectively, showing the better robustness to the cold start problem.

    参考文献
    [1] Schein AI, Popescul A, Ungar LH, et al.Methods and metrics for cold-start recommendations.In:Proc.of the 25th Annual Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.New York:ACM, 2002.253-260.
    [2] Li SJ, Lei WQ, Wu QY, et al.Seamlessly unifying attributes and items:Conversational recommendation for cold-start users.ACM Trans.on Information Systems, 2021.1-29.
    [3] Chen ZY, Xu K, Zhang W.Content-Based video relevance prediction with multi-view multi-level deep interest network.In:Proc.of the 27th ACM Int'l Conf.on Multimedia.New York:ACM, 2019.2607-2611.
    [4] Zhou G, Zhu XQ, Song CR, et al.Deep interest network for click-through rate prediction.In:Proc.of the 24th ACM SIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.New York:ACM, 2018.1059-1068.
    [5] Wu S, Tang YY, Zhu YQ, et al.Session-Based recommendation with graph neural networks.In:Proc.of the AAAI Conf.on Artificial Intelligence.Vol.33.Menlo Park:AAAI, 2019.346-353.
    [6] Chen JH, Zhang Q, Wang SL, et al.Click-Through rate prediction based on deep belief nets and its optimization.Ruan Jian Xue Bao/Journal of Software, 2019, 30(12):3665-3682(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/30/3665.htm[doi:10.13328/j.cnki.jos.005640]
    [7] Shao YW, Zhang M, Ma WZ, et al.Integrating latent item-item complementarity with personalized recommendation systems.Ruan Jian Xue Bao/Journal of Software, 2020, 31(4):1090-1100(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5925.htm[doi:10.13328/j.cnki.jos.005925]
    [8] Sachdeva N, Mcauley JJ.How useful are reviews for recommendation? A critical review and potential improvements.In:Proc.of the 43rd Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.New York:ACM, 2020.1845-1848.
    [9] Geng X, Zhang H, Bian J, et al.Learning image and user features for recommendation in social networks.In:Proc.of the IEEE Int'l Conf.on Computer Vision.Piscataway:IEEE, 2015.4274-4282.
    [10] Chen X, Zhang YF, Ai QY, et al.Personalized key frame recommendation.In:Proc.of the 40th Int'l ACM SIGIR Conf.on Research and Development in Information Retrieval.New York:ACM, 2017.315-324.
    [11] Kang WC, McAuley JJ.Self-Attentive sequential recommendation.In:Proc.of 2018 IEEE Int'l Conf.on Data Mining.Piscataway:IEEE, 2018.197-206.
    [12] Chen Q, Zhao H, Li W, et al.Behavior sequence transformer for e-commerce recommendation in alibaba.In:Proc.of the 1st Int'l Workshop on Deep Learning Practice for High-Dimensional Sparse Data.2019.1-4.
    [13] Hidasi B, Karatzoglou A.Recurrent neural networks with top-k gains for session-based recommendations.In:Proc.of the 27th ACM Int'l Conf.on Information and Knowledge Management.New York:ACM, 2018.843-852.
    [14] He XN, He ZK, Song J, et al.NAIS:Neural attentive item similarity model for recommendation.IEEE Trans.on Knowledge and Data Engineering, 2018, 30(12):2354-2366.
    [15] Vaswani A, Shazeer N, Parmar N, et al.Attention is all you need.In:Proc.of the Neural Information Processing Systems Conf.New York:NIPS, 2017.5998-6008.
    [16] Zhao N, Pi WC, Xu CQ.Video recommendation algorithm for multidimensional feature analysis and filtering.Computer Science, 2020, 47(4):103-107(in Chinese with English abstract).
    [17] Mikolov T, Chen K, Corrado G, et al.Efficient estimation of word representations in vector space.In:Proc.of the ICLR 2013.2013.Workshop Track Proceedings.
    [18] Wei YW, Wang X, Nie LQ, et al.Graph-Refined convolutional network for multimedia recommendation with implicit feedback.In:Proc.of the 28th ACM Int'l Conf.on Multimedia.New York:ACM, 2020.3541-3549.
    [19] Ge Y, Chen SC.Graph convolutional network for recommender systems.Ruan Jian Xue Bao/Journal of Software, 2020, 31(4):1101-1112(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/31/1101.htm
    [20] Wang N, He X, Liu Z, et al.Personalized video recommendation strategy based on user's playback behavior sequence.Chinese Journal of Computers, 2020, 43(1):123-135(in Chinese with English abstract).
    [21] Yang B, Mei T, Hua XS, et al.Online video recommendation based on multimodal fusion and relevance feedback.In:Proc.of the 6th ACM Int'l Conf.on Image and Video Retrieval.New York:ACM, 2007.73-80.
    [22] Van AVD, Dieleman S, Schraumen B.Deep content-based music recommendation.In:Proc.of the Neural Information Processing Systems Conf.New York:NIPS, 2013.2643-2651.
    [23] Dong JD, Wang X, Zhang LM, et al.Feature re-learning with data augmentation for video relevance prediction.IEEE Trans.on Knowledge and Data Engineering, 2021, 33(5):1946-1959.
    [24] Chen XS, Zhao R, Ma SJ, et al.Content-Based video relevance prediction with second-order relevance and attention modeling.In:Proc.of the 26th ACM Int'l Conf.on Multimedia.New York:ACM, 2018.2018-2022.
    [25] Wang P, Jiang YS, Xu CX, et al.Overview of content-based click-through rate prediction challenge for video recommendation.In:Proc.of the 27th ACM Int'l Conf.on Multimedia.New York:ACM, 2019.2593-2596.
    [26] Xu Q, Xu HC, Chen WL, et al.Time-Aware session embedding for click-through-rate prediction.In:Proc.of the 27th ACM Int'l Conf.on Multimedia.New York:ACM, 2019.2617-2621.
    [27] Wang X, Du YL, Zhang LM, et al.Exploring content-based video relevance for video click-through rate prediction.In:Proc.of the 27th ACM Int'l Conf.on Multimedia.New York:ACM, 2019.2602-2606.
    [28] Hershey S, Chaudhuri S, Ellis DPW, et al.CNN architectures for large-scale audio classification.In:Proc.of the 2017 IEEE Int'l Conf.on Acoustics, Speech and Signal Processing.Piscataway:IEEE, 2017.131-135.
    [29] Devilin J, Chang MW, Lee K, et al.Bert:Pre-training of deep bidirectional transformers for language understanding.In:Proc.of the 2019 Conf.of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Minneapolis:NAACL-HLT, 2019.4171-4186.
    [30] Zhang XR, Yuan X, Li YW, et al.Cold-Start representation learning:A recommendation approach with bert4Movie and movie2Vec.In:Proc.of the 27th ACM Int'l Conf.on Multimedia.New York:ACM, 2019.2612-2616.
    [31] Qiu ZP, Wu X, Gao JY, et al.U-BERT:Pre-training user representations for improved recommendation.In:Proc.of the AAAI Conf.on Artificial Intelligence.Menlo Park:AAAI, 2021.1-8.
    附中文参考文献:
    [6] 陈杰浩, 张钦, 王树良, 等.基于深度置信网络的广告点击率预估的优化.软件学报, 2019, 30(12):3665-3682.http://www.jos.org.cn/1000-9825/30/3665.htm[doi:10.13328/j.cnki.jos.005640]
    [7] 邵英玮, 张敏, 马为之, 等.融合商品潜在互补性发现的个性化推荐方法.软件学报, 2020, 31(4):1090-1100.http://www.jos.org.cn/1000-9825/5925.htm[doi:10.13328/j.cnki.jos.005925]
    [16] 赵楠, 皮文超, 许长桥.一种面向多维特征分析过滤的视频推荐算法.计算机科学, 2020, 47(4):103-107.
    [19] 葛尧, 陈松灿.面向推荐系统的图卷积网络.软件学报, 2020, 31(4):1101-1112.http://www.jos.org.cn/1000-9825/5928.htm[doi:10.13328/j.cnki.jos.005928]
    [20] 王娜, 何晓明, 刘志强, 等.一种基于用户播放行为序列的个性化视频推荐策略.计算机学报, 2020, 43(1):123-135.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

章磊敏,董建锋,包翠竹,纪守领,王勋.面向视频冷启动问题的点击率预估.软件学报,2022,33(12):4838-4850

复制
分享
文章指标
  • 点击次数:937
  • 下载次数: 2894
  • HTML阅读次数: 2239
  • 引用次数: 0
历史
  • 收稿日期:2021-01-09
  • 最后修改日期:2021-04-11
  • 在线发布日期: 2021-11-24
  • 出版日期: 2022-12-06
文章二维码
您是第19778971位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号